High Expression of Fas Ligand on Cord Blood Dendritic Cells: a Possible Immunoregulatory Mechanism After Cord Blood Transplantation

Total Page:16

File Type:pdf, Size:1020Kb

High Expression of Fas Ligand on Cord Blood Dendritic Cells: a Possible Immunoregulatory Mechanism After Cord Blood Transplantation High Expression of Fas Ligand on Cord Blood Dendritic Cells: A Possible Immunoregulatory Mechanism After Cord Blood Transplantation N. Naderi, S.M. Moazzeni, A.A. Pourfathollah, and K. Alimoghaddam ABSTRACT Background. Allogeneic cord blood transplantation is associated with less severe graft-versus-host disease (GVHD). Dendritic cells (DCs), as the most potent antigen- presenting cells of the immune system, play a central role in the development of GVHD. Because apoptosis induction is one of the known mechanisms that DCs use to regulate T-cell responses, we studied the immunostimulatory and apoptosis induction capacities of cord blood dendritic cells (CBDCs) and peripheral blood dendritic cells (PBDCs) to evaluate the mechanisms underlying the lower incidence of GVHD after cord blood transplantation. Presence of apoptosis-related markers Fas, Fas ligand (FasL), and CD40 and costimulatory molecules, along with the proportion of myeloid and lymphoid DCs subsets, were also measured on CBDCs and PBDCs. Methods. Fresh CBDCs and PBDCs were isolated from cord and peripheral mononu- clear cells as lineage-negative cells by using monoclonal antibodies against CD3, CD11b, CD14, CD16, CD19, CD56, CD34, and CD66b. DCs were cocultured with allogeneic T cells, and the effect of CBDCs and PBDCs on T-cell apoptosis and proliferation were determined through flow cytometric analysis and 3H-thymidine incorporation. Results. Our findings showed that CBDCs markedly augment apoptosis of CD3ϩ T-cells. FasL expression on CBDCs was significantly higher than on PBDCs. However, there was no difference between Fas expression on CBDCs and PBDCs. Moreover, CBDCs were poor stimulators of allogenic T cells in mixed leukocyte reaction compared with adult peripheral blood DCs. They also displayed decreased expression of HLA-DR and CD86 molecules. The ratio of lymphoid DCs (CD11cϪ, CD123ϩ)to myeloid DCs (CD11cϩ, CD123Ϫ) was also significantly higher in CBDCs compared with PBDCs. Conclusions. It seems that less severe GVHD after cord blood transplantation is due not only to a higher degree of immaturity of CBDCs, but also to delivery of apoptotic signals to the host T cells that recognize allo-MHC molecules on CBDCs in the early phase of immune response. llogeneic umbilical cord blood transplantation (CBT) responses following hematopoietic stem cell transplanta- A has been increasingly used recently for haematopoe- tion2 and induction of donor-specific hyporesponsiveness.3 itic reconstitution. Despite the existence of donor-receptor More recent studies have addressed the second role of DCs, HLA mismatches, lower incidence and severity of graft- versu-host disease (GVHD) is reported in cord blood 1 From the Immunology Department, Hormozgan University of allotransfusion (allo-CBT). Medical Sciences, Bandarabbas, Hormozgan, Iran. Dentritic cells (DCs) are thought to be critical in trigger- Address reprint requests to Dr. Nadereh Naderi, PhD, Hor- ing primary immune responses against novel antigens and mozgan University of Medical Sciences, P.O. Box 791969311, play a crucial role in induction of alloantigen-specific T-cell Bandarabbas, Hormozgan, Iran. © 2011 by Elsevier Inc. All rights reserved. 0041-1345/–see front matter 360 Park Avenue South, New York, NY 10010-1710 doi:10.1016/j.transproceed.2011.10.040 Transplantation Proceedings, 43, 3913–3919 (2011) 3913 3914 NADERI, MOAZZENI, POURFATHOLLAH ET AL ie, the down-regulation of immune response.4 These appar- as TRANCE (TNF-related activation-induced cytokine) ently opposing functions of DCs are now verified to depend receptor23 and CD40,3 that counteract Fas molecule and on DCs maturation stages and subsets. Although cells from have important roles in increasing DC survival.24 Because it the dendritic family share many phenotypic and functional is largely unknown which of these T-cell–silencing factors is properties, the expression of certain cell surface markers involved in the less-severe GVHD following cord blood has led to recognition of substantial heterogeneity among transplantation, and to elucidate the role of apoptosis- them. DCs can be divided into at least 2 major subpopula- related mechanism in this phenomenon, our laboratory tions, ie, myeloid DCs and lymphoid DCs, with distinct examined this issue along with other variables that are likely to origin, phenotype, and function.5 Lymphoid DCs counter- affect DC efficacy, including phenotypic features, immune- act with myeloid DCs to prolong the allograft survival in stimulatory competence, and subset distribution of cord mice, regardless of their maturational status.6 blood DCs (CBDCs) compared with peripheral blood DCs Multiple mechanisms presumably collaborate to halt (PBDCs). DC-induced T-cell activation at both T-cell and DC levels. Apoptosis and Fas ligand (FasL) expression serve as com- MATERIALS AND METHODS mon and key events, leading to DC-induced immunological Blood Samples unresponsiveness.3,7 There is evidence that constitutive A total of 7 CB samples from healthy full-term newborns were expression of FasL on splenic DCs and bone marrow– obtained from the Hematology, Oncology, and Bone Marrow derived DCs may be involved in killing of activated Fas- Transplantation Research Center of Shariati Hospital (Tehran, ϩ 8,9 positive CD4 T cells. Iran) with the informed consents of the mothers. The CB units had The possibility that stimulation of Fas on the surface of a mean volume of 80 Ϯ 25 mL. In addition, 7 adult leukocyte– donor-specific T cells can protect tissue grafts from rejec- enriched buffy coats were obtained from the Iranian Blood Trans- tion was first explored by Bellgrau et al, who showed that fusion Organization with a mean volume of 32 Ϯ 8.5 mL. All FasL-expressing testicular allografts were accepted after samples were collected in heparin and immediately processed for transplantation, whereas grafts from FasL-deficient donor the immunophenotypic and functional studies. animals were normally rejected.10 Sharland et al and Car- roll et al have also highlighted the importance of apoptotic Cell Preparation deletion of antigen specific T cells in spontaneous accep- PBDCs and CBDCs were isolated according to a slightly modified tance of organ transplantation, such as liver allografts, and protocol described previously for PBDC separation.25 Briefly, the role of Fas and FasL molecules as key players in this blood mononuclear cells were isolated through Ficoll (Lym- phenomenon.11,12 phoprep, Axis-Shield, Norway) gradient centrifugation. CB and PB Indeed, the most profound form of tolerance that is mononuclear cells were then rosetted with S-2-aminoethyl isothiu- commonly observed in immune-privileged sites proceeds ronium bromide (Merck, Germany)–treated sheep red blood cells. via an initial activation phase.13 Expression of FasL in After depletion of rosetted cells using Ficoll gradient centrifuga- immune-privileged organs, including retinal cells of the eye tion to reduce the multiplicity of T cells, the nonrosetted fraction was stained with a cocktail of monoclonal antibodies designed to and Sertoli cells of the testis, has been proposed to initiate exclude lineage marker–positive cells, including anti-CD3 (clone a signaling cascade that leads to apoptotic cell death of UCHT1), anti-CD11b (clone ICRF44), anti-CD14 (clone M5E2), Fas-bearing invading T cells at an early stage of immune anti-CD16 (clone 3G8), anti-CD56 (clone B159), and anti-CD19 response and thereby contributes to spontaneous immune (clone HIB19). All antibodies were from immunoglobulin (Ig) G1 tolerance at the privileged sites.10,14 isotype and were prepared from BD Biosciences (USA). In case of On the other hand, there is another form of physiologic cord blood, anti-CD34 (clone 581; BD Biosciences) and anti- deletion of activated T cells, termed activation-induced cell CD66b (clone CLB-B13.9; Research Diagnostics, USA) were ϩ 15 included owing to the high frequency of CD34 stem cells and death (AICD). Fas and FasL are also involved in this ϩ later-stage apoptosis and could reduce immune response CD66b myeloid Ig-coated magnetic precursors in CB. The cells after prolonged T-cell activation, when T-cell clones expand were then incubated with goat antimouse beads (Dynal Biotech, Norway) followed by depletion of the labeled cells. The remaining and become redundant.12 cells were analyzed by flow cytometry to determine the DC purity. Massive activation-induced cell death (AICD) following To prepare T cells, the nonadherent floating cells were collected an initial brisk proliferation of donor T cells has been after 2 hours of mononuclear cell (MNC) culture and passed 16 reported recently in a murine model of GVHD. Other through a nylon wool column. Enriched T cells were obtained by studies demonstrate a delayed type increase in spontaneous depletion of nylon wool–adherent cells. The purity of T cells was apoptosis among peripheral blood T cells following alloge- determined by flow cytometry using antihuman CD3 monoclonal neic hematopoietic cell transplantation.17,18 antibody (clone UCTH1; BD Biosciences). Moreover, apoptosis of DCs appears to serve as another mechanism to decline T cell response.19 Fas expression has Flow Cytometric Analysis been detected on freshly prepared DCs from various tissues Triple staining was used for immunophenotyping of the DCs. 20,21 or short term DC lines. Matsue et al reported that Briefly, the cells were incubated with fluorescein isothiocyanate ligation of Fas on DCs by FasL on T cells is capable of (FITC)–or phycoerythim-conjugated F(ab=)2 goat antimouse
Recommended publications
  • Inhibition of Midkine Alleviates Experimental Autoimmune Encephalomyelitis Through the Expansion of Regulatory T Cell Population
    Inhibition of midkine alleviates experimental autoimmune encephalomyelitis through the expansion of regulatory T cell population Jinyan Wang*, Hideyuki Takeuchi*†, Yoshifumi Sonobe*, Shijie Jin*, Tetsuya Mizuno*, Shin Miyakawa‡, Masatoshi Fujiwara‡, Yoshikazu Nakamura§¶, Takuma Katoʈ, Hisako Muramatsu**, Takashi Muramatsu**††, and Akio Suzumura*† *Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; ‡RIBOMIC, Inc., 3-15-5-601 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan; §Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; ¶Core Research Evolutional Science and Technology, Japan Science and Technology Agency, Toyonaka, Osaka 560-8531, Japan; ʈDepartment of Bioregulation, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; **Department of Biochemistry, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; and ††Department of Health Science, Faculty of Psychological and Physical Sciences, Aichi Gakuin University, Nisshin, Aichi 470-0195, Japan Edited by Ethan Shevach, National Institutes of Health, Bethesda, MD, and accepted by the Editorial Board January 20, 2008 (received for review October 12, 2007) CD4؉CD25؉ regulatory T (Treg) cells are crucial mediators of nity, and abnormalities in Treg cell function may contribute to the autoimmune tolerance. The factors that regulate Treg cells, how- development of
    [Show full text]
  • Immunomodulation and Generation of Tolerogenic Dendritic Cells by Probiotic Bacteria in Patients with Inflammatory Bowel Disease
    International Journal of Molecular Sciences Article Immunomodulation and Generation of Tolerogenic Dendritic Cells by Probiotic Bacteria in Patients with Inflammatory Bowel Disease 1, 2, 1 Shaghayegh Baradaran Ghavami y, Abbas Yadegar y , Hamid Asadzadeh Aghdaei , Dario Sorrentino 3,4,*, Maryam Farmani 1 , Adil Shamim Mir 5, Masoumeh Azimirad 2 , Hedieh Balaii 6, Shabnam Shahrokh 6 and Mohammad Reza Zali 6 1 Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (S.B.G.); [email protected] (H.A.A.); [email protected] (M.F.) 2 Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (A.Y.); [email protected] (M.A.) 3 IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA 4 Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy 5 Department of Internal Medicine, Roanoke Memorial Hospital, Carilion Clinic, VA 24014, USA; [email protected] 6 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (H.B.); [email protected] (S.S.); [email protected] (M.R.Z.) * Correspondence: [email protected] These authors equally contributed to this study. y Received: 7 August 2020; Accepted: 27 August 2020; Published: 29 August 2020 Abstract: In inflammatory bowel diseases (IBD), the therapeutic benefit and mucosal healing from specific probiotics may relate to the modulation of dendritic cells (DCs).
    [Show full text]
  • Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes
    Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes This information is current as Joe M. Horvatinovich, Elizabeth W. Grogan, Marcus Norris, of September 29, 2021. Alexander Steinkasserer, Henrique Lemos, Andrew L. Mellor, Irina Y. Tcherepanova, Charles A. Nicolette and Mark A. DeBenedette J Immunol 2017; 198:2286-2301; Prepublished online 13 February 2017; Downloaded from doi: 10.4049/jimmunol.1600802 http://www.jimmunol.org/content/198/6/2286 Supplementary http://www.jimmunol.org/content/suppl/2017/02/11/jimmunol.160080 http://www.jimmunol.org/ Material 2.DCSupplemental References This article cites 80 articles, 29 of which you can access for free at: http://www.jimmunol.org/content/198/6/2286.full#ref-list-1 Why The JI? Submit online. by guest on September 29, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes Into Macrophage-Like Cells Via the MAPK Signaling Pathway
    Immune Netw. 2019 Jun;19(3):e17 https://doi.org/10.4110/in.2019.19.e17 pISSN 1598-2629·eISSN 2092-6685 Original Article Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway So-Hee Hong 1,2,3,4,5, Jun-Seop Shin 1,2,3,5, Hyunwoo Chung 1,2,4,5, Chung-Gyu Park 1,2,3,4,5,* 1Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea 2Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea 3Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea 4Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea 5Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea Received: Jan 28, 2019 ABSTRACT Revised: May 13, 2019 Accepted: May 19, 2019 Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal *Correspondence to tract of animals. Although intensive functional studies have been done for other galectin Chung-Gyu Park isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we Department of Microbiology and Immunology, Seoul National University College of Medicine, demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation 103 Daehak-ro, Jongno-gu, Seoul 03080, into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic Korea. changes on monocytes by altering the expression of various surface molecules, and induced E-mail: [email protected] functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • The Immunological Synapse and CD28-CD80 Interactions Shannon K
    © 2001 Nature Publishing Group http://immunol.nature.com ARTICLES The immunological synapse and CD28-CD80 interactions Shannon K. Bromley1,Andrea Iaboni2, Simon J. Davis2,Adrian Whitty3, Jonathan M. Green4, Andrey S. Shaw1,ArthurWeiss5 and Michael L. Dustin5,6 Published online: 19 November 2001, DOI: 10.1038/ni737 According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition.The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC- peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28. The T cell receptor (TCR) interaction with complexes of peptide and as CD2 and CD48, which suggests that CD28 might have a dual role as major histocompatibility complex (pMHC) is central to the T cell an adhesion and a signaling molecule4. Coengagement of CD28 with response. However, efficient T cell activation also requires the partici- the TCR has a number of effects on T cell activation; these include pation of additional cell-surface receptors that engage nonpolymorphic increasing sensitivity to TCR stimulation and increasing the survival of ligands on antigen-presenting cells (APCs). Some of these molecules T cells after stimulation5. CD80-transfected APCs have been used to are involved in the “physical embrace” between T cells and APCs and assess the temporal relationship of TCR and CD28 signaling, as initiat- are characterized as adhesion molecules.
    [Show full text]
  • Induces Antigen Presentation in B Cells Cell-Activating Factor of The
    B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells This information is current as of September 27, 2021. Min Yang, Hidenori Hase, Diana Legarda-Addison, Leena Varughese, Brian Seed and Adrian T. Ting J Immunol 2005; 175:2814-2824; ; doi: 10.4049/jimmunol.175.5.2814 http://www.jimmunol.org/content/175/5/2814 Downloaded from References This article cites 54 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/175/5/2814.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells1 Min Yang,* Hidenori Hase,* Diana Legarda-Addison,* Leena Varughese,* Brian Seed,† and Adrian T.
    [Show full text]
  • Induce EBV-Transformed B Cell Apoptosis Through the Fas/Fasl Pathway
    INTERNATIONAL JOURNAL OF ONCOLOGY 43: 1531-1540, 2013 CD80 (B7.1) and CD86 (B7.2) induce EBV-transformed B cell apoptosis through the Fas/FasL pathway GA BIN PARK1, YEONG SEOK KIM1, HYUN-KYUNG LEE2, DAE-HO CHO3, DAEJIN KIM1 and DAE YOUNG HUR1 1Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine; 2Department of Internal Medicine, Inje University Busan Paik Hospital, Busan 614-735; 3Department of Life Science, Sookmyung Women's University, Yongsan-gu, Yongsan-ku, Seoul 140-742, Republic of Korea Received July 7, 2013; Accepted August 16, 2013 DOI: 10.3892/ijo.2013.2091 Abstract. CD80 and CD86 expression is strongly regulated resting human B lymphocytes with EBV results in immor- in B cells and is induced by various stimuli (e.g., cytokines, talization of infected B cells, yielding lymphoblastoid cells, ligation of MHC class II and CD40 ligand). Epstein-Barr virus which are characterized by continuous growth and resistance (EBV) infection activates B lymphocytes and transforms them to various apoptotic signals. Moreover, lymphoblastoid cells into lymphoblastoid cells. However, the role of CD80 and CD86 have a phenotype related to that of activated B-lymphoblasts. in EBV infection of B cells remains unclear. Here, we observed However, despite clarification of the role of some viral proteins, that cross-linking of CD80 and CD86 in EBV-transformed such as latent membrane protein (LMP), in EBV-related resis- B cells induced apoptosis through caspase-dependent release tance, the molecular mechanisms of resistance to apoptosis are of apoptosis-related molecules, cytochrome c and apoptosis- not yet fully understood (2,3).
    [Show full text]
  • Loss of the Death Receptor CD95 (Fas) Expression by Dendritic Cells Protects from a Chronic Viral Infection
    Loss of the death receptor CD95 (Fas) expression by dendritic cells protects from a chronic viral infection Vineeth Varanasia, Aly Azeem Khanb, and Alexander V. Chervonskya,1 aDepartment of Pathology and Committee on Immunology, and bInstitute for Genomics and Systems Biology and Department of Human Genetics, The University of Chicago, Chicago, IL 60637 Edited* by Alexander Y. Rudensky, Memorial Sloan–Kettering Cancer Center, New York, NY, and approved May 5, 2014 (received for review January 28, 2014) Chronic viral infections incapacitate adaptive immune responses persistsinparenchymatousorganssuchaskidneys(13,15).In by “exhausting” virus-specific T cells, inducing their deletion and contrast, infection with the Armstrong variant of LCMV is rapidly reducing productive T-cell memory. Viral infection rapidly induces cleared, does not cause exhaustion of T cells, and results in the death receptor CD95 (Fas) expression by dendritic cells (DCs), mak- formation of a good memory T-cell response. Animals carrying ing them susceptible to elimination by the immune response. Lym- loxP-flanked Fas exon IX (B6.FasKI) and CD11c-driven Cre phocytic choriomeningitis virus (LCMV) clone 13, which normally recombinase (B6.CD11c-Cre) were infected with LCMV clone 13. establishes a chronic infection, is rapidly cleared in C57Black6/J Cre-negative FasKI mice as well as mice with a T-cell–specific mice with conditional deletion of Fas in DCs. The immune response deletion of Fas (B6.Lck-Cre.FasKI) served as controls (Fig. 1). to LCMV is characterized by an extended survival of virus-specific Viral titers were determined in the secondary lymphoid organs effector T cells. Moreover, transfer of Fas-negative DCs from non- and kidneys.
    [Show full text]
  • Cx3cr1 Mediates the Development of Monocyte-Derived Dendritic Cells During Hepatic Inflammation
    CX3CR1 MEDIATES THE DEVELOPMENT OF MONOCYTE-DERIVED DENDRITIC CELLS DURING HEPATIC INFLAMMATION. Supplementary material Supplementary Figure 1: Liver CD45+ myeloid cells were pre-gated for Ly6G negative cells for excluding granulocytes and HDCs subsequently analyzed among the cells that were CD11c+ and had high expression of MHCII. Supplementary Table 1 low/- high + Changes in gene expression between CX3CR1 and CX3CR1 CD11b myeloid hepatic dendritic cells (HDCs) from CCl4-treated mice high Genes up-regulated in CX3CR1 HDCs Gene Fold changes P value Full name App 4,01702 5,89E-05 amyloid beta (A4) precursor protein C1qa 9,75881 1,69E-22 complement component 1, q subcomponent, alpha polypeptide C1qb 9,19882 3,62E-20 complement component 1, q subcomponent, beta polypeptide Ccl12 2,51899 0,011769 chemokine (C-C motif) ligand 12 Ccl2 6,53486 6,37E-11 chemokine (C-C motif) ligand 2 Ccl3 4,99649 5,84E-07 chemokine (C-C motif) ligand 3 Ccl4 4,42552 9,62E-06 chemokine (C-C motif) ligand 4 Ccl6 3,9311 8,46E-05 chemokine (C-C motif) ligand 6 Ccl7 2,60184 0,009272 chemokine (C-C motif) ligand 7 Ccl9 4,17294 3,01E-05 chemokine (C-C motif) ligand 9 Ccr2 3,35195 0,000802 chemokine (C-C motif) receptor 2 Ccr5 3,23358 0,001222 chemokine (C-C motif) receptor 5 Cd14 6,13325 8,61E-10 CD14 antigen Cd36 2,94367 0,003243 CD36 antigen Cd44 4,89958 9,60E-07 CD44 antigen Cd81 6,49623 8,24E-11 CD81 antigen Cd9 3,06253 0,002195 CD9 antigen Cdkn1a 4,65279 3,27E-06 cyclin-dependent kinase inhibitor 1A (P21) Cebpb 6,6083 3,89E-11 CCAAT/enhancer binding protein (C/EBP),
    [Show full text]
  • (Siglec) Adhesion Receptor That Binds CD83
    CD83 Is a Sialic Acid-Binding Ig-Like Lectin (Siglec) Adhesion Receptor that Binds Monocytes and a Subset of Activated CD8+ T Cells This information is current as of September 25, 2021. Nathalie Scholler, Martha Hayden-Ledbetter, Karl-Erik Hellström, Ingegerd Hellström and Jeffrey A. Ledbetter J Immunol 2001; 166:3865-3872; ; doi: 10.4049/jimmunol.166.6.3865 http://www.jimmunol.org/content/166/6/3865 Downloaded from References This article cites 44 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/166/6/3865.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts Errata An erratum has been published regarding this article. Please see next page or: /content/182/3/1772.2.full.pdf The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. CD83 Is a Sialic Acid-Binding Ig-Like Lectin (Siglec) Adhesion Receptor that Binds Monocytes and a Subset of Activated CD8؉ T Cells1 Nathalie Scholler,2* Martha Hayden-Ledbetter,† Karl-Erik Hellstro¨m,* Ingegerd Hellstro¨m,* and Jeffrey A.
    [Show full text]
  • Anti-Human CD80/B7.1
    Product Information Sheet Anti-Human CD80 (B7-1)-162Dy Catalog #: 3162010B Clone: 2D10.4 Package Size: 100 tests Isotype: Mouse IgG1 Storage: Store product at 4°C. Do not freeze. Formulation: Antibody stabilizer with 0.05% Sodium Azide Cross Reactivity: Rhesus Technical Information Validation: Each lot of conjugated antibody is quality control tested by CyTOF® analysis of stained cells using the appropriate positive and negative cell staining and/or activation controls. Recommended Usage: The suggested use is 1 µl for up to 3 X 106 live cells in 100 µl. It is recommended that the antibody be titrated for optimal performance for each of the desired applications. Human Daudi cells (top) and human Jurkat T cells (bottom) stained with 162Dy- anti-CD80 [B7.1] (2D10.4). Description CD80 (B7.1) is a 60 kDa member of the B7 family of proteins. CD80 is expressed by activated B and T lymphocytes, macrophages and dendritic cells. While CD80 can bind to the immune-stimulatory CD28, it binds with higher affinity to the immune-inhibitory CTLA-4. The B7 ligands CD80 and CD86 and their receptors CD28 and CTLA-4 act create a costimulatory-coinhibitory system that acts to regulate immune responses. Mice deficient in CD80 and CD86 have profound defects in both humoral and cellular immunity. References Bandura, D. R., et al. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry 81:6813-6822, 2009. Ornatsky, O. I., et al. Highly multiparametric analysis by mass cytometry. J Immunol Methods 361 (1-2):1-20, 2010.
    [Show full text]