Chapter 1 Introduction J

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Introduction J Downloaded from http://egsp.lyellcollection.org/ by guest on September 25, 2021 Chapter 1 Introduction J. Charman* & Engineering Group Working Party Cerne Abbas, Dorchester, Dorset, DT2 7JG, UK *Corresponding author (e-mail: [email protected]) framework of the Commission’s current multi-year work 1.1. Deserts programme, the third cycle in 2008 and 2009 focused on desertification and drought. With ongoing climate change, There are several, often conflicting, views of what is a desert. there is a projected shift in arid climatic zones north and In the 1973 edition of the Oxford English Dictionary its defi- south from the mid-latitudes into more populated regions. nition of deserts included the phrase ‘dry, parched, withered, This publication is, therefore, timely in bringing together hence uninteresting’. This somewhat belied the romantic current Earth science and engineering knowledge into a notions in the western world inspired by, among others, state-of-the-art review and handbook for the practitioner. Wilfred Thesiger and T. E. Lawrence. At about this time desert regions became very ‘interesting’, gaining a greater 1.1.1. Definitions significance with the rising price of oil fostering a develop- ment boom in many oil-rich countries, especially in the Many definitions have been proposed for the term ‘desert’ and Middle East. these are considered indetail inChapter 2.In general, most dic- During this period early western designed and controlled tionary definitions refer to regions that do not produce suffi- building and construction projects in the Middle East cient vegetation to support a human population. Many maps began to fall foul of a number of geotechnical hazards depict the location and extent of the deserts of the world. little understood by professionals whose previous experience Table 1.1 contains a list of the major, non-polar, deserts of had been gained in the temperate regions of the world. Tra- the world (after Goudie 2002) and the numbers shown in the ditional, locally developed techniques were neglected or table relate to the location shown on the map (Fig. 1.1). ignored, as had reported knowledge from valuable experi- While the location of, for example, the Sahara, Gobi and ence in the field (Bagnold 1941). Atacama deserts are well known, in reality they cover a Over the last 30 years considerable understanding and range of climatic conditions. For this report, which considers experience has been gained of the geomorphological pro- the physical characteristics of deserts and their influence on cesses and ground characteristics peculiar to desert engineering behaviour, a climatological definition has been regions, and their effects on design and construction. Many considered to be the most useful basis for the description innovative engineering techniques have been developed and identification of hot deserts. and employed, and information on these advances is now In detail, climate is unique to location and depends on the widely disseminated in the technical literature. local interaction of several factors, including temperature, The report of a Geological Society of London Working precipitation, relative humidity and wind. In any one geo- Party on Tropical Residual Soils (Fookes 1990, 1997) was graphically discrete desert, it is difficult to define transitions the first to consider a particular environment as the focus from typical desert conditions into other climatic regimes for an engineering geological handbook. As a natural succes- related to changes in latitude and elevation. sor in this approach, this Working Party report on engineer- Most scientific classifications rely on some combination ing works in Hot Desert regions, commissioned by the of the number of days of rainfall, the total amount of Engineering Group of the Geological Society, is intended annual rainfall, temperature, humidity or other factors. The to provide, under one cover, a practical handbook for the most widely accepted system, however, is probably that of practitioner, academic and student working in this sector Meigs (1953), dividing desert regions into three categories (see Text box 1.1). according to the amount of precipitation they receive. In 2003 the United Nations General Assembly, in its res- Meigs’ assessment used the Thornthwaite (1948) Moisture olution A/RES/58/211, declared the year 2006 as the Inter- Availability Index, and the Aridity Index as another measure. national Year of Deserts and Desertification. Combating These are explained more fully in Chapter 2. Typically, desertification and drought has been discussed by the UN extremely arid lands have at least 12 consecutive months Commission on Sustainable Development and, in the without rainfall, arid lands have less than 250 mm of From:M.J.Walker (ed.) Hot Deserts: Engineering, Geology and Geomorphology – Engineering Group Working Party Report. Geological Society, London, Engineering Geology Special Publications, 25, 1–6. http://dx.doi.org/10.1144/EGSP25.01 # The Geological Society of London 2012. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics Downloaded from http://egsp.lyellcollection.org/ by guest on September 25, 2021 Distibution of the major non-polar deserts of the world (after Goudie 2002). The numbers relate to the list of locations shown in Table 1.1. Fig. 1.1. Downloaded from http://egsp.lyellcollection.org/ by guest on September 25, 2021 2 INTRODUCTION Text box 1.1. Terms of Reference of the Working Party (1) These Terms of Reference are as agreed by the Desert Working Party (DWP) and committee of the Engineering Group of The Geological Society of London. (2) The DWP has been established by the Engineering Group of the Geological Society and comprises officers and specialist participating members who will act as chapter authors or co-authors. The participating members may be assisted by any number of corresponding members based in the UK and, occasionally, overseas. (3) The DWP will produce a report to complement the earlier report on Tropical Residual Soils produced by an earlier Working Party of the Engineering Group, first published in 1990 and re-published in book format in 1997. It is currently envisaged that the report will be in book format, but this will be kept under review in recognition that major change is taking place within the publishing industry. (4) It is intended that the report will be a comprehensive, state-of-the-art, review on hot deserts and their materials. Primarily, the report will cover conditions and materials in modern hot deserts, but there will be some coverage of unmodified ancient desert soils that exhibit engineering behaviour that is in many respects similar to modern desert materials. (5) The aim of the DWP is to produce a report that will act as an essential reference handbook for professionals as well as a valuable textbook for students and others. The style will be concise and digestible by the non-specialist, yet be authoritative, up to date and extensively supported by data and collations of technical information. The use of jargon will be minimized and necessary specialist terms will be defined in an extensive glossary. There will be copious illustrations, many of which will be original, and many good-quality photographs. (6) The content of the report will embrace a full range of topics, from the latest research findings to practical appli- cations of existing information. There will be an endeavour to identify likely directions of future research and to predict future development. The report will be based on worldwide experience in hot desert terrain, and will draw upon the experience of its members and publications on hot desert conditions. (7) There will be collective responsibility for the whole report. Although each participating member will be the draft- ing author or co-author of one or more chapters, all members will be expected to review and contribute to the chap- ters drafted by other members. annual rainfall, and semi-arid lands have a mean annual pre- that are relevant to such deserts today. In these regions, the cipitation of between 250 and 500 mm (Table 1.2). influence of surface water is mainly experienced only in An initial subdivision can be made into ‘cold’ and ‘hot’ ‘rare’ events, such as flooding. The effect of moisture move- deserts. In ‘cold deserts’, in the higher latitudes, the prevail- ment is generally limited to those areas with near-surface ing low temperature and the low moisture availability are the groundwater, such as inland drainage basins and coasts. causes of the lack of vegetation. In ‘hot deserts’, in the mid- Nevertheless, it is essential that in these areas the process latitudes around the tropical belts, the lack of vegetation is be clearly understood to ensure the safety and durability of the result of a combination of high temperature and aridity, new structures. where evaporation is largely in excess of precipitation and In semi-arid and dry sub-humid deserts, the role of moist- overgrazing. The word ‘desert’ can cover, therefore, a ure increases; for example, in the formation of pedogenic range of climatological conditions from arid to dry sub- soils. Indeed, many features of present-day hot deserts are humid and from hot to cold. This raised the conundrum for relict, and are the result of moisture movement processes the Working Party of where to focus this report since it more active in the mild semi-arid and dry sub-humid con- was considered that to attempt cover the complete range of ditions that have occurred repeatedly in the fluctuating cli- conditions could weaken its application. To avoid this it matic cycles (glaciations) of the Quaternary. Similarly, the was decided to concentrate the Working Party’s efforts on present-day cool, cold or polar deserts also encompass pro- hot desert regions. cesses of a periglacial, or even glacial, nature. These con- ditions often make significant differences to local materials and the engineering approach. 1.1.2.
Recommended publications
  • Australia: State of the Environment 1996: Chapter 4
    Chapter 4 . Biodiversity ‘Still Flying’ from the painting of a Wandering Albatross by Richard Prepared by Weatherly. Denis Saunders (Chair), CSIRO Division of Wildlife and Ecology Andrew Beattie, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Susannah Eliott (Research Assistant/Science Writer), Centre for Science Communication, University of Technology, Sydney Marilyn Fox, School of Geography, University of New South Wales Burke Hill, CSIRO Division of Fisheries Bob Pressey, New South Wales National Parks and Wildlife Service Duncan Veal, Centre for Biodiversity and Bioresources, School of Biological Sciences, Macquarie University Jackie Venning, State of Environment Reporting, South Australian Department of Environment and Natural Resources Mathew Maliel (State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (Facilitator) Charlie Zammit (former State of the Environment Reporting Unit member), Department of the Environment, Sport and Territories (former Facilitator) 4-1 . Australia: State of the Environment 1996 . Contents Introduction. 4-4 Pressure . 4-7 Human populations . 4-9 Urban development . 4-9 Tourism and recreation . 4-9 Harvesting resources and land use. 4-10 Fisheries . 4-10 Forestry . 4-11 Pastoralism. 4-12 Agriculture . 4-12 Introduced species . 4-16 Vertebrates . 4-16 Invertebrates. 4-17 Plants. 4-18 Micro-organisms. 4-20 Native species out of place . 4-20 Pollution . 4-21 Mining . 4-22 Climate change . 4-22 State . 4-23 The state of ecosystem diversity . 4-23 Biogeographic regionalisations for Australia . 4-23 Ecosystem diversity. 4-26 The state of species diversity. 4-30 Number and distribution of species . 4-31 Status of species .
    [Show full text]
  • A Window Into Paleocene to Early Eocene Depositional History in Egypt Basedoncoccolithstratigraphy
    The Dababiya Core: A window into Paleocene to Early Eocene depositional history in Egypt basedoncoccolithstratigraphy Marie-Pierre Aubry1 and Rehab Salem1,2 1Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, NJ 08854-8066, USA email: [email protected] 2Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt [email protected] ABSTRACT: The composite Paleocene-lower Eocene Dababiya section recovered in the Dababiya Quarry core and accessible in out- crop in the Dababiya Quarry exhibits an unexpected contrast in thickness between the Lower Eocene succession (~Esna Shales) and the Paleocene one (~Dakhla Shales and Tarawan Chalk). We investigate the significance of this contrast by reviewing calcareous nannofossil stratigraphic studies performed on sections throughout Egypt. We show that a regional pattern occurs, and distinguish six areas—Nile Valley, Eastern Desert and western Sinai, Central and eastern Sinai, northern Egypt and Western Desert. Based on patterns related to thicknesses of selected lithobiostratigraphic intervals and distribution of main stratigraphic gaps, we propose that the differences in the stratigraphic architecture between these regions result from differential latest Paleocene and Early Eocene subsidence following intense Middle to Late Paleocene tectonic activity in the Syrian Arc folds as a result of the closure of the Neo-Tethys. INTRODUCTION view of coccolithophore studies in Egypt since their inception During the Late Cretaceous and Early Paleogene Egypt was (1968). Coccolith-bearing sedimentary rocks as old as part of a vast epicontinental shelf at the edge of the southern Cenomanian outcrop in central Sinai (Thamed area; Bauer et al. Tethys (text-fig. 1). Bounded by the Arabian-Nubian craton to 2001; Faris and Abu Shama 2003).
    [Show full text]
  • Track-Based Monitoring for the Deserts and Rangelands of Australia
    Track-based monitoring for the deserts and rangelands of Australia Richard Southgate and Katherine Moseby Envisage Environmental Services Ecological Horizons June 2008 for the Threatened Species Network at WWF-Australia Executive Summary This document outlines a broad-scale nationally-coordinated program for monitoring threatened and invasive species in the inland deserts and rangelands of Australia. The program uses a track-based monitoring technique which has been developed after extensive work with Indigenous groups in arid Australia and is well suited to engage the skills of Indigenous people and provide meaningful employment. There is a pressing need to understand the broad-scale population trends and status of remnant threatened species and the distribution and abundance of invasive species in arid Australia. Animal populations are often highly dispersed, elusive and challenging to monitor and some species are producing considerable impact on agriculture and biodiversity. The proposed technique produces multi-species occupancy data and these data are foundational in studies of distribution and range and the study of animal invasions. The data are statistically robust and relatively inexpensive to produce. The technique is simple to apply and monitoring can be conducted on a broad-scale and is well-suited to the isolated, large, sandy areas of the interior. A draft monitoring protocol and data sheet is provided. To improve the validity of data it is proposed that a training and accreditation scheme would ensure the validity of data and allow skilled traditional owners to train others in their community. Track-based monitoring is not a new technique, indigenous groups have been using animal sign for millennia, and more recently scientists have also adopted this method particularly for monitoring introduced predators.
    [Show full text]
  • English Cop16 Prop. 6 CONVENTION on INTERNATIONAL
    Original language: English CoP16 Prop. 6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Sixteenth meeting of the Conference of the Parties Bangkok (Thailand), 3-14 March 2013 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Delist the extinct Onychogalea lunata from Appendix I in accordance with the Resolution Conf. 9.24 (Rev. CoP15). The species does not meet the biological criteria (Annex 1) and trade criteria (Annex 5) for Appendix I. The precautionary measures referred to in Annex 4 A1 and D are not considered to be required for this proposal. Paragraph 1A requires species listed on Appendix I to be first transferred to Appendix II so that the impact of any trade can be monitored. Australia considers that it is not necessary to first transfer the species to Appendix II as it is extinct, has not been in trade and is never likely to be in trade. Paragraph D states that species regarded as possibly extinct should not be deleted from Appendix I if they may be affected by trade in the event of their rediscovery. Retaining the species on Appendix I with the annotation of ‘possibly extinct’ is not warranted because in the unlikely event of its rediscovery will not be affected by trade. B. Proponent Australia*, as requested by the Animals Committee, to delete the species from Appendix I (AC26 WG1 Doc. 2). C. Supporting statement 1. Taxonomy 1.1 Class: Mammalia 1.2 Order: Diprotodontia 1.3 Family: Macropodidae 1.4 Species: Onychogalea lunata (Gould, 1841) 1.5 Scientific
    [Show full text]
  • Survey of the Underground Signs of Marsupial Moles in the WA Great Victoria Desert
    Survey of the underground signs of marsupial moles in the WA Great Victoria Desert Report to Tropicana Joint Venture and the Department of Natural Resources, Environment and the Arts, Northern Territory Government Joe Benshemesh Martin Schulz September 2008 Marsupial moles in the WA Great Victoria Desert Benshemesh & Schulz 2008 Contents Summary.......................................................................................................................3 Introduction..................................................................................................................5 Methods........................................................................................................................7 Methods........................................................................................................................8 Sites.........................................................................................................................8 Trenches.................................................................................................................9 Moleholes ..............................................................................................................9 Additional data ....................................................................................................9 Results..........................................................................................................................12 Characteristics attributes of backfilled tunnels in WA GVD.............................12
    [Show full text]
  • Origin of the Sinai-Negev Erg, Egypt and Israel: Mineralogical and Geochemical Evidence for the Importance of the Nile and Sea Level History Daniel R
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- ubP lished Research US Geological Survey 2013 Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R. Muhs U.S. Geological Survey, [email protected] Joel Roskin Ben-Gurion University of the Negev Haim Tsoar Ben-Gurion University of the Negev Gary Skipp U.S. Geological Survey, [email protected] James Budahn U.S. Geological Survey See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, Other Earth Sciences Commons, and the Other Environmental Sciences Commons Muhs, Daniel R.; Roskin, Joel; Tsoar, Haim; Skipp, Gary; Budahn, James; Sneh, Amihai; Porat, Naomi; Stanley, Jean-Daniel; Katra, Itzhak; and Blumberg, Dan G., "Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history" (2013). USGS Staff -- Published Research. 931. https://digitalcommons.unl.edu/usgsstaffpub/931 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- ubP lished Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Daniel R. Muhs, Joel Roskin, Haim Tsoar, Gary Skipp, James Budahn, Amihai Sneh, Naomi Porat, Jean-Daniel Stanley, Itzhak Katra, and Dan G. Blumberg This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/usgsstaffpub/931 Quaternary Science Reviews 69 (2013) 28e48 Contents lists available at SciVerse ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Origin of the SinaieNegev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history Daniel R.
    [Show full text]
  • Evidence of Altered Fire Regimes in the Western Desert Region of Australia
    272 Conservation Science W. Aust. 5 (3)N.D. : 272–284 Burrows (2006) et al. Evidence of altered fire regimes in the Western Desert region of Australia N.D. BURROWS1, A.A. BURBIDGE2, P.J. FULLER3 AND G. BEHN1 1Department of Conservation and Land Management, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia, 6983. 2Department of Conservation and Land Management, Western Australian Wildlife Research Centre, P.O. Box 51, Wanneroo, Western Australia, 6946. 33 Willow Rd, Warwick, Western Australia, 6024. SUMMARY and senescing vegetation or vast tracts of vegetation burnt by lightning-caused wildfires. The relatively recent exodus of Aboriginal people from parts of the Western Desert region of Australia has coincided with an alarming decline in native mammals INTRODUCTION and a contraction of some fire sensitive plant communities. Proposed causes of these changes, in what The Great Victoria, Gibson, Great Sandy and Little Sandy is an otherwise pristine environment, include an altered Deserts (the Western Desert) occupy some 1.6 million fire regime resulting from the departure of traditional km2 of Western Australia, of which more than 100 000 Aboriginal burning, predation by introduced carnivores km2 is managed for nature conservation. The and competition with feral herbivores. conservation reserves in the Western Desert are large, Under traditional law and custom, Aboriginal people remote and relatively undisturbed. A management option inherit, exercise and bequeath customary responsibilities for such reserves is not to intervene
    [Show full text]
  • World Deserts
    HISTORY AND GEOGRAPHY World Deserts Reader Frog in the Australian Outback Joshua tree in the Mojave Desert South American sheepherder Camel train across the Sahara Desert THIS BOOK IS THE PROPERTY OF: STATE Book No. PROVINCE Enter information COUNTY in spaces to the left as PARISH instructed. SCHOOL DISTRICT OTHER CONDITION Year ISSUED TO Used ISSUED RETURNED PUPILS to whom this textbook is issued must not write on any page or mark any part of it in any way, consumable textbooks excepted. 1. Teachers should see that the pupil’s name is clearly written in ink in the spaces above in every book issued. 2. The following terms should be used in recording the condition of the book: New; Good; Fair; Poor; Bad. World Deserts Reader Creative Commons Licensing This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. You are free: to Share—to copy, distribute, and transmit the work to Remix—to adapt the work Under the following conditions: Attribution—You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation (www.coreknowledge.org) made available through licensing under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial—You may not use this work for commercial purposes. Share Alike—If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work.
    [Show full text]
  • Serpentinites in the Eastern Desert, Egypt: Fragments of Forearc Mantle
    Neoproterozoic (835–720 Ma) Serpentinites in the Eastern Desert, Egypt: Fragments of Forearc Mantle Mokhles K. Azer and Robert J. Stern1 Geology Department, National Research Centre, Al-Behoos Street, 12622-Dokki, Cairo, Egypt (e-mail: [email protected]) ABSTRACT Most Neoproterozoic ophiolites of the Arabian-Nubian Shield show compositions consistent with formation in a suprasubduction zone environment, but it has not been clear whether this was in a forearc or back-arc setting. Ophiolitic serpentinites are common in the Eastern Desert of Egypt, but their composition and significance are not well understood. Here we report new petrographic, mineral, chemical, and whole-rock compositional data for ser- pentinites from Wadi Semna, the northernmost ophiolitic serpentinites in the Eastern Desert, and use these to provide insights into the significance of other Eastern Desert serpentinite locales. The Wadi Semna serpentinites are composed essentially of antigorite, chrysotile, and lizardite, with minor carbonate, chromite, magnetite, magnesite, and chlorite, and they were tectonically emplaced. The alteration of chrome spinel to ferritchromite was accompanied by the formation of chloritic aureoles due to the release of Al from spinel. Major-element compositions indicate that, except for the addition of water, the serpentinites have not experienced extensive element mobility; these were originally ϩ CaO- and Al2O3-depleted harzburgites similar to peridotites from modern oceanic forearcs. High Cr# (Cr/(Cr Al) ) in the relict spinels (average p 0.69 ) indicates that these are residual after extensive partial melting, similar to spinels in modern forearc peridotites. These characteristics of Wadi Semna serpentinites also typify 22 other Eastern Desert serpentinite localities. We infer that Eastern Desert ophiolitic serpentinites, except perhaps Gebel Gerf, originated by forearc seafloor spreading during subduction initiation associated with the closing of the Neoproterozoic Mozam- bique Ocean.
    [Show full text]
  • Sequence Stratigraphy and Depositional Environments of Late Cretaceous–Early Palaeogene Succession, North Eastern Desert, Egypt
    Swiss J Geosci (2015) 108:345–359 DOI 10.1007/s00015-015-0201-4 Sequence stratigraphy and depositional environments of Late Cretaceous–Early Palaeogene succession, North Eastern Desert, Egypt 1,2 1 Mohamed Youssef • Mahmoud Hefny Received: 25 March 2015 / Accepted: 21 September 2015 / Published online: 14 November 2015 Ó Swiss Geological Society 2015 Abstract The foraminiferal contents and geochemistry of controlled by both eustatic sea-level changes and tectonic 199 samples collected from three surface sections in the movements that prevailed during deposition. southern Galala Sub-basin, North Eastern Desert of Egypt, have been studied in detail. From south to north these Keywords Depositional environments Á High resolution sections are situated at Gebel Tarboul, Wadi Tarfa, and Bir sequence stratigraphy Á Cretaceous Á Palaeogene Á Eastern Dakhl. The results allow reconstructing of the depositional Desert Á Egypt environments and high resolution sequence stratigraphy of the Upper Cretaceous–Palaeogene succession. The quan- titative and qualitative distribution patterns of benthic 1 Introduction foraminifera of the Upper Cretaceous–Lower Palaeogene succession suggests a depositional environment from outer The Cretaceous–Palaeogene interval provides one of the neritic to bathyal, at 200 to *700 m water-depth. Based on best opportunities to calibrate depositional sequences sequence stratigraphic analyses, ten complete third order against an integrated stratigraphic framework. This can be depositional sequences have been recognized. These examined in the rocks of Cretaceous–Palaeogene age that depositional sequences from base to top are as follows: are widely distributed in Northern Africa along the south- CaSGB-1 sequence, CaSGB-2 sequence, MaSGB-1 ern margin of the Tethys Ocean.
    [Show full text]
  • Photographs Covering Western Desert, Eastern Desert, Sinai Peninsula, Nile Region
    Appendix: Photographs Covering Western Desert, Eastern Desert, Sinai Peninsula, Nile Region A. Western Desert Photo A.1 A community dominated by the psammophyte Ammophila arenaria inhabiting the coastal sand dunes of the Western Mediterranean Coast, Egypt 375 376 Appendix Photo A.2 Salt marsh vegetation with abundant growth of Kochia indica (Bassia indica) in the foreground. Mixed halophytes of Juncus rigidus and Arthrocnemum macrostachyum in the background, Western Mediterranean Coast, Egypt Photo A.3 Dense growth of Juncus rigidus in the salt marshes of Siwa Oasis, Western Desert, Egypt Appendix 377 Photo A.4 Reed swamp vegetation dominated by Typha domingensis, Siwa Oasis, Western Desert, Egypt 378 Appendix Photo A.5 A Populus euphratica tree inhabiting a sand dune in Siwa Oasis, Western Desert, Egypt. A clump of Stipagrostis scoparia is seen in the foreground Appendix 379 Photo A.6 Dense stand dominated by Typha elephantina, Um Rishe Lake, Wadi El-Natrun Depression, Western Desert, Egypt Photo A.7 A close up view of the succulent xerophyte Zygophyllum coccineum, Cairo-Alexandria desert road, Western Desert, Egypt 380 Appendix Photo A.8 Pancratium sickenbergeri bulbous herb, Mariut Plateau, northern section of the Western Desert, Egypt Photo A.9 Close-up view of the annual herb Asphodelus tenuifolius growing in the Western Mediterranean Coast, northern section of the Western Desert, Egypt Appendix 381 B. Eastern Desert Photo A.10 Mangal vegetation dominated by Avicennia marina, Red Sea Coast, Egypt Photo A.11 Dense mangrove forest dominated by Rhizophora mucronata, Southern section of the Red Sea Coast, Egypt 382 Appendix Photo A.12 A close up view of Rhizophora mucronata mangrove tree, Shalateen swamps, southern section of the Red Sea Coast, Egypt Photo A.13 Mangrove swamp of Rhizophora mucronata with a seedling in the forgroung, Mersa Abu Fissi, Red Sea Coast, Egypt Appendix 383 Photo A.14 A general view of the mangrove forest lining the shore-line of Mersa Abu Fissi, Red Sea coast, Egypt.
    [Show full text]
  • Phytogeography of the Eastern Desert Flora of Egypt Monier Abd El-Ghani, Fawzy Salama, Boshra Salem, Azza El-Hadidy & Mohamed Abdel-Aleem
    Wulfenia 24 (2017): 97–120 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Phytogeography of the Eastern Desert flora of Egypt Monier Abd El-Ghani, Fawzy Salama, Boshra Salem, Azza El-Hadidy & Mohamed Abdel-Aleem Summary: 328 species in total were recorded at 500 sites between 30° 06’ and 24° 00’N in the Eastern Desert of Egypt. The occurrence of species was classified into 5 constancy classes: dominant, very common, common, occasional and sporadic. A sharp decrease in the number of recorded species was noticed along the N–S direction from Cairo-Suez road in the north to Aswan-Baranis road in the south (from 179 to 23), and an increase along the E–W direction from the Red Sea coast in the east to the River Nile Valley in the west (from 46 to 80). It was found out that geographical affinities affect the patterns of species distribution: 82 annual (therophyte) species are dominant life forms within the northern part of the study area, followed by 33 species in the southern part. Phanerophytes (trees) showed a decrease in their number from north (13 species) to south (9 species), but a slight increase from east (9 species) to west (10 species). Distribution maps of local geographical subtypes of each of the 4 major chorotypes are shown and a suggested improved phytogeographical map is presented. Keywords: chorotypes, desert vegetation, distribution maps, Egypt, local subtypes, phytogeography Egypt lies between 22° and 32°N latitude. It is part of the Sahara of North Africa and covers a total area of over one million km2 in the hyperarid region.
    [Show full text]