Sorghums and Millets Information Center (Smic)

Total Page:16

File Type:pdf, Size:1020Kb

Sorghums and Millets Information Center (Smic) • SORGHUMS AND MILLETS INFORMATION CENTER (SMIC) PROVISIONAL THESAURUS OF SORGHUM AND MILLET TERMINOLOGY DONALD LEATHERDALE International Development Research Centre Ottawa, Canada 1978 INTERNATIONAL CROPS RESEARCH INSTITUTE FOR THE SEMI-ARID TROPICS (ICRISAT) 1-11-256 Begumpet, Hyderabad-500016 {AP), India THESAURUS OF SORGHUM AND MILLET TERMINOLOGY CONTENTS Page Foreword (not in provisional edition} Introduction iii Section l Categorized and systematic presentation l A Sorghums, millets and related crops 3 B Botany 8 C Breeding and genetics 14 D Agronomy and cultivation 19 E Field and storage pests (including diseases} 30 F Products 40 G Utilization 45 H Economics 50 J Research and development 52 Section 2 Alphabetical presentation 53 References 303 -iii- INTRODUCTION The Sorghums and Millets Information Center (SMIC) is the third specialized centre, concerned with the collection and dissemination of information on a crop or a related group of crops, to have been established within the programs supported by the Con­ sultative Group on International Agricultural Research (CGIAR) As with the Cassava Information Center, operating at the Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, and the International Grain Legume Information Centre, based at the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, one of the prime obJectives of SMIC is the organization of the world-wide literature relating to its interests, which in this case are pearl millet and sorghums It is by no means sufficient to collect together in one library this scattered documentation it has to be made known and accessible to the world's researchers on these crops An essential step in the organization of such an information analysis and re­ trieval system is to decide upon the terms that will be used to describe the subJect content of the literature, and experience at CIAT and IITA has shown that this is well accomplished by using a controlled and structured vocabulary - a thesaurus - designed for its particular task A thesaurus of this type is used at both ends, so to speak, of the operation it is used by the indexer as a source of potential terms to be assigned to a document, and it is used at retrieval to lead the enquirer or information specialist not only to the specific terms of the query but to other terms that may be very relevant to the user's immediate interest Although SMIC's field of activity is at present limited to the sorghums and to pearl millet, I have taken a broader view of the millets in this thesaurus and included the cultivated millets in general and forage grasses that are phylogenetically close to them The intention is to makp the vocabulary ultimately useful to a wider spectrum of users, in much the same way as the Thesaurus on trop~caZ gra~n and forage legumes (Leatherdale, in press) (see References, page 303) covers a greater range of leguminous crops than was initially needed by IITA -iv- The taxonomy and nomenclature of cultivated plants are subJects for perennial argument They are particularly contentious when one is dealing with those crops, such as the sorghums and millets, that have been in cultivation for hundreds or even thousands of years, and the problem has been well expressed by J R Harlan (1970) "The conspicuous and exuberant variation in cultivated plants and their relatives has raised taxonomic problems that have never been solved nor adequately treated The methods of classical taxonomy seem to fail altogether and inevitably result in the establishment of dozens of epithets for races that are fully compatible when crossed One example among many is Snowden's treatment of Sorghum in which he naMed 52 species among the cultivated sorghums alone All of these 'species' are fully compatible when hybridized with one another 11 I hold that it would be of little service to the user of a thesaurus if he were to be misguided in this respect, and I have accordingly continued to follow a compromise path that has the merit of having been found workable Plants that are used in their wild state or have otherwise undergone no intentional genetic improvement are des­ cribed by their scientific names, common names for them are treated as synonyms On the other hand, those plants that have long been cultivated, and may therefore be assumed or known to have been im­ proved, may be indexed either under the scientific name or under a selected and therefore 'authorized' common name, the two terms being related to each other in the thesauric sense and not treated as synonyms In general, it will be found advantageous to index germplasm sources under the scientific name and crop information under the common name This thesaurus is presented in two sections In Section 1 Categorized and systematic presentation (pp 1 - 52), the total vocabulary is divided among nine subject headings and these give an indication of the subJect scope of the system This presentation is intended to give a broad view of the subJect, and may be helpful in indicating the location of a certain subJect area, but in general this section is a less effective tool than Section 2 for indexing or retri eva 1 -v- The thesauric unit is the term, keyword or descriptor In Section 1, maJor or top descriptors appear to the left-hand side of the page and narrower or contained descriptors are listed below them and preceded by a hyphen (-) No detail is given in this section, except to show respective related terms, which are pre- ceded by an asterisk (*) The following example indicates the term structures of Section 1 B BOTANY PLANT-GROWTH SUBSTANCES * GROWTH * HERBICIDES E - ABSCISINS ~ AUXINS * SYNTHETIC AUXINS E - INDOLE-3-ACETIC ACID - GIBBERELLINS Here, PLANT-GROWTH SUBSTANCES is a maJor descriptor in category B (Botany) it has no broader or more generic term GROWTH and HERBICIDES are descriptors related to PLANT-GROWTH SUBSTANCES (Related terms by and large fall within the same category as the descriptor to which they are related, but, when they do not, they are followed by a letter indicating the category to which they have been assigned ) ABSCISINS, AUXINS and GIBBERELLINS are narrower or more specific terms of PLANT-GROWTH SUBSTANCES, and INDOLE-3- ACETIC ACID is a narrower term of AUXINS SYNTHETIC AUXINS is a descriptor related to AUXINS Section 2 Alphabetical presentation (pp 53-302) is the more important part of the thesaurus, for it displays the full array of relationships connected with each descriptor The descriptors, in upper case (capitals), and non-descriptors, in upper and lower case (small type), are given in a single alphabetical sequence The sequence is word-by-word, rather than letter-by-letter, with hyphens considered as spaces Words within parentheses and numerals are ignored unless they represent the only difference -vi- between sequential entries Thus Plant diseases PLANT-GROWTH SUBSTANCES Plant viruses PLANTAINS PLANTATIONS PLANTING (PLANTS) Pl anting (seed) PLANTS PLASTIDS The usual thesauric conventions have been applied, with Broader Term, Narrower Term and Related Term indicated by BT, NT and RT, respectively The use of RT is equivalent in search terms to the instruction "See also" A descriptor is usually sufficiently defined by its term relationships, which place it semantically, but some descriptors and, exceptionally, non-descriptors are accompanied by a Scope Note (SN) when it has been felt that explanation or limitation was required in the context of this thesaurus The synonyms, quasi-synonyms or pseudo-synonyms that a descriptor re­ places in the system are indicated by UF C'Use for"), and the reciprocal statement USE is employed only with the non-descriptors A letter after each descriptor shows the category or categories in which the term is to be found in Section l The use of these symbols may better be understood by examining two examples a) MY COSES E Descriptor/Category letter SN Includes pathogens ~cope J!ote UF DISEASES (FUNGAL) FUNGAL DISEASES Use For these synonyms PLANT PATHOGENS } - (non-descriptors) BT BIOLOGICAL EFFECTS } Broader Terms, more generic DISEASES AND PATHOGENS - than MYCOSES NT ASCOCHYTA SORGHINA DOWNY MILDEWS ERGOT Narrower Terms, more specific MACROPHOMINA PHASEOLI - than MYCOSES RUSTS SPHACELIA SORGHI RT DETERIORATION FUNGI } Related Terms to MYCOSES -vii- b) Fungal diseases Non-descriptor (synonym) USE MYCOSES USE this descriptor In order to make the system more manageable, certain chains of hierarchical descriptors have been restricted The descriptors concerned are BACTERIOSES, MYCOSES, VIROSES, INJURIOUS INSECTS, INJURIOUS MITES, NEMATODES, WEEDS, FUNGICIDES, INSECTICIDES, ACARICIDES, NEMATICIDES and HERBICIDES, all of which occur in Category E, Field and storage pests (including diseases) If we were to include, for example, all the known fungal diseases of sorghum under MYCOSES, or all the known chemicals used to control them under FUNGICIDES, we would compile lists of formidable length There are workers who require that sort of information, so a com- promise has been reached A tentative compilation of the most important organisms or pesticides has been given as narrower terms of the appropriate descriptors, and experience will tell what modification may be required For those users of this thesaurus whose detailed needs require the fuller treatment, it is recommended that they augment the present vocabulary with their complete listings The descriptors in the thesaurus reflect a considerable degree of pre-coordination, thus providing a higher degree of specificity for retrieval
Recommended publications
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA Fabricio José Biasotto Francischini Morphological and molecular characterization of species of Diatraea ssp. (Lepidoptera: Crambidae) and elucidation of dispersal pattern in America continent Caracterização morfológica e molecular de espécies de Diatraea ssp. (Lepidoptera: Crambidae) e elucidação dos padrões de dispersão no continente americano CAMPINAS 2017 Fabricio José Biasotto Francischini Morphological and molecular characterization of species of Diatraea ssp. (Lepidoptera: Crambidae) and elucidation of dispersal pattern in America continent Caracterização morfológica e molecular de espécies de Diatraea ssp. (Lepidoptera: Crambidae) e elucidação dos padrões de dispersão no continente americano Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Doctor in Genetics and Molecular Biology in the area of Plant Genetics and Genetic Breeding Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para obtenção do título de Doutor em Genética e Biologia Molecular, na Área de Genética Vegetal e Melhoramento Orientadora: Profa. Dra. Maria Imaculada Zucchi Coorientador: Dr. Tederson Galvan ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELO ALUNO FABRICIO JOSÉ BIASOTTO FRANCISCHINI E ORIENTADO PELA PROFa. DRa. MARIA IMACULADA ZUCCHI CAMPINAS 2017 Campinas, 30 de agosto de 2017 COMISSÃO EXAMINADORA Profa. Dra.Maria Imaculada Zucchi (presidente) Prof. Dr. Thiago de Araújo Mastrangelo Prof. Dr. Pedro Takao Yamamoto Dr. Alessandro Alves Pereira Prof. Dr. Alberto Soares Corrêa Os membros da Comissão Examinadora acima assinaram a Ata de defesa, que se encontra no processo de vida acadêmica do aluno. Para Josy Minha eterna esposa Juntos recebemos o dom Da Graça! Constantemente você me ensina a construir nossa família alicerçados em Jesus.
    [Show full text]
  • Cyclic Glycerol Acetals from the Abdominal Hair Pencil Secretion of the Male African Sugarcane Borer Eldana Saccharina (Lepidoptera: Pyralidae) B
    Cyclic Glycerol Acetals from the Abdominal Hair Pencil Secretion of the Male African Sugarcane Borer Eldana saccharina (Lepidoptera: Pyralidae) B. V. Burger, A. E. Nell, D. Smit, and H. S. C. Spies Laboratory for Ecological Chemistry, Department of Chemistry, University of Stellenbosch, Stellenbosch 7600, South Africa Z. Naturforsch. 46c, 678-686 (1991); received January 8, 1991 Cyclic Acetals, Darmstoff, Eldana saccharina, Mass Spectrometry, NMR Four constituents of the hair pencil secretion of the male African sugarcane stalk borer, Eldana saccharina, having a molecular mass of 312 and peculiar El mass spectra with an excep­ tionally abundant base peak at m/z 103, were isolated preparatively from an extract of the se­ cretion. Using 'H and l3C NMR spectral analysis, these constituents were identified as five- and six-membered cyclic glycerol acetals of Z-9-hexadecenal, viz. cis- and trans-2-(Z- 8-pentadecenyl)-4-hydroxymethyl-l,3-dioxolane, and cis- and fra«s-2-(Z-8-pentadecenyl)- 5-hydroxy-l,3-dioxane. These compounds are related to the 2-alkenyl-4-hydroxymethyl-l,3- dioxolane dihydrogen phosphate esters, known to be the active constituents of the smooth muscle contracting acidic phospholipid (Darmstoff) which was isolated from the intestine of mammals. The presence of these acetals in the tail brush secretion of E. saccharina could possi­ bly be the first evidence that compounds related to the active principle of Darmstoff, may also be present in the insect kingdom. The possibility that these four compounds or their dihydro­ gen phosphate esters might play a part in the eversion or retraction of the tail brushes of the male insect, is briefly discussed.
    [Show full text]
  • Hymenoptera: Braconidae), Parasitoids of Gramineous Stemborers in Africa
    Eur. J. Entomol. 107: 169–176, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1524 ISSN 1210-5759 (print), 1802-8829 (online) Host recognition and acceptance behaviour in Cotesia sesamiae and C. flavipes (Hymenoptera: Braconidae), parasitoids of gramineous stemborers in Africa MESHACK OBONYO1, 2, FRITZ SCHULTHESS3, BRUNO LE RU 2, JOHNNIE VAN DEN BERG1 and PAUL-ANDRÉ CALATAYUD2* 1School of Environmental Science and Development, North-West University, Potchefstroom, 2520, South Africa 2Institut de Recherche pour le Développement (IRD), UR 072, c/o International Centre of Insect Physiology and Ecology ( ICIPE), Noctuid Stemborer Biodiversity (NSBB) Project, PO Box 30772-00100, Nairobi, Kenya and Université Paris-Sud 11, 91405 Orsay, France 3ICIPE, Stemborer Biocontrol Program, PO Box 30772-00100, Nairobi, Kenya Key words. Hymenoptera, Braconidae, Cotesia sesamiae, C. flavipes, Lepidoptera, Pyralidae, Eldana saccharina, Noctuidae, Busseola fusca, Chilo partellus, parasitoids, host recognition, host acceptance, stemborers, Africa Abstract. The host recognition and acceptance behaviour of two braconid larval parasitoids (Cotesia sesamiae and C. flavipes) were studied using natural stemborer hosts (i.e., the noctuid Busseola fusca for C. sesamiae, and the crambid Chilo partellus for C. flavi- pes) and a non-host (the pyralid Eldana saccharina). A single larva was introduced into an arena together with a female parasitoid and the behaviour of the wasp recorded until it either stung the larva or for a maximum of 5 min if it did not sting the larva. There was a clear hierarchy of behavioural steps, which was similar for both parasitoid species. In the presence of suitable host larvae, after a latency period of 16–17 s, the wasp walked rapidly drumming the surface with its antennae until it located the larva.
    [Show full text]
  • Tripsacum Dactyloides Scientific Name  Tripsacum Dactyloides (L.) L
    Tropical Forages Tripsacum dactyloides Scientific name Tripsacum dactyloides (L.) L. Subordinate taxa: Perennial clump grass, Texas, USA Tripsacum dactyloides (L.) L. var. dactyloides Tiller base with short, knotty rhizome and developing prop roots (ILRI 15488) Tripsacum dactyloides (L.) L. var. hispidum (Hitchc.) de Wet & J.R. Harlan Tripsacum dactyloides (L.) L. var. meridonale de Wet & Timothy Tripsacum dactyloides (L.) L. var. mexicanum de Wet & J.R. Harlan Synonyms Single raceme with white stigmas emerging from ♀ spikelets at base of var. dactyloides: basionym Coix dactyloides L.; raceme; purplish stems Tripsacum dactyloides (L.) L. var. occidentale H.C. Single racemes and subdigitate panicle; Cutler & E.S. Anderson anthers emerging from ♂ apical flowers, stigmas on ♀ basal flowers already var. hispidum (Hitchc.) de Wet & J.R. Harlan: senescent Basionym: Tripsacum dactyloides subsp. hispidum Hitchc. Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Tripsacinae. Morphological description Seed unit with caryopsis Seed units An extremely variable perennial clump grass, with short, fibrous, knotty rhizomes and deep hollow roots. Culms 1‒2.5 (‒4 m) tall, and 3‒5 cm thick at base, branching, prop-rooting from lower nodes; stems purplish, glabrous. Leaf sheath glabrous, often purplish; leaf-blade lanceolate-acuminate, to 30‒75 (‒1.5) cm long and 9‒35 (‒45) mm wide, mostly glabrous, sometimes hairy at the base of the upper blade surface; prominent midrib; Seed production area, Knox margin scabrous; ligule a fringed membrane, 1‒1.5 mm County, Texas, USA (PI 434493) long. Inflorescence 10‒20 (‒30) cm long, terminal and axillary, commonly a single raceme, or subdigitate panicle comprising 2‒3 (‒6) racemes of usually A.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • The Apameini of Israel (Lepidoptera: Noctuidae) SHILAP Revista De Lepidopterología, Vol
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Kravchenko, V. D.; Fibiger, M.; Mooser, J.; Junnila, A.; Müller, G. C. The Apameini of Israel (Lepidoptera: Noctuidae) SHILAP Revista de Lepidopterología, vol. 36, núm. 142, junio, 2008, pp. 253-259 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45512540015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Nº 142 9/6/08 11:52 Página 253 SHILAP Revta. lepid., 36 (142), junio 2008: 253-259 CODEN: SRLPEF ISSN:0300-5267 The Apameini of Israel (Lepidoptera: Noctuidae) V. D. Kravchenko, M. Fibiger, J. Mooser, A. Junnila & G. C. Müller Abstract In Israel, 20 species of tribe Apameini belonging to 10 genera have been found to date. Four species are endemic of the Levant (Sesamia ilonae, Luperina kravchenkoi, Gortyna gyulaii and Lenisa wiltshirei). Others are mostly Palaearctic, Mediterranean, Iranian and Irano-Turanian elements. Grassland species of the Apameini are mainly associated with the Temperate region and are univoltine with highest rate of occurrence in May, or in autumn. Most wetland and oases species are multivoltine and occur in oases and riverbeds over the country, though few of the species are extremely localized. The S. ilonae is presently known only from northern area of the Sea of Galilee, while A. deserticola is from oases of the Dead Sea area.
    [Show full text]
  • Occurrence and Distribution of Fall Armyworm, Spodoptera Frugiperda (Lepidoptera: Noctuidae) and Other Moths on Maize in Ghana B
    OCCURRENCE AND DISTRIBUTION OF FALL ARMYWORM, SPODOPTERA FRUGIPERDA (LEPIDOPTERA: NOCTUIDAE) AND OTHER MOTHS ON MAIZE IN GHANA By DJIMA KOFFI ID: 10600839 A THESIS SUBMITTED TO THE UNIVERSITY OF GHANA, LEGON IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF PHILOSOPHY (M.PHIL.) DEGREE IN ENTOMOLOGY. AFRICAN REGIONAL POSTGRADUATE PROGRAMME IN INSECT SCIENCE (ARPPIS) UNIVERSITY OF GHANA, LEGON, ACCRA, GHANA AUGUST, 2018 * JOINT INTER-FACULTY INTERNATIONAL PROGRAMME FOR THE TRAINING OF ENTOMOLOGISTS IN WEST AFRICA COLLABORATING DEPARTMENTS: ANIMAL BIOLOGY AND CONSERVATION SCIENCE (SCHOOL OF BIOLOGICAL SCIENCES) AND CROP SCIENCE (SCHOOL OF AGRICULTURE) COLLEGE OF BASIC AND APPLIED SCIENCES DECLARATION I hereby declare that this thesis is the result of the original work personally done by me for the award of a Master of Philosophy Degree in Entomology at the African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon. All the references to other people’s work have been duly acknowledged and this thesis has not been submitted in part or whole for the award of a degree elsewhere. Signature……………....................................... Date………………………………………….. DJIMA KOFFI (STUDENT) Signature……………....................................... Date………………………………………….. DR. ROSINA KYEREMATEN (PRINCIPAL SUPERVISOR) Signature……………....................................... Date………………………………………….. DR. VINCENT Y. EZIAH (CO-SUPERVISOR) Signature……………....................................... Date………………………………………….. DR.
    [Show full text]
  • Lecture No 3 PESTS of SORGHUM, PEARL MILLET and FINGER MILLET
    Lecture No 3 PESTS OF SORGHUM, PEARL MILLET AND FINGER MILLET I. PESTS OF SORGHUM More than 150 species of insects have been reported to damage sorghum. However over a dozen species are very serious and constitute a major constraint in sorghum production. Shoot fly, stem borers, shoot and ear head bug and aphids are serious pests that bring reduction in the yield. Major pests 1. Sorghum Shootfly Atherigona soccata Muscidae Diptera 2. Stem borer Chilo partellus Crambidae Lepidoptera 3. Pink stem borer Sesamia inferens Noctuidae Lepidoptera 4 Shoot bug Peregrinus maidis Delphacidae Hemiptera 5. Earhead bug Calocoris angustatus Miridae Hemiptera 6. Sorghum midge Contarinia sorghicola Cecidomyiidae Diptera Rhopalosiphum maidis, 7. Plant lice (Aphids) Aphididae Hemiptera Melanaphis sacchari Minor Pests 8. Earhead web worm Cryptoblabes gnidiella Pyraustidae Lepidoptera 9. Gram caterpillar Helicoverpa armigera Noctuidae Lepidoptera 10. Plant bug Dolycoris indicus Pentatomidae Hemiptera 11. Stink bug Nezara viridula Pentatomidae Hemiptera 12. Mirid bug Creontiades pallidifer Miridae Hemiptera 13. Slug caterpillar Thosea apierens Cochlididae Lepidoptera 14. Leaf roller Marasmia trapezalis Pyralidae Lepidoptera Cryptocephalus 15. Flea beetle schestedii, Monolepta Chrysomelidae Coleoptera signata Red hairy Amsacta albistriga, 16. Arctiidae Lepidoptera caterpillar A. moorei 17. Semilooper Eublemma silicula Noctuidae Lepidoptera Myllocerus maculosus 18. Weevils Curculionidae Coleoptera M. discolor,M. subfaciatus Wingless 19. Colemania sphenaroides Acrididae Orthoptera grasshopper MAJOR PESTS 1.Sorghum Shootfly: Atherigona soccata (Muscidae: Diptera) Distribution and status Maharashtra, Andhra Pradesh, Tamil Nadu and Karnataka Host range: Maize, ragi, bajra, rice, wheat and grasses Damage symptoms The maggot on hatching migrates to the upper surface of leaf and enters between the leaf sheath and stem.
    [Show full text]
  • Effect of Temperature on the Synchrony of Stem Borer Pests and Their Associated Larval Parasitoids
    EFFECT OF TEMPERATURE ON THE SYNCHRONY OF STEM BORER PESTS AND THEIR ASSOCIATED LARVAL PARASITOIDS BY SAMBAI KEVIN KIPSANG (BSc. Biology) I56/81073/2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN AGRICULTURAL ENTOMOLOGY OF UNIVERSITY OF NAIROBI June 2016 DECLARATION This thesis is my original work and has not been presented for a degree in any other university or any other award. Name…………………………………………………… Signature……………………………….. Date………………………………. Supervisors We confirm that the work reported in this thesis was carried out by the candidate under our supervision and has been submitted with our approval as supervisors Dr. George O. Ong’amo School of Biological Sciences, University of Nairobi. Signature……………………………. Date………………………………… Dr. Bruno P. LeRu Noctuid Stem Borer Biodiversity Icipe- African Insect Science for Food and Health, P. O. Box 30772-00100, Nairobi. Signature…………………………… Date…………………………… ii DEDICATION This thesis is dedicated to my father Morogo Sambai and my late mother Jane Sambai for their love, support and encouragements throughout my work. I also dedicate it to my wife Rose and son Curtis who had to abide with the profound time load of this work. iii ACKNOWLEDGEMENT I most sincerely thank my supervisors Dr. George Ong’amo and Dr. Bruno LeRu for their support, advice and guidance during this work. Thank you so much for your mentorship. I thank the entire Noctuid Stem Borer Biodiversity (NSBB) laboratory team comprising Gerphas Okuku, Julius Obonyo, Beatrice Omondi, Boaz Musyoka and Peter Ahuya for supplying the insects. To my fellow students at NSBB, Nancy, Christophe, Eric, Sizah, Elijah, Esther and Gladys thanks for your various contributions in improving my work.
    [Show full text]
  • Pasture Condition Guide for the Ord River Catchment
    Bulletin 4769 Department of June 2009 Agriculture and Food ISSN 1833-7236 Pasture condition guide for the Ord River Catchment Department of Agriculture and Food Pasture condition guide for the Ord River Catchment K. Ryan, E. Tierney & P. Novelly Copyright © Western Australian Agriculture Authority, 2009 Acknowledgements Photographs by S. Eyres and the Department of Agriculture and Food, Western Australia (DAFWA) Photographic Unit The information in this publication has been developed in consultation with experienced rangelands field staff providing services to the East Kimberley pastoral leases and with reference to Range Condition Guides for the West Kimberley Area, WA (Payne, Kubicki and Wilcox 1974) and Lands of the Ord–Victoria Area, WA and NT (Stewart et al. 1970). The authors would like to thank all those who provided valuable feedback on the design and content of this guide, including Andrew Craig, David Hadden and Matthew Fletcher (DAFWA Kununurra), Simon Eyres (DAFWA Photographic Unit), Alan Payne (retired DAFWA rangelands advisor), and members of the Halls Creek—East Kimberley Land Conservation District. This project was funded by Rangelands NRM WA using National Action Plan for Salinity and Water Quality funding. Rangelands NRM WA regards this project as a strategic investment which will contribute to an improved understanding and awareness of pasture condition in the Ord Catchment, leading to improved land management in that area. Rangelands NRM WA contracted the Department of Agriculture and Food WA to undertake the project. Funding for the National Action Plan for Salinity and Water Quality was provided by the Australian and Western Australian Governments. Disclaimer The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it.
    [Show full text]