Past Cycles: Ice Age Speculations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Late Pliocene Climate Variability on Milankovitch to Millennial Time Scales: a High-Resolution Study of MIS100 from the Mediterranean
Palaeogeography, Palaeoclimatology, Palaeoecology 228 (2005) 338–360 www.elsevier.com/locate/palaeo Late Pliocene climate variability on Milankovitch to millennial time scales: A high-resolution study of MIS100 from the Mediterranean Julia Becker *, Lucas J. Lourens, Frederik J. Hilgen, Erwin van der Laan, Tanja J. Kouwenhoven, Gert-Jan Reichart Department of Stratigraphy–Paleontology, Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, Netherlands Received 10 November 2004; received in revised form 19 June 2005; accepted 22 June 2005 Abstract Astronomically tuned high-resolution climatic proxy records across marine oxygen isotope stage 100 (MIS100) from the Italian Monte San Nicola section and ODP Leg 160 Hole 967A are presented. These records reveal a complex pattern of climate fluctuations on both Milankovitch and sub-Milankovitch timescales that oppose or reinforce one another. Planktonic and benthic foraminiferal d18O records of San Nicola depict distinct stadial and interstadial phases superimposed on the saw-tooth pattern of this glacial stage. The duration of the stadial–interstadial alterations closely resembles that of the Late Pleistocene Bond cycles. In addition, both isotopic and foraminiferal records of San Nicola reflect rapid changes on timescales comparable to that of the Dansgard–Oeschger (D–O) cycles of the Late Pleistocene. During stadial intervals winter surface cooling and deep convection in the Mediterranean appeared to be more intense, probably as a consequence of very cold winds entering the Mediterranean from the Atlantic or the European continent. The high-frequency climate variability is less clear at Site 967, indicating that the eastern Mediterranean was probably less sensitive to surface water cooling and the influence of the Atlantic climate system. -
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001
Cumulated Bibliography of Biographies of Ocean Scientists Deborah Day, Scripps Institution of Oceanography Archives Revised December 3, 2001. Preface This bibliography attempts to list all substantial autobiographies, biographies, festschrifts and obituaries of prominent oceanographers, marine biologists, fisheries scientists, and other scientists who worked in the marine environment published in journals and books after 1922, the publication date of Herdman’s Founders of Oceanography. The bibliography does not include newspaper obituaries, government documents, or citations to brief entries in general biographical sources. Items are listed alphabetically by author, and then chronologically by date of publication under a legend that includes the full name of the individual, his/her date of birth in European style(day, month in roman numeral, year), followed by his/her place of birth, then his date of death and place of death. Entries are in author-editor style following the Chicago Manual of Style (Chicago and London: University of Chicago Press, 14th ed., 1993). Citations are annotated to list the language if it is not obvious from the text. Annotations will also indicate if the citation includes a list of the scientist’s papers, if there is a relationship between the author of the citation and the scientist, or if the citation is written for a particular audience. This bibliography of biographies of scientists of the sea is based on Jacqueline Carpine-Lancre’s bibliography of biographies first published annually beginning with issue 4 of the History of Oceanography Newsletter (September 1992). It was supplemented by a bibliography maintained by Eric L. Mills and citations in the biographical files of the Archives of the Scripps Institution of Oceanography, UCSD. -
Milankovitch and Sub-Milankovitch Cycles of the Early Triassic Daye Formation, South China and Their Geochronological and Paleoclimatic Implications
Gondwana Research 22 (2012) 748–759 Contents lists available at SciVerse ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Milankovitch and sub-Milankovitch cycles of the early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications Huaichun Wu a,b,⁎, Shihong Zhang a, Qinglai Feng c, Ganqing Jiang d, Haiyan Li a, Tianshui Yang a a State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Beijing 100083, China b School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083 , China c State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China d Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA article info abstract Article history: The mass extinction at the end of Permian was followed by a prolonged recovery process with multiple Received 16 June 2011 phases of devastation–restoration of marine ecosystems in Early Triassic. The time framework for the Early Received in revised form 25 November 2011 Triassic geological, biological and geochemical events is traditionally established by conodont biostratigra- Accepted 2 December 2011 phy, but the absolute duration of conodont biozones are not well constrained. In this study, a rock magnetic Available online 16 December 2011 cyclostratigraphy, based on high-resolution analysis (2440 samples) of magnetic susceptibility (MS) and Handling Editor: J.G. Meert anhysteretic remanent magnetization (ARM) intensity variations, was developed for the 55.1-m-thick, Early Triassic Lower Daye Formation at the Daxiakou section, Hubei province in South China. The Lower Keywords: Daye Formation shows exceptionally well-preserved lithological cycles with alternating thinly-bedded mud- Early Triassic stone, marls and limestone, which are closely tracked by the MS and ARM variations. -
Plio-Pleistocene Imprint of Natural Climate Cycles in Marine Sediments
Lebreiro, S. M. 2013. Plio-Pleistocene imprint of natural climate cycles in marine sediments. Boletín Geológico y Minero, 124 (2): 283-305 ISSN: 0366-0176 Plio-Pleistocene imprint of natural climate cycles in marine sediments S. M. Lebreiro Instituto Geológico y Minero de España, OPI. Dept. de Investigación y Prospectiva Geocientífica. Calle Ríos Rosas, 23, 28003-Madrid, España [email protected] ABSTracT The response of Earth to natural climate cyclicity is written in marine sediments. The Earth is a complex system, as is climate change determined by various modes, frequency of cycles, forcings, boundary conditions, thresholds, and tipping elements. Oceans act as climate change buffers, and marine sediments provide archives of climate conditions in the Earth´s history. To read climate records they must be well-dated, well-calibrated and analysed at high-resolution. Reconstructions of past climates are based on climate variables such as atmospheric composi- tion, temperature, salinity, ocean productivity and wind, the nature and quality which are of the utmost impor- tance. Once the palaeoclimate and palaeoceanographic proxy-variables of past events are well documented, the best results of modelling and validation, and future predictions can be obtained from climate models. Neither the mechanisms for abrupt climate changes at orbital, millennial and multi-decadal time scales nor the origin, rhythms and stability of cyclicity are as yet fully understood. Possible sources of cyclicity are either natural in the form of internal ocean-atmosphere-land interactions or external radioactive forcing such as solar irradiance and volcanic activity, or else anthropogenic. Coupling with stochastic resonance is also very probable. -
The Global Monsoon Across Time Scales Mechanisms And
Earth-Science Reviews 174 (2017) 84–121 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev The global monsoon across time scales: Mechanisms and outstanding issues MARK ⁎ ⁎ Pin Xian Wanga, , Bin Wangb,c, , Hai Chengd,e, John Fasullof, ZhengTang Guog, Thorsten Kieferh, ZhengYu Liui,j a State Key Laboratory of Mar. Geol., Tongji University, Shanghai 200092, China b Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96825, USA c Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing 210044, China d Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China e Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA f CAS/NCAR, National Center for Atmospheric Research, 3090 Center Green Dr., Boulder, CO 80301, USA g Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China h Future Earth, Global Hub Paris, 4 Place Jussieu, UPMC-CNRS, 75005 Paris, France i Laboratory Climate, Ocean and Atmospheric Studies, School of Physics, Peking University, Beijing 100871, China j Center for Climatic Research, University of Wisconsin Madison, Madison, WI 53706, USA ARTICLE INFO ABSTRACT Keywords: The present paper addresses driving mechanisms of global monsoon (GM) variability and outstanding issues in Monsoon GM science. This is the second synthesis of the PAGES GM Working Group following the first synthesis “The Climate variability Global Monsoon across Time Scales: coherent variability of regional monsoons” published in 2014 (Climate of Monsoon mechanism the Past, 10, 2007–2052). -
CESARE EMILIANI Institute of Marine Science, University of Miami, Miami, Fla. Paleotemperature Analysis of the Caribbean Cores A
CESARE EMILIANI Institute of Marine Science, University of Miami, Miami, Fla. Paleotemperature Analysis of the Caribbean Cores A254-BR-C and CP-28 Abstract: Two cores from the central Caribbean been extended to an estimated age of 375,000 years (cores A254-BR-C and CP-28), which include ago, but the extension should not be considered older Pleistocene sediments, have been analyzed generally valid until substantiated by isotopic by the O18/O16 method. Core A254-BR-C has analysis of suitable cores as yet not available. been dated, in part, by C14 and Pa231/Th230 The methods used by Ericson, Ewing, Wollin, measurements. Both apparently contain major and associates, for estimating past temperatures hiatuses, but their stratigraphy has been clarified from the micropaleontology of deep-sea cores, and by correlations among the isotopic temperature the correlations advocated between deep-sea and curves and the curves representing the percentages continental stratigraphies are critically reviewed. of right-coiled specimens of Globorotaha truncatuh- The evidence provided by cores A254-BR-C and noides, together with correlations among the core CP-28 adds to the contention that the repeated levels where Globorotaha menardii flexuosa disap- glaciations of the Pleistocene were triggered by pears and among other levels where Globorotalia summer insolation minima in the high northern truncatulinoides becomes rare. The generalized latitudes. temperature curve, previously constructed, has CONTENTS Introduction 129 on shells of Globigerinoides sacculifera . 144 Acknowledgments 131 Analysis of cores A254-BR-C and CP-28 .... 131 Figure Review of methods used by Ericson, Ewing, and 1. Geographic locations of Caribbean cores. -
What the Geological Record Tells Us About Our Present and Future Climate
Downloaded from http://jgs.lyellcollection.org/ by guest on October 2, 2021 Perspective Journal of the Geological Society https://doi.org/10.1144/jgs2020-239 | Vol. 178 | 2020 | jgs2020-239 Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate Caroline H. Lear1*, Pallavi Anand2, Tom Blenkinsop1, Gavin L. Foster3, Mary Gagen4, Babette Hoogakker5, Robert D. Larter6, Daniel J. Lunt7, I. Nicholas McCave8, Erin McClymont9, Richard D. Pancost10, Rosalind E.M. Rickaby11, David M. Schultz12, Colin Summerhayes13, Charles J.R. Williams7 and Jan Zalasiewicz14 1 School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, CF10 3AT, UK 2 School of Environment Earth and Ecosystem Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 3 National Oceanography Centre Southampton, University of Southampton, European Way, Southampton, SO14 3ZH, UK 4 Geography Department, Swansea University, Swansea, SA2 8PP, UK 5 Lyell Centre, Heriot Watt University, Research Avenue South, Edinburgh, EH14 4AP, UK 6 British Antarctic Survey, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK 7 School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK 8 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK 9 Department of Geography, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK 10 School of Earth Sciences, University of Bristol, Wills Memorial -
Milankovitch Cycles and the Earth's Climate
MILANKOVITCH CYCLES AND THE EARTH'S CLIMATE John Baez Climate Science Seminar California State University Northridge April 26, 2013 Understanding the Earth's climate poses different challenges at different time scales. The Earth has been cooling for at least 15 million years, with glaciers in the Northern Hemisphere for at least 5 million years. Irregular climate cycles have been getting stronger during this time, becoming full-fledged glacial cycles roughly 2.5 million years ago. These cycles lasted roughly 40,000 years at first, and more recently about 100,000 years. Let's zoom out and look at the climate over longer and longer periods of time! NASA Goddard Institute of Space Science Reconstruction of temperature from 73 different records | Marcott et al. 8 temperature reconstructions | Global Warming Art Recent glacial cycles | Global Warming Art Oxygen isotope measurements of benthic forams, Lisiecki and Raymo The Pliocene began 5.3 million years ago; the Pleistocene 2.6 million years ago. Oxygen isotope measurements of benthic forams, Zachos et al. I Why did it suddenly get colder, with the Antarctic becoming covered with ice, 34 million years ago? I Why did the Antarctic thaw 25 million years ago, then reglaciate 15 million years ago? I Why are glacial cycles becoming more intense, starting around 5 million years ago? I Why did they have an average `period' of roughly 41,000 years at first, and then switch to a period of roughly 100,000 years about 1 million years ago? I Why does the Earth tend to slowly cool and then suddenly warm within -
Late Quaternary Changes in Climate
SE9900016 Tecnmcai neport TR-98-13 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karien Department of Physical Geography Stockholm University December 1998 Svensk Kambranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 30- 07 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karlen Department of Physical Geography, Stockholm University December 1998 Keywords: Pleistocene, Holocene, climate change, glaciation, inter-glacial, rapid fluctuations, synchrony, forcing factor, feed-back. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports fromi 977-1978 {TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB. Abstract This review concerns the Quaternary climate (last two million years) with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature (up to October 1998) comprising more than 200 scientific papers. -
Astronomical Troubles for the Astronomical Hypothesis of Ice Ages
Overviews Astronomical troubles for the astronomical hypothesis of ice ages Michael J. Oard The astronomical theory of ice ages based on the Milankovitch mechanism has become the ruling paradigm of Pleistocene paleoclimatology. It is even used to date sedimentation during the pre-Pleistocene period. However, there is little, if any, physical basis behind it. It does not provide a mechanism for the sudden onset of the ice- age cycle at 2.7 Ma, nor why the 41-kyr tilt cycle predominated between 2.7 and 0.9 Ma, why it shifted to the 100-kyr cycle at 0.9 Ma, how the very weak 100-kyr eccentricity cycle could even affect solar radiation, and why such weak changes in solar radiation could produce such dramatic climate changes as ice ages. The Milankovitch hypothesis was supposedly ‘proved’ by statistical matches with deep-sea cores obtained in the 1950s through to the 1970s. However, cores require very accurate dating, which was beyond the state of the art back then. The fact that the Milankovitch hypothesis is so strongly believed attested more to the reinforcement syndrome. he astronomical theory of the ice ages, also called the the theory, including deep-sea cores, ice cores, pollen cores TMilankovitch theory, has swept the climate community and lake sediment cores. Scientists have become so certain during the past 40 years. It is the new paleoclimate paradigm of the theory that they have ‘tuned’ or modified climatic for multiple ice ages repeating at regular intervals during data sets to the Milankovitch cycles. Needless to say, this the past 2.7 Ma of uniformitarian time. -
The Little Ice Age and the Coming of the Anthropocene
Asian Review of World Histories 2:1 (January 2014), 1-16 © 2014 The Asian Association of World Historians doi: http://dx.doi.org/10.12773/arwh.2014.2.1.001 The Little Ice Age and the Coming of the Anthropocene Ji-Hyung CHO Ewha Womans University Seoul, Korea (Republic of) [email protected] Abstract This paper examines the historical relationship between the Little Ice Age and the Anthropocene, which has not yet been studied. The Little Ice Age is the coldest multi-century period in the Holocene. The reforestation of huge farmlands, abandoned due to pandemics in the Americas, aggravated the cooling weather of the Little Ice Age. It was in the long and severe cold of the Little Ice Age that the transition from renewable energy to non-renewable energy was completed in Britain in the latter part of the eighteenth century, and when the pattern of linear growth in greenhouse gas concentrations was forged in the ecosystems of the Earth. The Little Ice Age forced humans to depend on fossil fuels while the advent of warmer and more stable climate in the Holocene enabled them to start agriculture in an energy revolution 11,000 years ago, thus making the coming of the Anthropocene possible. Keywords Anthropocene, Little Ice Age, greenhouse gas, wood, coal, fossil fuel, climate change In the last 11,000 years of human history, the Little Ice Age (LIA) is the coldest multi-century period and one of several global mil- Downloaded from Brill.com09/29/2021 01:24:16AM via free access 2 | ASIAN REVIEW OF WORLD HISTORIES 2:1 (JANUARY 2014) lennial-scale climate anomalies.1 The cooling climate and alpine glacial advances were recognized in many areas around the globe. -
95. Lea D. W., Elemental and Isotopic Proxies of Past Ocean
This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Lea D.W. (2014) Elemental and Isotopic Proxies of Past Ocean Temperatures. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 8, pp. 373-397. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 8.14 Elemental and Isotopic Proxies of Past Ocean Temperatures DW Lea, University of California, Santa Barbara, CA, USA ã 2014 Elsevier Ltd. All rights reserved. 8.14.1 Introduction 373 8.14.2 A Brief History of Early Research on Geochemical Proxies of Temperature 374 8.14.3 Oxygen Isotopes as a PaleotemperatureProxy in Foraminifera 375 8.14.3.1 Background 375 8.14.3.2 Paleotemperature Equations 376 8.14.3.3 Secondary Effects and Diagenesis 376 8.14.3.4 Results