Hill Ciphers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Table 1:21 the Substitution22 23 Table24 For25 the Hill26 Cipher27 28

Total Page:16

File Type:pdf, Size:1020Kb

Hill Ciphers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Table 1:21 the Substitution22 23 Table24 For25 the Hill26 Cipher27 28 This means we have 29 characters with which to write our plaintext. These have been shown in Table 1, where the 29 characters have been numbered from 0 to 28. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . __ ? Hill Ciphers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Table 1:21 The substitution22 23 table24 for25 the Hill26 Cipher27 28 Let us apply this to an example of a Hill 2-cipher corresponding to the substitution scheme shown in Table 1 with 29 characters. Let the key be the 2 × 2 matrix 14 techspace �푎 � 29 Jonaki B Ghosh GO We can also refer to E as the encoding matrix. We will use E to encipher groups of two consecutive Introduction characters. Suppose we have to encipher the word . The alphabets G and O correspond to the numbers 6 and 14, respectively from our substitution table. We represent it by a 2 × 1 matrix. Cryptography is the science of making and breaking codes. It is 6 푎 � the practice and study of techniques for secure communication. GO 14 Modern cryptography intersects the disciplines of mathematics, computer science, and electrical engineering. Applications of To encipher , we pre-multiply this matrix by the encoding matrix E. cryptography include ATM cards, computer passwords, and Hill Cipher 14 6 62 e-commerce. In this article we explore an interesting 푎 �푎 �푎 � 29 14 138 cryptography method known as the , based on matrices. We explore the method using the spreadsheet MS Excel The product is a 2 × 1 matrix with entries 62 and 138. But what characters do the numbers 62 and 138 to perform operations on matrices. Hill Ciphers represent? These are not in our substitution table! What we do is as follows: We divide these numbers by 29 and consider their respective remainders after the division process is done. Thus when we divide 62 by 29, themodular remainder arithmetic is 4 and when we divide 138 by 29, the remainder is 22. plaintextHill ciphers are an application of matrices to cryptography. Ciphers are methods for transforming a given message, the To express this in the language of , we write: ciphertext, into a new form unintelligible to anyone who does not know the key – the transformation used to convert the plaintext 62 ≡ 4 ( 29 138 ≡ 22 ( 29 to the . The inverse key is requiredencipher to reverse the transformation to recover the original message. To use the key to Equivalence and residues modulo an integer transform plaintextdecipher into ciphertext is to the plaintext. De�inition � modulus To use the inverse key to transform the ciphertext back into congruent modulo m plaintext is to the ciphertext. : Given an integer 1, called the , we say that the two integers and are modular arithmetic. to one another if is an integral multiple of . To denote this, we write: In order to understand Hill ciphers, we must �irst understand �e�inition � Hill n-cipher ≡ . We read this as: ‘ is congruent to modulo ’. :A has for its key a given matrix whose entries are non-negative integers from the set In other words, ≡ means that for some integer which could be positive, {0, 1, 2, 3, … , 1, where is the number of characters negative or zero. used for the encoding process. Suppose we wish to use all 26 For our cipher, we have: 62 ≡ 4 29 and 138 ≡ 22 29. Note: 62 4 2 × 29, or alphabets from A to Z and three more characters, say ‘.’, ‘-‘ and ‘?’. 62 4 2 × 29, and 138 22 4×29, or 138 22 4 × 29. GO EW The numbers 4 and 22 correspond to the letters E and W respectively from our substitution table. Thus, the word is enciphered to ! 6160 At Right Angles | Vol. 3, No. 3, November 2014 Vol. 3, No. 3, November 2014 | At Right Angles 6160 2 At Right Angles ∣ Vol. 3, No. 3, November 2014 This means we have 29 characters with which to write our plaintext. These have been shown in Table 1, where the 29 characters have been numbered from 0 to 28. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . __ ? 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Table 1:21 The substitution22 23 table24 for25 the Hill26 Cipher27 28 Let us apply this to an example of a Hill 2-cipher corresponding to the substitution scheme shown in Table 1 with 29 characters. Let the key be the 2 × 2 matrix 14 �푎 � 29 GO We can also refer to E as the encoding matrix. We will use E to encipher groups of two consecutive characters. Suppose we have to encipher the word . The alphabets G and O correspond to the numbers 6 and 14, respectively from our substitution table. We represent it by a 2 × 1 matrix. 6 푎 � GO 14 To encipher , we pre-multiply this matrix by the encoding matrix E. 14 6 62 푎 �푎 �푎 � 29 14 138 The product is a 2 × 1 matrix with entries 62 and 138. But what characters do the numbers 62 and 138 represent? These are not in our substitution table! What we do is as follows: We divide these numbers by 29 and consider their respective remainders after the division process is done. Thus when we divide 62 by 29, themodular remainder arithmetic is 4 and when we divide 138 by 29, the remainder is 22. To express this in the language of , we write: 62 ≡ 4 ( 29 138 ≡ 22 ( 29 Equivalence and residues modulo an integer De�inition � modulus congruent modulo m : Given an integer 1, called the , we say that the two integers and are to one another if is an integral multiple of . To denote this, we write: ≡ . We read this as: ‘ is congruent to modulo ’. In other words, ≡ means that for some integer which could be positive, negative or zero. For our cipher, we have: 62 ≡ 4 29 and 138 ≡ 22 29. Note: 62 4 2 × 29, or 62 4 2 × 29, and 138 22 4×29, or 138 22 4 × 29. GO EW The numbers 4 and 22 correspond to the letters E and W respectively from our substitution table. Thus, the word is enciphered to ! 61 At Right Angles | Vol. 3, No. 3, November 2014 Vol. 3, No. 3, November 2014 | At Right Angles 61 2 At Right Angles ∣ Vol. 3, No. 3, November 2014 GO Note EW EW In order to use this method of sending secret messages, the sender has to encrypt the plaintext and : In case the message has an odd number of characters, a full stop or underscore (a ‘.’ ‘ or a ‘_’) may be send the encrypted form. This meansEW the sender sends instead. The receiver gets the message . added at the end to complete the pair. For example, if the plaintext is “LET_US_GO”, then we have 9 The secret key, that is, the encoding matrix E is known only to the sender and the receiver. Now let us see characters. So we add a ‘.’ at the end to make the message “LET_US_GO.” how the receiver deciphers what EWstands for. Each pair will form a column of a 2×6matrix (as there are 6 pairs). Let us call this matrix P (the In order to decipher the message , we begin by looking for the numbers corresponding to E and W in plaintext matrix) our substitution table. These are 4 and 22 respectively. We represent this in the form of a 2 ×1matrix 12 19 27 18 5 13 ��� � 4 Step 3: 0 7 8 27 20 26 � � 22 Compute the product EP �� 9 −4 We pre-multiply this matrix by the inverse of the matrix E, that is, by E = � �. So: −2 1 14 12 19 27 18 5 13 12 47 59 126 85 117 �� � � �� ��� � 29 0 7 8 27 20 26 24 101 126 279 190 260 �� 9 −4 4 −52 �� �� �� � −2 1 22 14 In order to perform this computation in Excel we proceed as follows We need another de�inition. Note that any arbitrary integer can be divided by to yield a quotient Enter the 2×2matrix E and the 2×6matrix P as separate arrays as shown. Each entry of a matrix may �e�initionand remainder � ; that is, . Then we say . residue of a modulo m be entered by typing a number in a cell and pressing Enter. The arrow keys may be used to move to the next appropriate cell. : Let be any integer exceeding 1. For an arbitrary integer , the is the unique integer in the set {0, 1, 2, 3, … , −1 such that . Thus: 23 7 , since 23 2×7. Here 23, and 7. What about negative integers? For example, what is when −1 and ? Clearly has to be an integer between 0 and 7. Note that −1−3 × 6. Thus 6and we can write −16 . Now coming back to deciphering our Hill cipher, we need to �ind for −52 and 14 for 29. Note that −52 −2 × 29 6 and 14 0 × 29 14.Thus: −52 6 29 and 14 14 29. −52 6 Thus we may write � �� � 29 14 14 EW GO Isn’t this great! 6 represents G and 14 represents O from our substitution table. Hence we have deciphered to obtain the original characters or the plaintext! 14 Let us now see how to encipher a longer message or plaintext using the key � �.
Recommended publications
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • Amy Bell Abilene, TX December 2005
    Compositional Cryptology Thesis Presented to the Honors Committee of McMurry University In partial fulfillment of the requirements for Undergraduate Honors in Math By Amy Bell Abilene, TX December 2005 i ii Acknowledgements I could not have completed this thesis without all the support of my professors, family, and friends. Dr. McCoun especially deserves many thanks for helping me to develop the idea of compositional cryptology and for all the countless hours spent discussing new ideas and ways to expand my thesis. Because of his persistence and dedication, I was able to learn and go deeper into the subject matter than I ever expected. My committee members, Dr. Rittenhouse and Dr. Thornburg were also extremely helpful in giving me great advice for presenting my thesis. I also want to thank my family for always supporting me through everything. Without their love and encouragement I would never have been able to complete my thesis. Thanks also should go to my wonderful roommates who helped to keep me motivated during the final stressful months of my thesis. I especially want to thank my fiancé, Gian Falco, who has always believed in me and given me so much love and support throughout my college career. There are many more professors, coaches, and friends that I want to thank not only for encouraging me with my thesis, but also for helping me through all my pursuits at school. Thank you to all of my McMurry family! iii Preface The goal of this research was to gain a deeper understanding of some existing cryptosystems, to implement these cryptosystems in a computer programming language of my choice, and to discover whether the composition of cryptosystems leads to greater security.
    [Show full text]
  • Codebusters Coaches Institute Notes
    BEING COVER AGENT FIXED DELAY, PILOT RIGHT PLANE, CATCH SMALL RADIO (CODEBUSTERS) This is the first year CodeBusters will be a National event. A few changes have been made since the North Carolina trial event last year. 1. The Atbash Cipher has been added. 2. The running key cipher has been removed. 3. K2 alphabets have been added in addition to K1 alphabets 4. Hill Cipher decryption has been added with a given decryption matrix. 5. The points scale has been doubled, but the timing bonus has been increased by only 50% in order to further balance the test. 1 TYPES OF PROBLEMS 1.1 ARISTOCRAT (EASY TO HARD DIFFICULTY) http://www.cryptograms.org/tutorial.php An Aristocrat is the typical Crypto-quote you see in the newspaper. Word spaces are preserved. No letter will stand for itself and the replacement table is given as a guide (but doesn’t need to be filled in by the team to get credit). FXP PGYAPYF FIKP ME JAKXPT AY FXP GTAYFMJTGF THE EASIEST TYPE OF CIPHER IS THE ARISTOCRAT A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Frequency 4 1 6 3 1 2 2 2 6 3 3 4 Replacement I F T A Y C P O E R H S 1.2 ARISTOCRATS WITH SPELLING AND/OR GRAMMAR ERRORS (MEDIUM TO VERY HARD DIFFICULTY) For these, either words will be misspelled or grammatical errors introduced. From a student perspective, it is what they might expect when someone finger fumbles a text message or has a bad voice transcription.
    [Show full text]
  • Historical Ciphers • A
    ECE 646 - Lecture 6 Required Reading • W. Stallings, Cryptography and Network Security, Chapter 2, Classical Encryption Techniques Historical Ciphers • A. Menezes et al., Handbook of Applied Cryptography, Chapter 7.3 Classical ciphers and historical development Why (not) to study historical ciphers? Secret Writing AGAINST FOR Steganography Cryptography (hidden messages) (encrypted messages) Not similar to Basic components became modern ciphers a part of modern ciphers Under special circumstances modern ciphers can be Substitution Transposition Long abandoned Ciphers reduced to historical ciphers Transformations (change the order Influence on world events of letters) Codes Substitution The only ciphers you Ciphers can break! (replace words) (replace letters) Selected world events affected by cryptology Mary, Queen of Scots 1586 - trial of Mary Queen of Scots - substitution cipher • Scottish Queen, a cousin of Elisabeth I of England • Forced to flee Scotland by uprising against 1917 - Zimmermann telegram, America enters World War I her and her husband • Treated as a candidate to the throne of England by many British Catholics unhappy about 1939-1945 Battle of England, Battle of Atlantic, D-day - a reign of Elisabeth I, a Protestant ENIGMA machine cipher • Imprisoned by Elisabeth for 19 years • Involved in several plots to assassinate Elisabeth 1944 – world’s first computer, Colossus - • Put on trial for treason by a court of about German Lorenz machine cipher 40 noblemen, including Catholics, after being implicated in the Babington Plot by her own 1950s – operation Venona – breaking ciphers of soviet spies letters sent from prison to her co-conspirators stealing secrets of the U.S. atomic bomb in the encrypted form – one-time pad 1 Mary, Queen of Scots – cont.
    [Show full text]
  • A Secure Variant of the Hill Cipher
    † A Secure Variant of the Hill Cipher Mohsen Toorani ‡ Abolfazl Falahati Abstract the corresponding key of each block but it has several security problems [7]. The Hill cipher is a classical symmetric encryption In this paper, a secure cryptosystem is introduced that algorithm that succumbs to the know-plaintext attack. overcomes all the security drawbacks of the Hill cipher. Although its vulnerability to cryptanalysis has rendered it The proposed scheme includes an encryption algorithm unusable in practice, it still serves an important that is a variant of the Affine Hill cipher for which a pedagogical role in cryptology and linear algebra. In this secure cryptographic protocol is introduced. The paper, a variant of the Hill cipher is introduced that encryption core of the proposed scheme has the same makes the Hill cipher secure while it retains the structure of the Affine Hill cipher but its internal efficiency. The proposed scheme includes a ciphering manipulations are different from the previously proposed core for which a cryptographic protocol is introduced. cryptosystems. The rest of this paper is organized as follows. Section 2 briefly introduces the Hill cipher. Our 1. Introduction proposed scheme is introduced and its computational costs are evaluated in Section 3, and Section 4 concludes The Hill cipher was invented by L.S. Hill in 1929 [1]. It is the paper. a famous polygram and a classical symmetric cipher based on matrix transformation but it succumbs to the 2. The Hill Cipher known-plaintext attack [2]. Although its vulnerability to cryptanalysis has rendered it unusable in practice, it still In the Hill cipher, the ciphertext is obtained from the serves an important pedagogical role in both cryptology plaintext by means of a linear transformation.
    [Show full text]
  • Shift Cipher Substitution Cipher Vigenère Cipher Hill Cipher
    Lecture 2 Classical Cryptosystems Shift cipher Substitution cipher Vigenère cipher Hill cipher 1 Shift Cipher • A Substitution Cipher • The Key Space: – [0 … 25] • Encryption given a key K: – each letter in the plaintext P is replaced with the K’th letter following the corresponding number ( shift right ) • Decryption given K: – shift left • History: K = 3, Caesar’s cipher 2 Shift Cipher • Formally: • Let P=C= K=Z 26 For 0≤K≤25 ek(x) = x+K mod 26 and dk(y) = y-K mod 26 ʚͬ, ͭ ∈ ͔ͦͪ ʛ 3 Shift Cipher: An Example ABCDEFGHIJKLMNOPQRSTUVWXYZ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 • P = CRYPTOGRAPHYISFUN Note that punctuation is often • K = 11 eliminated • C = NCJAVZRCLASJTDQFY • C → 2; 2+11 mod 26 = 13 → N • R → 17; 17+11 mod 26 = 2 → C • … • N → 13; 13+11 mod 26 = 24 → Y 4 Shift Cipher: Cryptanalysis • Can an attacker find K? – YES: exhaustive search, key space is small (<= 26 possible keys). – Once K is found, very easy to decrypt Exercise 1: decrypt the following ciphertext hphtwwxppelextoytrse Exercise 2: decrypt the following ciphertext jbcrclqrwcrvnbjenbwrwn VERY useful MATLAB functions can be found here: http://www2.math.umd.edu/~lcw/MatlabCode/ 5 General Mono-alphabetical Substitution Cipher • The key space: all possible permutations of Σ = {A, B, C, …, Z} • Encryption, given a key (permutation) π: – each letter X in the plaintext P is replaced with π(X) • Decryption, given a key π: – each letter Y in the ciphertext C is replaced with π-1(Y) • Example ABCDEFGHIJKLMNOPQRSTUVWXYZ πBADCZHWYGOQXSVTRNMSKJI PEFU • BECAUSE AZDBJSZ 6 Strength of the General Substitution Cipher • Exhaustive search is now infeasible – key space size is 26! ≈ 4*10 26 • Dominates the art of secret writing throughout the first millennium A.D.
    [Show full text]
  • Classic Crypto
    Classic Crypto Classic Crypto 1 Overview We briefly consider the following classic (pen and paper) ciphers o Transposition ciphers o Substitution ciphers o One-time pad o Codebook These were all chosen for a reason o We see same principles in modern ciphers Classic Crypto 2 Transposition Ciphers In transposition ciphers, we transpose (scramble) the plaintext letters o The scrambled text is the ciphertext o The transposition is the key Corresponds to Shannon’s principle of diffusion (more about this later) o This idea is widely used in modern ciphers Classic Crypto 3 Scytale Spartans, circa 500 BC Wind strip of leather around a rod Write message across the rod T H E T I M E H A S C O M E T H E W A L R U S S A I D T O T A L K O F M A N Y T H I N G S When unwrapped, letters are scrambled TSATAHCLONEORTYTMUATIESLHMTS… Classic Crypto 4 Scytale Suppose Alice and Bob use Scytale to encrypt a message o What is the key? o How hard is it for Trudy to break without key? Suppose many different rod diameters are available to Alice and Bob… o How hard is it for Trudy to break a message? o Can Trudy attack messages automatically—without manually examining each putative decrypt? Classic Crypto 5 Columnar Transposition Put plaintext into rows of matrix then read ciphertext out of columns For example, suppose matrix is 3 x 4 o Plaintext: SEETHELIGHT o Ciphertext: SHGEEHELTTIX Same effect as Scytale o What is the key? Classic Crypto 6 Keyword Columnar Transposition For example o Plaintext: CRYPTOISFUN o Matrix 3 x 4 and keyword MATH o Ciphertext:
    [Show full text]
  • Hill Cipher: a Cryptosystem Using Linear Algebra
    The Hill Cipher: A Cryptosystem Using Linear Algebra Robyn N. Taylor Mentor: Gerard LaVarnway Norwich University Northfield, VT April 6, 2013 Classic Cryptology Classic cryptology refers to methods of encipherment from antiquity to the middle of the 20th century Hudson River Undergraduate Mathematics Conference The Central Problem of Classic Cryptology Alice Eve Bob Communication channel Key channel Hudson River Undergraduate Mathematics Conference Polygraphic Substitution Ciphers polygraphic substitution cipher: blocks of plaintext characters are replaced by blocks of ciphertext characters Hudson River Undergraduate Mathematics Conference Lester Hill of Hunter College first introduced his “system” in an article in 1929 published in the American Mathematical Monthly entitled “Cryptology in an Algebraic Alphabet” Hudson River Undergraduate Mathematics Conference Lester Hill’s Cipher Machine Hudson River Undergraduate Mathematics Conference Principle Idea Group plaintext letters into blocks (size of 2,3,4 …) Encipher blocks as other equal length blocks plaintext ciphertext MI EQ SS GC Hudson River Undergraduate Mathematics Conference Block size Hill worked in three letter blocks We will work in two letter blocks Restrict alphabet to capital letters: A, B, C, D, ….Z Hudson River Undergraduate Mathematics Conference Monoalphabetic Substitution How many two letter blocks can we form from the letters A…Z? 26 X 26 = 676 Therefore, we can think of Hill’s system as a monoalphabetic substitution cipher on a 676 character alphabet. Hudson River Undergraduate Mathematics Conference Y Axmod26 Y is a 2 x 1 matrix of ciphertext numerical equivalents A is a 2 x 2 matrix x is a 2 x1 matrix of plaintext numerical equivalents. yx11 ab mod 26 yx22 cd Hudson River Undergraduate Mathematics Conference The Key The key to the encryption scheme is the coefficient matrix A.
    [Show full text]
  • 29 Yudhvir Yogesh Chaba.Pmd
    International Journal of Information Technology and Knowledge Management July-December 2008, Volume 1, No. 2, pp. 475-483 INORMATION THEORY TESTS BASED PERORMANCE EVALUATION O CRYPTOGRAPHIC TECHNIQUES YUDHVIR SINGH & YOGESH CHABA ABSTRACT Cryptography is an emerging technology, which is important for network security. Research on cryptography is still in its developing stages and considerable research effort is required. This paper is devoted to the security and attack aspects of cryptographic techniques. We have discussed the dominant issues of security and various information theory characteristics of various cipher texts. The simulation based information theory tests such as Entropy, !loating !requency, Histogram, N-Gram, Autocorrelation and Periodicity on cipher text are done. The simulation based randomness tests such as !requency Test, Poker Test, Runs Test and Serial Test on cipher text are done. !inally, we have benchmarked some well-known cryptographic algorithms in search for the best compromise in security. Keywords: Cryptography, Ciphers, Secret Key Cryptography, Security, Attack, Attacks Analysis and Performance. 1. INTRODUCTION Common design criterion for every cryptosystem is that the algorithms used for encryption and decryption are publicly known and that the security of the scheme only relies on the secrecy of a short secret called the key [1][2]. !igure 1 shows the brief overview of all parts of an encryption system. It considers classical symmetric encryption only, i.e., both the sender and the receiver of a secret message share a common secret key K. An efficient encryption algorithm E, takes the key and a plaintext and outputs a ciphertext, and an efficient decryption algorithm D, takes the key and a ciphertext and outputs a plaintext.
    [Show full text]
  • Hill Cipher Cryptanalysis a Known Plaintext Attack Means That We Know
    Fall 2019 Chris Christensen MAT/CSC 483 Section 9 Hill Cipher Cryptanalysis A known plaintext attack means that we know a bit of ciphertext and the corresponding plaintext – a crib. This is not an unusual situation. Often messages have stereotypical beginnings (e.g., to …, dear …) or stereotypical endings (e.g, stop) or sometimes it is possible (knowing the sender and receiver or knowing what is likely to be the content of the message) to guess a portion of a message. For a 22× Hill cipher, if we know two ciphertext digraphs and the corresponding plaintext digraphs, we can easily determine the key or the key inverse. 1 Example one: Assume that we know that the plaintext of our ciphertext message that begins WBVE is inma. We could either solve for the key or the key inverse; let’s solve for the key inverse. ef23 9 Because WB corresponds to in = , gh2 14 ef22 13 and because VE corresponds to ma = . gh51 These result in two sets of linear congruences modulo 26: 23ef+= 2 9 22ef+= 5 13 and 23gh+= 2 14 22gh+= 5 1 We solve the systems modulo 26 using Mathematica. In[5]:= Solve[23e+2f == 9 && 22e+5f == 13, {e, f}, Modulus -> 26] Out[5]= {{e->1,f->19}} In[6]:= Solve[23g+2h == 14 && 22g+5h == 1, {g, h}, Modulus -> 26] Out[6]= {{g->20,h->11}} 2 Example two: Ciphertext: FAGQQ ILABQ VLJCY QULAU STYTO JSDJJ PODFS ZNLUH KMOW We are assuming that this message was encrypted using a 22× Hill cipher and that we have a crib.
    [Show full text]
  • Application of Hill Cipher Algorithm in Securing Text Messages
    INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 4, Issue - 10, Oct – 2018 Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.497 Publication Date: 31/10/2018 Application of Hill Cipher Algorithm in Securing Text Messages 1 Muhammad Donni Lesmana Siahaan, 2 Andysah Putera Utama Siahaan Faculty of Science and Technology, Universitas Pembangunan Panca Budi, Medan, Indonesia Email: 1 [email protected], 2 [email protected] Abstract: Computer security aims to help users prevent fraud or detect fraud in an information-based system. The information must be secured to be free from threats. Cryptographic techniques can prevent data theft. One cryptographic algorithm is Hill Cipher. This algorithm is one symmetric cryptography algorithm. The Hill Cipher algorithm uses an m x m sized matrix as the key to encryption and decryption. The fundamental matrix theory used in Hill Cipher is multiplication between matrices and inverses the matrix. Hill Cipher has two types of matrices in general, 2 x 2 and 3 x 3. This study discusses the order 2 x 2. The application of Hill Cipher in text-shaped media is highly recommended because it has fast encryption and decryption speeds. This method is very good at securing data that will be transmitted on an open network. Key Words: Hill Cipher, encryption, decryption, algorithm. 1. INTRODUCTION: A computer network is a system consisting of computers that are designed to be able to share resources, communicate, and access information [1]. The purpose of a computer network is to be able to achieve its objectives, every part of the computer network can request and provide services.
    [Show full text]
  • On the Subject of the Ultimate Cycle
    Keep Talking and Nobody Explodes Mod Ultimate Cycle On the Subject of Ultimate Cycles This cycle is exactly as bad as full password cycle... This module consists of a screen, eight dials with red labels, and a QWERTY keyboard. The labels on the dials, when decrypted and read from left to right, spell out an eight letter word. The word has been encrypted through a series of ciphers, indicated by the direction each dial is pointing, from left to right. To decipher it, decrypt the word from right to left instead. Once deciphered, find the word in the table below, the word written below it is the word that should be entered. Apply the same sequence of encryptions to the response word, and type out the encrypted response word using the keys. The word is automatically submitted when eight keys are pressed. The red button can be pressed at any time before the eighth key is pressed to cancel the input. Inputting any of the eight letters incorrectly will cause a strike to be issued and reset the module. Note: Unless stated otherwise, any reference to a letter’s alphabetic position starts at A = 1. Similarly, any reference to the position of a dial starts from the leftmost dial = 1. Rn refers the number of 45° rotations, starting from north, of the nth dial. If n is not a value, it refers to the position of the cipher dial (1 to 8). e.g. R4 refers to number of 45° rotations of the 4th dial, Rn-1 refers to number of 45° rotations of the 3rd dial, if the cipher dial is the 4th.
    [Show full text]