Quantifying flood-water impacts on a lake water budget via volume- dependent transient stable isotope mass balance Janie Masse-Dufresne1, Florent Barbecot2, Paul Baudron1,3 and John Gibson34,45 1Polytechnique Montréal, Department of Civil, Geological and Mining Engineering, Montreal, QC H3T 1J4, Canada 5 2 Geotop-UQAM, Department of Earth and Atmospheric Sciences, Montreal, QC H2X 3Y7, Canada 3 Institut de Recherche pour le Développement, UMR G-EAU, 34090 Montpellier, France 34 InnoTech AlbertaAlberta Innovates Technology Futures, 3-4476 Markham Street, Victoria, BC V8Z 7X8, Canada 45 University of Victoria, Department of Geography, Victoria, BC V8W 3R4, Canada Correspondence to: Janie Masse-Dufresne (
[email protected]) 10 1 Abstract. Isotope mass balance models have undergone significant developments in the last decade, demonstrating their utility for assessing the spatial and temporal variability of hydrological processes, and revealing significant value for baseline assessment in remote and/or flood-affected settings where direct measurement of surface water fluxes to lakes (i.e., stream 15 gauging) are difficult (or nearly impossible) to perform. In this study, we demonstrate that isotopic mass balance modelling can be used to provide evidence of the relative importance of bank storage and direct flood-water inputs and temporary subsurface storage of flood-water at ungauged lake systems. A volume-dependent transient isotopic mass balance model was developed for an artificial lake (named Lake A) in southern Quebec (Canada). This lake typically receives substantial flood- water inputs during the spring freshet period, as an ephemeral hydraulic connection with a 150,000-km2 large watershed is 20 established. Quantification First-order water flux estimates of the water fluxes to Lake A allow for impacts of flood-water inputs to be highlighted within the annual water budget.