The Pennsylvanian-Permian Vegetational Transition: a Terrestrial Analogue to the Onshore-Offshore Hypothesis STOR

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvanian-Permian Vegetational Transition: a Terrestrial Analogue to the Onshore-Offshore Hypothesis STOR The Pennsylvanian-Permian Vegetational Transition: A Terrestrial Analogue to the Onshore-Offshore Hypothesis STOR William A. DiMichele; Richai'd B. Aronson Evolution, Vol. 46, No. 3 (Jun., 1992), 807-824. Stable URL: http://links.jstor.org/sici?sici=0014-3820%28199206%2946%3A3%3C807%3ATPVTAT%3E2.0.CO%3B2-L Evolution is currently published by Society for the Study of Evolution. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/teiTns.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http: //w w w .j s tor. org/j oum al s/s se vo 1. html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital aichive of scholarly journals. For more information regarding JSTOR, please contact [email protected]. http: //w w w .j s tor. org/ WedSep 1 12:53:14 2004 EwluXion. '16(3), 1552, pp. 807-834 THE PENNSYLVANIAN-PERMIAN VEGETATIONAL TRANSITION: A TERRESTRIAL ANALOGUE TO THE ONSHORE-OFFSHORE HYPOTHESIS WILLIAM A. DIMKHELE AND RKHARD B. ARONSON Department of Paieabiology, National Museum of Natural History, Smithsonian Instiimion, Washington, DC 20560 USA Abstract. —An analysis of 68 floras from the Pennsylvanian and Early Permian of Euramerica reveals distinct patterns of environmental distribution. Wetland assemblages are the most com- monly encountered floras from the Early and Middle Pennsylvanian. Floras from drier habitats characterize the Permian. Both wetland and dry-site floras occur in the Late Pennsylvanian, but floristic overlap is minimal, which implies strong environmental controls on the distributions of the component species. Drier habitats appear to be the sites of first appearance of orders that become prominent during the Late Permian and Mesozoic. Higher taxa originated in physically heterogeneous, drier habitats, which were geographically marginal throughout most of the Penn- sylvanian. They then moved into the lowlands during periods of climatic drying in the Permian, replacing older wetland vegetation. This pattern is analogous to the marine onshore-oflfehore pattern of origination and migration. The derivation of Mesozoic wetland clades from the Permian dry- lowland vegetation completes the parallel. The similarities of the marine and terrestrial patterns suggest that the combination of evolutionary opportunity, created by physical heterogeneity of the environment, and migrational opportunity, created by changing extrinsic conditions, may be un- derlying factors that transcend the specifics of organism and environment. Key words—MacTOtvahilion, onshore-offshore hypothesis, paleoecology, Pennsylvanian, Permian, upland flora. Received July 2, 1990. Accepted October 29, 1991. Botanists have long regarded semixeric to dence is relatively recent and continues to xeric habitats as sites favoring the survival accrue. The best documented Paleozoic ex- of morphological novelties (Stebbins, 1952; amples are the conifers (Scott and Chaloner, Axelrod, 1972). In contrast, swamps and 1983; Lyons and Darrah, 1989), eariy fili- associated wetlands have been character- calean fems (Scott and Galtier, 1985), cy- ized as refugia where archaic taxa and com- cads (Mamay, 1976, 1990; Leary, 1990), munities survive for long periods of geo- peltasperms (Kerp, 1988di), and gigantop- logic time (Knoll, 1985; DiMichele et al., terids (Mamay, 1986, 1988). Others that also 1987). The persistence of archaic species and appear to fit the pattern include the cordai- communities in the wet lowlands is a gen- talean gymnosperms (Chaloner, 1958), the eralization drawn from the vast majority of Ginkgoales (Mamay, 1981), the Noeggera- paleobotanical data (for Paleozoic data see thiales (Leary and Pfefferkom, 1977), and Davies, 1929; Oshurkova, 1974, 1978; glossopterids (Retallack and Dilcher, 1981). Havlena, 1970; Phillips etal., 1985). On the Early seed plants, although they may have other hand, the inference of evolutionary originated in Late Devonian wetlands (Gil- innovation in extrabasinal, peripheral, or lespieetal., 1981), radiated subsequently in upland areas (Mapes and Gastaldo, 1987, more xeric habitats (Rothwell and Scheck- discuss terminology) developed primarily ler, 1988; Bateman and Rothwell, 1990; Re- as an explanation for the absence of ex- tallack and Dilcher, 1988). A variety of pected intermediate forms linking the high- enigmatic forms, including genera with un- er taxa found in lowland floras (e.g., Arnold, certain affinities also occur first in what ap- 1947; Axelrod, 1967; Stidd, 1980). pear to be moisture-stressed habitats of the The earliest evidence of most major vas- Early Permian {Glenopteris: Sellards, 1908; cular plant groups (orders approximately) Yakia: White, 1929; RmselUes: Mamay, suggests that they originated or diversified 1968; Wattia: Mamay, 1967; callipterid in habitats that were periodically moisture- complex: Kerp, 1988i; Kerp and Haubold, stressed and often peripheral to major ba- 1988). sinal wetlands. For many groups this evi- In this paper we examine the Pennsyl- 807 808 W, A. DiMICHELE AND R. B. ARONSON vanian-Permian vegetational transition as a of lithologies, or characteristic of a time unit possible analogue of the marine onshore- were rejected from the data base because ofFshore hypothesis. Many of the genera, the degree of species cooccurrence could not families and orders that originated in mois- be assessed reliably. ture-limited habitats during the late Paleo- Eighty taxa, identified to genus, or in some zoic were part of a vegetation that replaced cases to generic groups such as "walchians," the archaic wetland floras of the Carbonif- were included in the data base. Although erous tropics as the lowlands dried out. The using genera reduces ecological precision, it new taxa, inhabitants of the new seasonally avoids the inconsistencies in many species- dry lowlands, became the ancestors of the level taxonomies, and provides a conser- dominant early Mesozoic wetland vegeta- vative estimate of distributional patterns. tion. This pattern of lineage and community replacement may be a terrestrial parallel to Environmental Data the "onshore-offshore" patterns detected in The habitat from which a fossil plant as- the Phanerozoic marine record. Major mor- semblage was drawn can be described in a phological innovations in benthic inverte- variety of ways, often in great detail. For brates first appeared in physically hetero- the purpose of this analysis we were con- geneous, disturbed nearshore environments cerned with just two attributes: local mois- and then expanded offshore into more sta- ture hmitation and physical location rela- ble deep-water environments (Jablonski et tive to basinal lowlands. Unfortunately there al., 1983; SepkoskiandSheehan, 1983; Sep- are significant terminological difficulties as- koski and Miller, 1985; Bottjer and Jablon- sociated with the description of these fea- ski, 1988; Jablonski and Bottjer, 1990; Sep- tures, resulting in part from their being con- koski, 1991). Despite possible differences in founded (e.g., all lowlands are wet, all factors mediating the habitat shifts, the sim- uplands are dry). Such problems are dis- ilarities between the marine and terrestrial cussed and partially clarified by Havlena patterns are striking. Both patterns may re- (1970) and Mapes and Gastaldo (1987), but flect a fundamental relationship between considerable confusion remains. evolution and environment. We have avoided the term "stress" due to the ambiguity of its usage (see DiMichele etal., 1987). Swamps, for example, are high- DATA AND ANALYSIS ly "stressful" in the sense of their edaphics; Floristic Data physico-chemical properties of the sub- Roras were compiled from 68 North strate exclude nearly all plants and create a American and European localities, part of sharp, nongradational boundary with sur- a continuous tropical landmass during the rounding habitats (heavy metal-rich sub- late Paleozoic (Ziegler, 1990). The floras strates have the same properties, see Brad- range in age from Early Pennsylvanian to shaw and McNeilly, 1981 and references Late Permian. A "flora" in the sense used therein). Seasonally dry habitats also are here is a collection made from a single de- "stressful," but in a different sense. A gra- positional environment at a single site. A dient exists from habitats or microhabitats site can vary from a meter square prospect with constantly available moisture to those pit to the roof shale of a coal exposed in one that are moisture "stressed." The evolu- strip mine. Floras from depositional envi- tionary response of plants to edaphic stress ronments suggesting a high potential for al- is quite different from their response to lochthonous origin were excluded from con- moisture limitation. Swamps, for example, sideration due to potential mixing of are not centers of evolutionary innovation. vegetational types from edaphically distinct Over geological time they tend to accu- parts of the landscape. Temporal hetero- mulate species that can tolerate
Recommended publications
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Heterospory: the Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom
    Biol. Rej\ (1994). 69, l>p. 345-417 345 Printeii in GrenI Britain HETEROSPORY: THE MOST ITERATIVE KEY INNOVATION IN THE EVOLUTIONARY HISTORY OF THE PLANT KINGDOM BY RICHARD M. BATEMAN' AND WILLIAM A. DiMlCHELE' ' Departments of Earth and Plant Sciences, Oxford University, Parks Road, Oxford OXi 3P/?, U.K. {Present addresses: Royal Botanic Garden Edinburiih, Inverleith Rojv, Edinburgh, EIIT, SLR ; Department of Geology, Royal Museum of Scotland, Chambers Street, Edinburgh EHi ijfF) '" Department of Paleohiology, National Museum of Natural History, Smithsonian Institution, Washington, DC^zo^bo, U.S.A. CONTENTS I. Introduction: the nature of hf^terospon' ......... 345 U. Generalized life history of a homosporous polysporangiophyle: the basis for evolutionary excursions into hetcrospory ............ 348 III, Detection of hcterospory in fossils. .......... 352 (1) The need to extrapolate from sporophyte to gametophyte ..... 352 (2) Spatial criteria and the physiological control of heterospory ..... 351; IV. Iterative evolution of heterospory ........... ^dj V. Inter-cladc comparison of levels of heterospory 374 (1) Zosterophyllopsida 374 (2) Lycopsida 374 (3) Sphenopsida . 377 (4) PtiTopsida 378 (5) f^rogymnospermopsida ............ 380 (6) Gymnospermopsida (including Angiospermales) . 384 (7) Summary: patterns of character acquisition ....... 386 VI. Physiological control of hetcrosporic phenomena ........ 390 VII. How the sporophyte progressively gained control over the gametophyte: a 'just-so' story 391 (1) Introduction: evolutionary antagonism between sporophyte and gametophyte 391 (2) Homosporous systems ............ 394 (3) Heterosporous systems ............ 39(1 (4) Total sporophytic control: seed habit 401 VIII. Summary .... ... 404 IX. .•Acknowledgements 407 X. References 407 I. I.NIRODUCTION: THE NATURE OF HETEROSPORY 'Heterospory' sensu lato has long been one of the most popular re\ie\v topics in organismal botany.
    [Show full text]
  • Devonian Plant Fossils a Window Into the Past
    EPPC 2018 Sponsors Academic Partners PROGRAM & ABSTRACTS ACKNOWLEDGMENTS Scientific Committee: Zhe-kun Zhou Angelica Feurdean Jenny McElwain, Chair Tao Su Walter Finsinger Fraser Mitchell Lutz Kunzmann Graciela Gil Romera Paddy Orr Lisa Boucher Lyudmila Shumilovskikh Geoffrey Clayton Elizabeth Wheeler Walter Finsinger Matthew Parkes Evelyn Kustatscher Eniko Magyari Colin Kelleher Niall W. Paterson Konstantinos Panagiotopoulos Benjamin Bomfleur Benjamin Dietre Convenors: Matthew Pound Fabienne Marret-Davies Marco Vecoli Ulrich Salzmann Havandanda Ombashi Charles Wellman Wolfram M. Kürschner Jiri Kvacek Reed Wicander Heather Pardoe Ruth Stockey Hartmut Jäger Christopher Cleal Dieter Uhl Ellen Stolle Jiri Kvacek Maria Barbacka José Bienvenido Diez Ferrer Borja Cascales-Miñana Hans Kerp Friðgeir Grímsson José B. Diez Patricia Ryberg Christa-Charlotte Hofmann Xin Wang Dimitrios Velitzelos Reinhard Zetter Charilaos Yiotis Peta Hayes Jean Nicolas Haas Joseph D. White Fraser Mitchell Benjamin Dietre Jennifer C. McElwain Jenny McElwain Marie-José Gaillard Paul Kenrick Furong Li Christine Strullu-Derrien Graphic and Website Design: Ralph Fyfe Chris Berry Peter Lang Irina Delusina Margaret E. Collinson Tiiu Koff Andrew C. Scott Linnean Society Award Selection Panel: Elena Severova Barry Lomax Wuu Kuang Soh Carla J. Harper Phillip Jardine Eamon haughey Michael Krings Daniela Festi Amanda Porter Gar Rothwell Keith Bennett Kamila Kwasniewska Cindy V. Looy William Fletcher Claire M. Belcher Alistair Seddon Conference Organization: Jonathan P. Wilson
    [Show full text]
  • 65Th Annual Tri-State Geological Field Conference 2-3 October 2004
    65th Annual Tri-State Geological Field Conference 2-3 October 2004 Weis Earth Science Museum Menasha, Wisconsin The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago Joanne Kluessendorf & Donald G. Mikulic Organizers The Lake & The Ledge Geological Links between the Niagara Escarpment and Lake Winnebago 65th Annual Tri-State Geological Field Conference 2-3 October 2004 by Joanne Kluessendorf Weis Earth Science Museum, Menasha and Donald G. Mikulic Illinois State Geological Survey, Champaign With contributions by Bruce Brown, Wisconsin Geological & Natural History Survey, Stop 1 Tom Hooyer, Wisconsin Geological & Natural History Survey, Stops 2 & 5 William Mode, University of Wisconsin-Oshkosh, Stops 2 & 5 Maureen Muldoon, University of Wisconsin-Oshkosh, Stop 1 Weis Earth Science Museum University of Wisconsin-Fox Valley Menasha, Wisconsin WELCOME TO THE TH 65 ANNUAL TRI-STATE GEOLOGICAL FIELD CONFERENCE. The Tri-State Geological Field Conference was founded in 1933 as an informal geological field trip for professionals and students in Iowa, Illinois and Wisconsin. The first Tri-State examined the LaSalle Anticline in Illinois. Fifty-two geologists from the University of Chicago, University of Iowa, University of Illinois, Northwestern University, University of Wisconsin, Northern Illinois State Teachers College, Western Illinois Teachers College, and the Illinois State Geological Survey attended that trip (Anderson, 1980). The 1934 field conference was hosted by the University of Wisconsin and the 1935 by the University of Iowa, establishing the rotation between the three states. The 1947 Tri-State visited quarries at Hamilton Mound and High Cliff, two of the stops on this year’s field trip.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • 1 Supplementary Materials and Methods 1 S1 Expanded
    1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).
    [Show full text]
  • Ancient Noeggerathialean Reveals the Seed Plant Sister Group Diversified Alongside the Primary Seed Plant Radiation
    Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation Jun Wanga,b,c,1, Jason Hiltond,e, Hermann W. Pfefferkornf, Shijun Wangg, Yi Zhangh, Jiri Beki, Josef Pšenickaˇ j, Leyla J. Seyfullahk, and David Dilcherl,m,1 aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; bCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; cUniversity of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; dSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; eBirmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; fDepartment of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316; gState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; hCollege of Paleontology, Shenyang Normal University, Key Laboratory for Evolution of Past Life in Northeast Asia, Ministry of Natural Resources, Shenyang 110034, China; iDepartment of Palaeobiology and Palaeoecology, Institute of Geology v.v.i., Academy of Sciences of the Czech Republic, 165 00 Praha 6, Czech Republic; jCentre of Palaeobiodiversity, West Bohemian Museum in Plzen, 301 36 Plzen, Czech Republic; kDepartment of Paleontology, Geozentrum, University of Vienna, 1090 Vienna, Austria; lIndiana Geological and Water Survey, Bloomington, IN 47404; and mDepartment of Geology and Atmospheric Science, Indiana University, Bloomington, IN 47405 Contributed by David Dilcher, September 10, 2020 (sent for review July 2, 2020; reviewed by Melanie Devore and Gregory J.
    [Show full text]
  • Mujal Et Al., 2017)
    Aridification across the Carboniferous–Permian transition in Central equatorial Pangea: the Catalan Pyrenean succession (NE Iberian Peninsula) Eudald Mujal*a,b, Josep Fortunyb,c, Josep Marmib, Jaume Dinarès-Turelld, Arnau Boletb, Oriol Omsa a Departament de Geologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain. e-mail addresses: [email protected], [email protected] b Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP building, c/ de les columnes, s/n, E-08193 Cerdanyola del Vallès, Spain. e-mail addresses: [email protected], [email protected], [email protected] c Centre de Recherches en Paléobiodiversité et Paléoenvironnements, UMR 7202 CNRS-MNHN-UPMC, Muséum national d'Histoire naturelle, 8 rue Buffon, CP38, F- 75005 Paris, France. d Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, I-00143 Roma, Italy. e-mail address: [email protected] *Corresponding author: E. Mujal, [email protected] Abstract The Carboniferous–Permian terrestrial successions record a global climatic shift from icehouse to hothouse conditions. Our multidisciplinary study documents an aridification trend throughout the ~1000 m thick composite terrestrial succession of the western Catalan Pyrenees (NE Iberian Peninsula), representing this time period. The detailed stratigraphic framework integrates sedimentology, paleopedology, biochronology (plant 1 fossils and tetrapod footprints) and geochronology (paleomagnetism). Additional absolute age correlation is also carried out. The new and reviewed data show that the late Carboniferous wet environments (with short drought periods) progressively changed to a strong seasonal semi-arid and arid climate (with short humid periods) through the early Permian. This paleoclimatic trend supports the previously suggested aridification of the Pangean pan-tropical belt, and supports the hypothesis of the influence of the recurrent climatic fluctuations in Central Pangea, being tentatively correlated to the Southern Gondwanan glaciation-deglaciation periods.
    [Show full text]
  • Observations on the Geology of Southern New Brunswick, Made During the Summer of 1864
    A*SS'^A*SSS*A**^ AS s+S+Jfr <f»AV AAAS AO OBSERVATIONS ' QUEEN'S y>m GEOLOGY OP SOUTHERN R1W BRUNSWICK, ADE PRINCIPALLY DURING THE SUMMER OF 1S64 BY PROF. L. W. BAI'LEY, MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH- A GEOLOGICAL MAP, BY L. ¥. BAILEY, A. M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEAV BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF- THS NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTON. G. E. FEXETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY. 1865. i////<///^///^/«/// FRQK ) ptaija! |istorg £oqi<;tg OF BRUNSWICK. m , NEW The EDITF COLLECTl f Queen's L JAL MAP 'HE iNGS QUEENS, AND ALBERT; J& EXTENT OF EACH FORMATION, FROM THE CARBONIFEROUS BASIH TO THE COAST. .W.BAILEY ANO Mr. G. F. MATTH E W, 1804. OBSERVATIONS ON THE GEOLOGY Off SOUTHERN NIW BRUNSWICK, MADE PRINCIPALLY DURING THE SUMMER OF 1864 BY PROF. L. W. BAILEY MESSRS. GEO. F. MATTHEW AND C. F. HARTT, PREPARED AND ARRANGED, WITH A GEOLOGICAL MAP, BY L. W. BAILEY, A.M. PROFESSOR OF CHEMISTRY, &C. IN THE UNIVERSITY OF NEW BRUNSWICK, PATRON OF THE BOSTON NATURAL HISTORY SOCIETY, AND CORRESPONDING MEMBER OF THE NATURAL HISTORY SOCIETY OF MONTREAL. PRINTED BY ORDER OF THE HOUSE OF ASSEMBLY. FREDERICTOtf. G. E. FENETY, PRINTER TO THE QUEEN'S MOST EXCELLENT MAJESTY, fsoto - Bi V : I. diversity of New Brunswick, Frcderlctoii, February, 1865. Sir, I have the honor to transmit herewith, to be laid before His Excellency the Lieutenant Governor and the Legislature, a Report of Observations on the Geology of Southern New Brunswick, made during the Summer of 1864, 1 have the honor to be, Sir, Your obedient servant, L.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 21 Cover
    rf Predictive Stratigraphic Analysis- - Concept and Application u.s. GEOLOGICAL SURVEY BULLETIN 21 Cover. Calcic paleo-Vertisol underlying the resistant transgressive marine limestone Little Stone Gap Member of the Hinton Formation (Upper Mississippian) in southwestern West Virginia. This paleosol is indicative of a relatively dry climate when evapotranspira- tion exceeded rainfall for more than 6 months out of the year. The light-gray color at the level of the photograph scale (center) is the result of gleying (bleaching) after burial. A calcified root system, located in the proximity of the scale, branches downward and sug­ gests a well-developed root system for a plant whose stem may have been up to 15 centi­ meters in diameter. Numerous mineralized fossil roots at this level indicate that land plants were very well adapted to seasonally dry conditions in nonwaterlogged environ­ ments by Late Mississippian time. Cross-cutting fractures, known as mukkara structures and caused by seasonal expansion (wet) and contraction (dry), are visible throughout the outcrop beneath the resistant limestone layer except where interrupted or destroyed by paleoroot systems. Predictive Stratigraphic Analysis Concept and Application Edited by C. Blaine Cecil and N. Terence Edgar U.S. GEOLOGICAL SURVEY BULLETIN 2110 A collection of extended abstracts of papers presented at two workshops on the title subject UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center, Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • The Student's Elements of Geology
    The Student's Elements of Geology Sir Charles Lyell The Student's Elements of Geology Table of Contents The Student's Elements of Geology.........................................................................................................................1 Sir Charles Lyell............................................................................................................................................1 PREFACE......................................................................................................................................................2 CHAPTER I. ON THE DIFFERENT CLASSES OF ROCKS.....................................................................2 CHAPTER II. AQUEOUS ROCKS. THEIR COMPOSITION AND FORMS OF STRATIFICATION......................................................................................................................................8 CHAPTER III. ARRANGEMENT OF FOSSILS IN STRATA. FRESH−WATER AND MARINE FOSSILS.....................................................................................................................................................14 CHAPTER IV. CONSOLIDATION OF STRATA AND PETRIFACTION OF FOSSILS.......................21 CHAPTER V. ELEVATION OF STRATA ABOVE THE SEA. HORIZONTAL AND INCLINED STRATIFICATION....................................................................................................................................27 CHAPTER VI. DENUDATION..................................................................................................................40
    [Show full text]
  • Registre Sedimentari I Icnològic Del Fini-Carbonífer, Permià I Triàsic Continentals Dels Pirineus Catalans Evolució I Crisis Paleoambientals a L’Equador De Pangea
    Departament de Geologia, Facultat de Ciències, Universitat Autònoma de Barcelona Registre sedimentari i icnològic del fini-Carbonífer, Permià i Triàsic continentals dels Pirineus Catalans Evolució i crisis paleoambientals a l’equador de Pangea Memòria presentada per Eudald Mujal Grané per optar al títol de Doctor en Geologia Juny de 2017 Tesi doctoral dirigida per: Dr. Oriol Oms Llobet, Departament de Geologia, Universitat Autònoma de Barcelona Dr. Josep Fortuny Terricabras, Institut Català de Paleontologia Miquel Crusafont Dr. Oriol Oms Llobet Dr. Josep Fortuny Terricabras Eudald Mujal Grané Annexes Annex 1. First footprints occurrence from the Muschelkalk detriti- cal unit of the Catalan Basin: 3D analyses and palaeoichnological implications Annex 1. First footprints occurrence from the Muschelkalk detritical unit of the Catalan Basin: 3D analyses and palaeoichnological implications L’Annex 1 correspon al treball publicat a la revista Spanish Journal of Palaeontology el juliol de 2015: Mujal, E., Fortuny, J., Rodríguez-Salgado, P., Diviu, M., Oms, O., Galobart, À., 2015. First footprints occurrence from the Muschelkalk detritical unit of the Catalan Basin: 3D analyses and palaeoichnolo- gical implications. Spanish Journal of Palaeontology, 30(1): 97–108. En aquest article l’autor E. M. ha contribuït en: elaboració dels models fotogramètrics 3D de les icni- tes; anàlisis de sedimentologia i icnologia; interpretació i discussió de tots els resultats; redacció del manuscrit; preparació i maquetació de les figures 3 i 4; autor per correspondència amb la revista. 244 Annex 1. First footprints occurrence from the Muschelkalk detritical unit of the Catalan Basin: 3D analyses and palaeoichnological implications 245 Annex 1. First footprints occurrence from the Muschelkalk detritical unit of the Catalan Basin: 3D analyses and palaeoichnological implications 246 Annex 1.
    [Show full text]