Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes by Yixin Zhang A thesis submitted in conformity with the requirements for the degree of Master of Science in Chemistry Department of Chemistry and Biomolecular Sciences University of Ottawa © Yixin Zhang, Ottawa, Canada, 2018 Design and Synthesis of a Series of Redox Active Tetrazine and Triazine Based Transition Metal Complexes Yixin Zhang Master of Science in Chemistry Department of Chemistry and Biomolecular Sciences University of Ottawa 2018 Abstract The use of two different chelating redox active ligands, 2,6-bis(6-methyl-1,2,4,5-3-yl) pyridine (BTZP) and 2,6-bis-(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridine (BTP) in heterometallic first row and second row transition metal chemistry has yielded two new families of redox active metal complexes. These complexes were found to exhibit interesting electrochemical and magnetic properties. In this thesis, Chapter 1 lays the foundation for the research presented within. This section covers the fundamentals of the ligand design, ligand synthesis and related coordination chemistry literature review. Chapters 2 and 3 report the results of the current thesis. In Chapter 2, the synthesis and characterization of a family of discrete molecules and supramolecular arrangements, employing the ligand BTZP, is presented. All of the complexes presented in Chapter 2 are successfully synthesized and characterized with electrochemical and magnetic studies. According 2+ to the electrochemical data, it is found that the classic “terpy-like” complexes with [Co(BTZP) 2] formula fosters more stability in the redox process. In Chapter 3, a family of transition metal 2+ complexes with [M(BTP) 2] (M=Fe or Co) inorganic cores were obtained through the employment of the ligand BTP with various anions. In addition, dimeric molecules with [CoX4(BTP)2] formula were also obtained by solvothermal synthesis. The complexes were also electrochemically characterized, with all the complexes capable of being reduced, while only II [Co (BTP)2] (ClO4)2 showed reversible redox process. Similar with BTZP, the series of BTP based complexes are also characterized through magnetic measurement. Only cobalt-based BTP ii II 2+ - - complexes are paramagnetic, with [Co (BTP)2] being spin crossover active when BF4 and ClO4 are present. However, the presence of NCS- and halides lead to either antiferromagnetic interactions and ferromagnetic interactions dominating at different temperature regimes. iii Acknowledgments First and foremost, I would like to express my most sincere gratitude to my supervisor, Prof. Muralee Murugesu, for taking me on as a student and giving me this opportunity to further my skills as a synthetic chemist, offering me the chance to contribute to the molecular magnetism field. Thank you for pushing me to newer and greater heights. I have thoroughly enjoyed the numerous clever analogies you have shared with me over the past 2 years, with your patience, motivation and immense knowledge. I’m looking forward to keeping working with you! I also would like to recognize the contributions of Dr. Bulat Gabidullin, our X-ray crystallographer. There are so many work depending on the X-ray results, and I am very grateful for having someone with your skills participate so actively in my research. I also would like to thank Ms. Rola Mansa for her assistance with TGA measurements. Finally, I would like to thank all previous and current lab group members for their input on this work, including Dr. Amélie Pialat who taught me the basics of organic synthesis. Dr. Jamie Frost helped me a lot in the early stages of research, and thanks for his kindly teaching for the basic research principles. A special mention to Miss. Katie Harriman for helping me out measuring the samples in the SQUID magnetometry and teaching me a lot in the early stages of the research in terms of magnetism part as well as providing invaluable insight. Many thanks to Mr. Paul Richardson for his kindly help for explaining inorganic basic concepts and English correcting. I also would like to thank to Mr. Maykon Lemes, who has been a fantastic colleague and friend to work with throughout my graduate studies. I also would like to thank Mr Gabriel Brunet for his assistance with PXRD measurements, solving magnetic problems as well as grammar checking. Finally, I would like to recognize Mr. Thomas Lacelle, who gives me a numerous help during the past two years. It was a really unforgettable time for taking class with you. Thank you so much for helping me to pass all exams. Last but not least, I would like to give thanks to all my friends who live in Ottawa, as well as living in all around the world now. Thank you so much about contributions that you given to me, and I really enjoy the moment with you. Special mention to my best friend back in China now Prof. Sha Feng, who has been an amazing organic synthetic chemist, and taught me a lot of tricks in the organic synthesis as well as numerous general chemistry contents. I also sincerely appreciate iv Mr Bowen Wang for being a fantastic supporter in every single moment together. Thank you so much for teaching me how to be a researcher in the very early stage and how to solve problem by myself. With your support and help, I could be always positive and get over any challenges I have had during the study. Finally, I would like also to give my sincere gratitude to my parents, even though they cannot understand any single English word, but support me all the time and encourage me to try what I would like to do. I really thank them to give me this great opportunity to study chemistry in the University of Ottawa and accomplish my dream. v Table of Contents Acknowledgments .................................................................................................................... iv Table of Contents ..................................................................................................................... vi 1 General introduction .............................................................................................................1 1.1 Tetrazines and triazines ..................................................................................................1 1.2 Ligand design .................................................................................................................3 1.2.1 The choice of redox activity ..............................................................................3 1.2.2 Chelating ligand .................................................................................................4 1.3 Literature method for synthesis of BTZP and BTP .......................................................6 1.4 Previous literature review ..............................................................................................8 1.4.1 Coordination chemistry of BTZP .......................................................................8 1.4.2 Coordination chemistry of BTP .........................................................................9 1.5 Project goal ..................................................................................................................11 2 Synthesis and characterizations in the molecular and supramolecular arrangements of transition metal complexes with a 2,6-bis(6-methyl-1,2,4,5-3-yl) pyridine ligand. ...........13 2.1 Introduction ..................................................................................................................14 2.2 Experimental ................................................................................................................15 2.2.1 Materials and methods .....................................................................................15 2.2.2 Synthesis of 2,6-dicyanopyridine .....................................................................15 2.2.3 Synthesis of the bis-tetrazine ligand (BTZP) ...................................................16 II 2.2.4 Synthesis of the [Co (BTZP)2](ClO4)2·2MeCN (1) ........................................17 II 2.2.5 Synthesis of the [Ni (BTZP)(MeCN)3](ClO4)2 (2) .........................................17 II 2.2.6 Synthesis of the [Ni Cl2(BTZP)(MeCN)]·2MeCN · H2O (3a) .......................17 II 2.2.7 Synthesis of the [Ni Cl2(BTZP)(MeCN)]·MeCN (3b) ...................................18 vi II 2.2.8 Synthesis of the {[Cd (NO3)2(BTZP)]}n (4) ...................................................18 2.2.9 Physical measurements ....................................................................................19 2.2.10 X-ray crystallography ......................................................................................19 2.2.11 Magnetic measurements ...................................................................................20 2.2.12 X-ray powder diffraction (XRPD) ...................................................................20 2.3 Results and discussion .................................................................................................22 2.3.1 Synthesis of BTZP ligand ................................................................................22 2.3.2 Synthesis and structure analysis for complex 1-4 ............................................23 2.3.3 UV-vis spectroscopy ........................................................................................30 2.3.4 Electrochemical studies of complexes 1-4 .......................................................31 2.3.5 Magnetic studies ..............................................................................................35
Recommended publications
  • Heterocyclic Compounds
    Gábor Krajsovszky Heterocyclic compounds ISBN: 978-615-5722-01-1 © Gábor Krajsovszky Responsible editor: Gábor Krajsovszky Publisher’s reader: István Mándity Translated by Péter Tétényi Department of Organic Chemistry Pharmaceutical Faculty Semmelweis University Budapest, 2018 Acknowledgements The editor wants to express many thanks to Dr. István Mándity, who is Associate Professor and Director of Department of Organic Chemistry, for the careful proofreading service of the current manuscript, as well as to Dr. Péter Tétényi, who is Assistant Professor, for the translation to English language. Moreover, the editor renders many thanks to Mrs. Ferenc Juhász and Ms. Nikoletta Zlatzky laboratory assistants for drawing material of the figures. Dr. Gábor Krajsovszky Associate Professor Department of Organic Chemistry Literature used Alan R. Katritzky, Charles W. Rees: Comprehensive Heterocyclic Chemistry Parts 2-3, 4-6, 7 Pergamon Press 1984 Oxford • New York • Toronto • Sydney • Paris • Frankfurt T. Eicher, S. Hauptmann, A. Speicher: The Chemistry of Heterocycles Structure, Reactions, Syntheses, and Applications Wiley-VCH GmbH 2003 Weinheim E. Breitmaier, G. Jung: Organische Chemie Grundlagen, Stoffklassen, Reaktionen, Konzepte, Molekülstruktur Georg Thieme Verlag 1978, 2005 Stuttgart • New York Clauder Ottó: Szerves kémia II/2. Egyetemi jegyzet Semmelweis OTE Budapest, 1980 Bruckner Győző: Szerves kémia III−1. Tankönyvkiadó, Budapest, 1964 Természettudományi Lexikon − Harmadik kötet Clauder Ottó: 'Heterociklusos vegyületek' címszó, 155-161.
    [Show full text]
  • Tetrazine Ligand
    Synthesis and photochemical studies of Cu(I) complex with 1,4-bis(3,5- dimethylpyrazol-1yl)tetrazine ligand Y. K Gun’ko,* H. Hayden Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland 1. INTRODUCTION Nitrogen-rich compounds are unique very reactive substances which have high heats of formation. Pyridine is one of the most well known aromatic cycles where a CH is replaced by a nitrogen atom, but the pyridine ring is only one member of the azine heterocycles, in which one or more CH group of benzene is replaced by π-accepting and σ-donating nitrogen atoms, proceeding from diazines (pyridazines, pyrazine), triazines and up to tetrazines. Tetrazines are typical representatives of nitrogen rich heterocyclic compounds. They have a range of applications such as explosives,1 propellants and pyrotechnic ingredients,2 biological agents for recognition of anion3 and precursors for drug development. 4,5 Self-assembly of metal cations with nitrogen heterocyclic bridging ligands is a central theme in supramolecular chemistry aimed at developing assemblies of electronically coupled metal centres.6 These ligands can be used to bridge metal centres in various ways, allowing electron and charge transfer processes in the structures. 1,2,4,5-Tetrazines also have very interesting redox-behaviour, which are similar to quinones.7 The very low-lying π* orbital localised at the four nitrogen atoms in tetrazines might allow intense low-energy charge valence transfer absorptions, electrical conductivity of coordination polymers, unusual stability
    [Show full text]
  • Non-Empirical Calculations on the Electronic Structure of Olefins and Aromatics
    NON-EMPIRICAL CALCULATIONS ON THE ELECTRONIC STRUCTURE OF OLEFINS AND AROMATICS by Robert H. Findlay, B.Sc. Thesis presented for the Degree of Doctor of philosophy University of Edinburgh December 1973 U N /),, cb CIV 3 ACKNOWLEDGEMENTS I Wish to express my gratitude to Dr. M.H. Palmer for his advice and encouragement during this period of study. I should also like to thank Professor J.I.G. Cadogan and Professor N. Campbell for the provision of facilities, and the Carnegie Institute for the Universities of Scotland for a Research Scholarship. SUMMARY Non-empirical, self-consistent field, molecular orbital calculations, with the atomic orbitals represented by linear combinations of Gaussian-type functions have been carried out on the ground state electronic structures of some nitrogen-, oxygen-, sulphur- and phosphorus-containing heterocycles. Some olefins and olefin derivatives have also been studied. Calculated values of properties have been compared with the appropriate experimental quantities, and in most cases the agreement is good, with linear relationships being established; these are found to have very small standard deviations. Extensions to molecules for which there is no experimental data have been made. In many cases it has been iôtrnd possible to relate the molecular orbitals to the simplest member of a series, or to the hydrocarbon analogue. Predictions of the preferred geometry of selected molecules have been made; these have been used to predict inversion barriers and reaction mechanisms. / / The extent of d-orbital participation in molecules containing second row atoms has been investigated and found to be of trivial importance except in molecules containing high valence states of the second row atoms.
    [Show full text]
  • Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation
    Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Karver, Mark R., Ralph Weissleder, and Scott A. Hilderbrand. 2011. “Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation.” Bioconjugate Chemistry 22 (11): 2263– 70. https://doi.org/10.1021/bc200295y. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384387 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Bioconjug Chem. Author manuscript; available in PMC 2012 November 16. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Bioconjug Chem. 2011 November 16; 22(11): 2263±2270. doi:10.1021/bc200295y. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation Mark R. Karver, Ralph Weissleder, and Scott A. Hilderbrand* Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge St. Suite 5.210, Boston, MA 02114 Abstract 1,2,4,5-Tetrazines have been established as effective dienes for inverse electron demand [4 + 2] Diels-Alder cycloaddition reactions with strained alkenes for over fifty years. Recently, this reaction pair combination has been applied to bioorthogonal labeling and cell detection applications; however, to date there has been no detailed examination and optimization of tetrazines for use in biological experiments.
    [Show full text]
  • Interactions and Positive Electrostatic Potentials of N-Heterocycles Arise from the Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue Anion–p interactions and positive electrostatic potentials of N-heterocycles arise from the Cite this: Chem. Commun., 2014, 50, 11118 positions of the nuclei, not changes in the Received 9th July 2014, p-electron distribution† Accepted 5th August 2014 DOI: 10.1039/c4cc05304d Steven E. Wheeler* and Jacob W. G. Bloom www.rsc.org/chemcomm We show that the positive electrostatic potentials and molecular the molecule. As a result, a positive Qzz value can indicate the quadrupole moments characteristic of p-acidic azines, which depletion of electron density above the ring centre (e.g., underlie the ability of these rings to bind anions above their centres, reduction of the p-electron density) or the movement of nuclear arise from the position of nuclear charges, not changes in the charge towards the ring centre. Similarly, a positive ESP above p-electron density distribution. an aromatic ring can arise from changes in either the electronic or nuclear charge distributions.7 These distinctions are rarely Anion–p interactions1 are attractive non-covalent interactions made in discussions of anion–p interactions,1,2 which focus between anions and the faces of p-acidic rings.2 They often almost exclusively on the concepts of p-acidity and p-electron- involve azabenzenes (azines) such as s-triazine and s-tetrazine, deficiency. and have emerged as powerful tools for anion binding, recogni- Previously, Wheeler and Houk showed8 that substituent- tion and transport, and even catalysis.3 Despite rapidly-growing induced changes in the ESPs of substituted arenes are domi- interest in these non-covalent interactions, there is a dearth of nated by through-space effects, not changes in the p-electron rigorous explanations of their origin.4 Most authors2g,h ascribe density.
    [Show full text]
  • Heteroatom-Containing Carbon Nanostructures As Oxygen Reduction Electrocatalysts for PEM and Direct Methanol Fuel Cells
    Heteroatom-containing Carbon Nanostructures as Oxygen Reduction Electrocatalysts for PEM and Direct Methanol Fuel Cells Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Dieter von Deak, B.S.ChE Graduate Program in Chemical Engineering * * * * The Ohio State University 2011 Dissertation Committee: Professor Umit S. Ozkan, Advisor Professor David Wood Professor James Rathman Copyright by Dieter von Deak 2011 2 ABSTRACT The main goal of this work was to undertake a fundamental investigation of precious metal-free carbon catalysts nano-structure modification to enable their use as oxygen reduction reaction (ORR) catalysts in proton exchange membrane (PEM) fuel cells. The sluggish ORR is accelerated by fiscally prohibitive loadings of Pt catalyst. The expense and availability of platinum motivate the development of non-precious metal carbon-nitroge-based ORR catalysts (CNx). The project targets the nature of oxygen reduction reaction active sites and exploring ways to create these sites by molecular tailoring of carbon nano-structures. CNx grown with phosphorous had a significant increase in the ORR active site density. CNx catalyst growth media was prepared by acetonitrile deposition over a Fe and P impregnated MgO. Rotating Ring Disk Electrode (RRDE) Activity and selectivity showed a significant increase in oxygen reduction current with CNx grown with less than a 1:1 molar ratio of P:Fe. Selectivity for the full reduction of dioxygen to water trended with increasing ORR activity for phosphorous grown CNx catalysts. Phosphorus growth altered the morphology of carbon-nitride graphite formed during pyrolysis.
    [Show full text]
  • Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding Zixi Zhu, Christopher M
    pubs.acs.org/JACS Article Selective N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines Enabled by Solvent Hydrogen Bonding Zixi Zhu, Christopher M. Glinkerman, and Dale L. Boger* Cite This: J. Am. Chem. Soc. 2020, 142, 20778−20787 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: An unprecedented 1,4-cycloaddition (vs 3,6-cycloaddition) of 1,2,4,5- tetrazines is described with preformed or in situ generated aryl-conjugated enamines promoted by the solvent hydrogen bonding of hexafluoroisopropanol (HFIP) that is conducted under mild reaction conditions (0.1 M HFIP, 25 °C, 12 h). The reaction constitutes a formal [4 + 2] cycloaddition across the two nitrogen atoms (N1/N4) of the 1,2,4,5-tetrazine followed by a formal retro [4 + 2] cycloaddition loss of a nitrile and aromatization to generate a 1,2,4-triazine derivative. The factors that impact the remarkable change in the reaction mode, optimization of reaction parameters, the scope and simplification of its implementation through in situ enamine generation from aldehydes and ketones, the reaction scope for 3,6-bis(thiomethyl)-1,2,4,5- tetrazine, a survey of participating 1,2,4,5-tetrazines, and key mechanistic insights into this reaction are detailed. Given its simplicity and breath, the study establishes a novel method for the simple and efficient one-step synthesis of 1,2,4-triazines under mild conditions from readily accessible starting materials. Whereas alternative protic solvents (e.g., MeOH vs HFIP) provide products of the conventional 3,6-cycoladdition, the enhanced hydrogen bonding capability of HFIP uniquely results in promotion of the unprecedented formal 1,4-cycloaddition.
    [Show full text]
  • Pyrolysis of Hydrazine Derivatives and Related Compounds with N-N Single Bonds
    Accepted Manuscript Title: Pyrolysis of hydrazine derivatives and related compounds with N-N single bonds Author: Abd-El Aal M. Gaber Curt Wentrup PII: S0165-2370(17)30020-7 DOI: http://dx.doi.org/doi:10.1016/j.jaap.2017.03.016 Reference: JAAP 4003 To appear in: J. Anal. Appl. Pyrolysis Received date: 7-1-2017 Revised date: 10-3-2017 Accepted date: 15-3-2017 Please cite this article as: A.-E.A.M. Gaber, C. Wentrup, Pyrolysis of hydrazine derivatives and related compounds with N-N single bonds, Journal of Analytical and Applied Pyrolysis (2017), http://dx.doi.org/10.1016/j.jaap.2017.03.016 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Pyrolysis of hydrazine derivatives and related compounds with N-N single 2 bonds 3 4 Abd-El Aal M. Gabera,* and Curt Wentrupb,* 5 6 a Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt 7 b School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 8 Queensland 4072, Australia 9 10 ∗Corresponding authors, E-mail addresses: [email protected] (Gaber), [email protected] (Wentrup). 11 12 Highlights 13 Pyrolysis of all types of hydrazine derivatives are reviewed 14 N-aminoheterocycles, N-aminoisocyanides, and N-aminoisocyanates are included 15 Aminimides, azimines, and tri-, tetra-, penta- and hexazenes are covered 16 Pyrolyses in solution, in the solid state, and under flash vacuum pyrolysis conditions 17 18 ABSTRACT 19 Pyrolysis of hydrazines and their derivatives often results in homolytic cleavage of the N-N 20 bonds, but molecular rearrangements and eliminations are also observed in many cases.
    [Show full text]
  • Towards the a Priori Prediction of Molecular Crystal Structures
    Towards the a Priori Prediction of Molecular Crystal Structures David Stuart Coombes A thesis submitted in partial fulfilment of the requirements of the University of London for the degree of Doctor of Philosophy, February 1997. Christopher Ingold Laboratories Chemistry Department University College London 20 Gordon Street London WCIH OAJ ProQuest Number: 10017677 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10017677 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract David S Coombes Previous work on modelling crystal structures of polar organic and hydrogen bonded molecules used an isotropic repulsion-dispersion potential together with a point charge electrostatic model. However, this model does not describe accurately the electrostatic forces arising from the non spherical features of the molecular charge distribution such as lone pair and n electron density. The electrostatic forces can be described far more accurately using a Distributed Multipole Analysis (DMA) of an ab initio wavefunction, which describes the molecular charge distribution as sets of multipoles (charge, dipole, quadrupole etc.) on every atomic site. This thesis investigates the ability of the DMA model, together with an empirical repulsion- dispersion potential, to reproduce the crystal structures of a range of organic molecules, from hydrocarbons to those which contain mixed functional groups and hydrogen bonds.
    [Show full text]
  • Tetrazines and 1,2,4-Triazolo[4,3-B] [1,2,4]Triazines Ahmed A
    www.nature.com/scientificreports OPEN Synthesis, biological activity and molecular modeling study of novel 1,2,4-triazolo[4,3-b][1,2,4,5] tetrazines and 1,2,4-triazolo[4,3-b] [1,2,4]triazines Ahmed A. M. El-Reedy & N. K. Soliman* Diferent novel 1,2,4-triazolo[4,3-b][1,2,4,5]tetrazines and 1,2,4-triazolo[4,3-b][1,2,4]triazines have been obtained from heterocyclization of 3-substituted-4-amino-5-substituted-amino-1,2,4-triazoles (3a-d) and 3-substituted-4-amino-5-hydrazino-1,2,4-triazoles (9a,b) with (α and β) bifunctional compounds like chloromethyl biphenyl-phosphanoxide, pyruvic acid, phenacyl bromide, diethyl oxalate, triethyl orthoformate, triethyl phosphite, fuorinated benzaldehydes, carbon disulfde and ethyl chloroformate under diferent experimental settings. Fourier transformer infrared analysis (FTIR), Proton nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR), as well as that of the mass spectral data, were used as the appropriate characterization techniques for the chemical structures of all newly synthesized compounds. The newly prepared compounds were examined as an anti-infammatory, antibacterial agents (against E. coli (Escherichia coli) and P. aeruginosa (Pseudomonas aeruginosa) as examples for Gram-negative bacteria and S. aureus (Staphylococcus aureus) as examples for Gram-positive bacteria), as well as antifungal (against C. albicans (Candida albicans)) agents. The newly prepared compound showed high antibacterial, antifungal, and anti-infammatory activities in comparing with the commercial antibiotics Indomethacin, Nalidixic acid, Imipenem, and Nystatin. Docking of the most active compounds was performed depending on the results of antibacterial screening and the anti-infammatory assay.
    [Show full text]
  • SUPPLEMENTARY INFORMATION Relating Nucleus Independent Chemical Shifts with Integrated Current Density Strengths†
    Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2021 SUPPLEMENTARY INFORMATION Relating nucleus independent chemical shifts with integrated current density strengths† Slavko Radenković* and Slađana Đorđević University of Kragujevac, Faculty of Science, P. O. Box 60, 34000 Kragujevac, Serbia *Corresponding authors: [email protected] S1 a) b) Fig. S1 Integrated bond current strengths in 1,2,4-triazine (a) and 2,4-diazafuran (b). 퐽total values are given in black, 퐽휋 in blue, and 퐽휎 in red. S2 Table S1 Calculated NICSiso aromaticity indices for different hights above the ring plane of the studied molecules. molecule NICSiso(0) NICSiso(0.25) NICSiso(0.5) NICSiso(0.75) NICSiso(1) NICSiso(1.25) NICSiso(1.5) NICSiso(1.75) benzene -8.13 -8.76 -9.94 -10.49 -10.01 -8.84 -7.43 -6.07 pyridine -6.81 -7.67 -9.33 -10.28 -9.99 -8.86 -7.43 -6.04 1,2-diazine -5.52 -6.26 -8.63 -10.17 -9.77 -9.17 -7.72 -5.88 1,3-diazine -5.20 -6.59 -8.65 -9.91 -10.06 -8.68 -7.26 -6.16 1,4-diazine -5.07 -6.35 -8.62 -10.08 -10.20 -9.02 -7.58 -6.28 1,2,3-triazine -4.03 -5.30 -8.20 -10.15 -9.34 -9.35 -7.87 -5.56 1,2,4-triazine -3.35 -4.82 -7.75 -9.77 -10.04 -9.09 -7.67 -6.23 1,3,5-triazine -3.84 -5.30 -7.80 -9.36 -10.35 -8.29 -6.90 -6.38 1,2,3,4-tetrazine -1.89 -3.75 -7.30 -9.81 -9.87 -9.42 -7.95 -6.09 1,2,3,5-tetrazine -1.29 -3.62 -7.07 -9.45 -10.14 -8.95 -7.53 -6.38 1,2,4,5-tetrazine -1.97 -3.14 -6.88 -9.55 -10.32 -9.29 -7.86 -6.45 pentazine 0.09 -2.02 -6.25 -9.30 -10.07 -9.27 -7.84 -6.35 hexazine
    [Show full text]
  • Azines As Electron-Pair Donors to CO2 for N···C Tetrel Bonds
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: J. Phys. Chem. A 2017, 121, 8017-8025 pubs.acs.org/JPCA ··· Azines as Electron-Pair Donors to CO2 for N C Tetrel Bonds Published as part of The Journal of Physical Chemistry virtual special issue “Manuel Yań̃ez and Otilia Mó Festschrift”. § § ‡ Ibon Alkorta,*, JoséElguero,*, and Janet E. Del Bene*, § Instituto de Química Medica,́ Consejo Superior de Investigaciones Cientificas, Juan de la Cierva, 3, E-28006 Madrid, Spain ‡ Department of Chemistry, Youngstown State University, Youngstown, Ohio 44555, United States *S Supporting Information ABSTRACT: Ab initio MP2/aug′-cc-pVTZ calculations were performed to investigate tetrel-bonded complexes formed between CO2 and the aromatic bases pyridine, the diazines, triazines, tetrazines, and pentazine. Of the 23 unique equilibrium azine:CO2 complexes, 14 have planar structures in which a single nitrogen atom is an electron-pair donor to the carbon of the CO2 molecule, and 9 have perpendicular structures in which two adjacent nitrogen atoms donate electrons to CO2, with bond formation occurring along an N−N bond. The binding energies of these complexes vary from 13 to 20 kJ mol−1 and decrease as the number of nitrogen atoms in the ring increases. For a given base, planar structures have larger binding energies than perpendicular structures. The binding energies of the planar complexes also tend to increase as the distance across the tetrel bond decreases. Charge transfer in the planar pyridine:CO2 complex occurs from the N lone pair to a virtual nonbonding orbital of the π* − CO2 carbon atom.
    [Show full text]