Approximate and Exact Selection on Gpus

Total Page:16

File Type:pdf, Size:1020Kb

Approximate and Exact Selection on Gpus 1 Approximate and Exact Selection on GPUs Tobias Ribizel∗, Hartwig Anzt∗y ∗Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany yInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA [email protected], [email protected] Abstract—We present a novel algorithm for parallel selection or synchronization. As streaming processors like GPUs are on GPUs. The algorithm requires no assumptions on the in- becoming increasingly popular, and are nowadays adopted by put data distribution, and has a much lower recursion depth a large fraction of the supercomputing facilities, there exists compared to many state-of-the-art algorithms. We implement the algorithm for different GPU generations, always using a heavy demand for selection algorithms that are designed the respectively-available low-level communication features, and to leverage the highly parallel execution model of GPUs assess the performance on server-line hardware. The computa- and avoid global synchronization and communication in favor tional complexity of our SampleSelect algorithm is comparable of localized communication. In response to this demand, to specialized algorithms designed for – and exploiting the we propose a new parallel selection algorithm for GPUs. characteristics of – “pleasant” data distributions. At the same time, as the SampleSelect does not work on the actual values Aiming at a sample selection algorithm featuring fine-grained but the ranks of the elements only, it is robust to the input parallelism, we follow a bottom-up approach by starting with data and can complete significantly faster for adversarial data the GPU hardware characteristics, and selecting algorithmic distributions. Additionally to the exact SampleSelect, we address building blocks that map well to the architecture-specific the use case of approximate selection by designing a variant that operating mode. Acknowledging CUDA’s asynchronous ex- radically reduces the computational cost while preserving high approximation accuracy. ecution model, and using low-level communication features inherently supported by hardware, the new selection algorithm Index Terms—parallel selection algorithm, GPU, kth order proofs to be competitive with other GPU-optimized selection statistics, approximate threshold selection algorithms that impose strong assumptions on the input data distribution, and superior to input-data independent state-of- I. INTRODUCTION the-art algorithms available in literature, open source software, Sequence selection is an ubiquitous challenge that appears or vendor libraries. in many problem settings, from quantile selection in order The rest of the paper is organized as follows. In Section II statistics over determining thresholds in approximative algo- we recall some basic concepts of selection algorithms and their rithms to top-k selection in information retrieval. One of parallelization potential. Section III list efforts that also aim the most popular solutions to this problem is the widely- at parallelizing selection algorithms for GPUs. In Section IV used Quickselect algorithm [1], a partial-sorting variant of we present the novel SAMPLESELECT selection algorithm. We Quicksort [2]. The close relationship between these two algo- also provide details about how the SAMPLESELECT algorithm rithms is not a singularity, but characteristic of the connection is realized in the CUDA programming model, and how the between selection and sorting algorithms. In fact, many im- low-level communication and synchronization features avail- provements of Quicksort and similar partitioning-based sorting able in the distinct GPU generations are incorporated. Sec- algorithms can be directly transferred to the corresponding tion V, presents a comprehensive analysis of the effectiveness, selection algorithms, e.g., the deterministic pivot choice im- efficiency, and performance of the novel SAMPLESELECT se- plemented using the Median of medians algorithm [3], multiple lection algorithm. We conclude in Section VI with a summary splitter elements in the Sample sort algorithm [4], and an of the findings, and an outlook on future research. implementation variant optimized for modern hardware archi- tectures called Super-scalar sample sort [5]. II. SELECTION With the rise of parallel architectures, the development of For an input sequence (x ; : : : ; x ), the selection problem effective selection and sorting algorithms is heavily guided 0 n−1 is given by finding the element at position k in the sorted by parallelization aspects. The traditional concepts employed sequence x ≤ · · · ≤ x , i.e., finding the kth-smallest for the parallelization are based on work decomposition, and i0 in−1 element x of the sequence. In this setting, we also say that have proven to be efficient for multi-core and multi-node ik xik has rank k. If the rank of an element is not unique, i.e., architectures embracing the multiple-instruction-multiple-data because the element occurs multiple times in the sequence, we (MIMD) programming paradigm. Unfortunately, the same assign it the smallest rank. strategies largely fail to work efficiently ons modern manycore architectures like GPUs. The primary reason is that these devices are designed to operate in streaming mode, and that A. General framework their performance heavily suffers from instruction-branching, The most popular algorithms for the selection problem are non-coalesced memory access, and global communication all based on partial sorting: If we choose b+1 so-called splitter 2 1 double select(data, rank) { total runtime of the resulting algorithm. In the general case, 2 if (size(data) <= base_case_size) { the optimal splitters separate the input elements in b buckets 3 sort(data); 4 return data[rank]; of equal size n=b. This results in an algorithm that needs at 5 } n most logb +1 recursive steps, where B is the base case size 6 // select splitters B 7 splitters = pick_splitters(data); (lowest recursion level), below which we sort the elements to 8 // compute bucket sizesn i return the kth-smallest element directly. Without considering 9 counts = count_buckets(data, splitters); 10 // compute bucket ranksr i the computational overhead of choosing the splitters, their offsets = prefix_sum(counts); 11 optimal values are the pi = i=b percentiles of the input dataset. 12 // determine bucket containing rank 13 bucket = lower_bound(offsets, rank); In practice, these can be approximated by the corresponding 14 // recursive subcall percentiles of a sufficiently large random sample. In terms of 15 data = extract_bucket(data, bucket); 16 rank -= offsets[bucket]; the relative element ranks, the average error introduced by 17 return select(data, rank); considering only of a small sample of size s of the complete 18 } dataset can be estimated as follows: The relative ranks of the sampled elements, i.e., the ranks normalized to [0; 1], are Fig. 1. High-level overview of a bucket-based selection algorithm approximately uniformly distributed: X1;:::;Xs ∼ U(0; 1) and, assuming sampling with replacement, independent. Thus the sample percentiles are asymptotically normal-distributed p Pick splitters with mean pi and standard deviation pi(1 − pi)=s [6]. We can thus use the sample size s to control the imbalance Sort splitters between different bucket sizes. Group by bucket C. Approximating the kth-smallest element Select bucket An important observation in the context of bucket-based se- lection algorithms is that after all elements have been grouped Pick splitters into their buckets, the ranks of the splitter elements are already available: Their ranks equal the aforementioned partial Sort splitters sums ri. If the application does not require our algorithm to compute the kth-smallest element exactly, but can work Group by bucket with an approximation like the k ± "th smallest element, the selection algorithm can be modified to terminate before the Fig. 2. Visualization of bucket-based partial sorting lowest recursion level is reached. In this case, we can compute the approximate kth order statistic as the splitter si whose rank ri is closest to k. In terms of the element ranks, the error is at worst half the maximum bucket size, and can thus elements si (−∞ = s0 ≤ · · · ≤ sb = 1), we can partition the be controlled by the number of buckets and sample size. If input dataset into b buckets containing the element intervals the distribution of the input data is smooth, the small error in [si; si+1). An important consequence of this partitioning is the element rank translates into a small error of the element that, aside from the element values, we also partition their value. However, this is not true for the general case, as for ranks in the sorted sequence: Let ni be the number of elements noisy input data, the induced error can grow arbitrary large. in the ith bucket, i.e., the number of elements from the input sequence contained in [si; si+1). Then these elements have III. RELATED WORK ranks in the interval [r ; r ), where r = Pi−1 n is the i i+1 i j=0 j In the past, different strategies aiming at efficient selection combined number of elements in all previous buckets. on GPUs were explored. The first implementation of a se- Based on this observation, we can formulate a general lection algorithm on GPUs was presented by Govindaraju et. framework for exact selection: After determining the element al. [7] for the problem of database operations. The proposed count for each bucket, it suffices to recursively proceed only algorithm recursively bisects the
Recommended publications
  • Overview Parallel Merge Sort
    CME 323: Distributed Algorithms and Optimization, Spring 2015 http://stanford.edu/~rezab/dao. Instructor: Reza Zadeh, Matriod and Stanford. Lecture 4, 4/6/2016. Scribed by Henry Neeb, Christopher Kurrus, Andreas Santucci. Overview Today we will continue covering divide and conquer algorithms. We will generalize divide and conquer algorithms and write down a general recipe for it. What's nice about these algorithms is that they are timeless; regardless of whether Spark or any other distributed platform ends up winning out in the next decade, these algorithms always provide a theoretical foundation for which we can build on. It's well worth our understanding. • Parallel merge sort • General recipe for divide and conquer algorithms • Parallel selection • Parallel quick sort (introduction only) Parallel selection involves scanning an array for the kth largest element in linear time. We then take the core idea used in that algorithm and apply it to quick-sort. Parallel Merge Sort Recall the merge sort from the prior lecture. This algorithm sorts a list recursively by dividing the list into smaller pieces, sorting the smaller pieces during reassembly of the list. The algorithm is as follows: Algorithm 1: MergeSort(A) Input : Array A of length n Output: Sorted A 1 if n is 1 then 2 return A 3 end 4 else n 5 L mergeSort(A[0, ..., 2 )) n 6 R mergeSort(A[ 2 , ..., n]) 7 return Merge(L, R) 8 end 1 Last lecture, we described one way where we can take our traditional merge operation and translate it into a parallelMerge routine with work O(n log n) and depth O(log n).
    [Show full text]
  • Lecture 16: Lower Bounds for Sorting
    Lecture Notes CMSC 251 To bound this, recall the integration formula for bounding summations (which we paraphrase here). For any monotonically increasing function f(x) Z Xb−1 b f(i) ≤ f(x)dx: i=a a The function f(x)=xln x is monotonically increasing, and so we have Z n S(n) ≤ x ln xdx: 2 If you are a calculus macho man, then you can integrate this by parts, and if you are a calculus wimp (like me) then you can look it up in a book of integrals Z n 2 2 n 2 2 2 2 x x n n n n x ln xdx = ln x − = ln n − − (2 ln 2 − 1) ≤ ln n − : 2 2 4 x=2 2 4 2 4 This completes the summation bound, and hence the entire proof. Summary: So even though the worst-case running time of QuickSort is Θ(n2), the average-case running time is Θ(n log n). Although we did not show it, it turns out that this doesn’t just happen much of the time. For large values of n, the running time is Θ(n log n) with high probability. In order to get Θ(n2) time the algorithm must make poor choices for the pivot at virtually every step. Poor choices are rare, and so continuously making poor choices are very rare. You might ask, could we make QuickSort deterministic Θ(n log n) by calling the selection algorithm to use the median as the pivot. The answer is that this would work, but the resulting algorithm would be so slow practically that no one would ever use it.
    [Show full text]
  • Arxiv:1606.00484V2 [Cs.DS] 4 Aug 2016
    Fast Deterministic Selection Andrei Alexandrescu The D Language Foundation [email protected] Abstract lection algorithm most used in practice [8, 27, 31]. It can The Median of Medians (also known as BFPRT) algorithm, be thought of as a partial QUICKSORT [16]: Like QUICK- although a landmark theoretical achievement, is seldom used SORT,QUICKSELECT relies on a separate routine to divide in practice because it and its variants are slower than sim- the input array into elements less than or equal to and greater ple approaches based on sampling. The main contribution than or equal to a chosen element called the pivot. Unlike of this paper is a fast linear-time deterministic selection al- QUICKSORT which recurses on both subarrays left and right UICKSELECT gorithm QUICKSELECTADAPTIVE based on a refined def- of the pivot, Q only recurses on the side known k inition of MEDIANOFMEDIANS. The algorithm’s perfor- to contain the th smallest element. (The side to choose is mance brings deterministic selection—along with its desir- known because the partitioning computes the rank of the able properties of reproducible runs, predictable run times, pivot.) and immunity to pathological inputs—in the range of prac- The pivot choosing strategy strongly influences QUICK- ticality. We demonstrate results on independent and identi- SELECT’s performance. If each partitioning step reduces the cally distributed random inputs and on normally-distributed array portion containing the kth order statistic by at least a UICKSELECT O(n) inputs. Measurements show that QUICKSELECTADAPTIVE fixed fraction, Q runs in time; otherwise, is faster than state-of-the-art baselines.
    [Show full text]
  • Advanced Topics in Sorting
    Advanced Topics in Sorting complexity system sorts duplicate keys comparators 1 complexity system sorts duplicate keys comparators 2 Complexity of sorting Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X. Machine model. Focus on fundamental operations. Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X. lower bound ~ upper bound Example: sorting. • Machine model = # comparisons access information only through compares • Upper bound = N lg N from mergesort. • Lower bound ? 3 Decision Tree a < b yes no code between comparisons (e.g., sequence of exchanges) b < c a < c yes no yes no a b c b a c a < c b < c yes no yes no a c b c a b b c a c b a 4 Comparison-based lower bound for sorting Theorem. Any comparison based sorting algorithm must use more than N lg N - 1.44 N comparisons in the worst-case. Pf. Assume input consists of N distinct values a through a . • 1 N • Worst case dictated by tree height h. N ! different orderings. • • (At least) one leaf corresponds to each ordering. Binary tree with N ! leaves cannot have height less than lg (N!) • h lg N! lg (N / e) N Stirling's formula = N lg N - N lg e N lg N - 1.44 N 5 Complexity of sorting Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X.
    [Show full text]
  • Optimal Node Selection Algorithm for Parallel Access in Overlay Networks
    1 Optimal Node Selection Algorithm for Parallel Access in Overlay Networks Seung Chul Han and Ye Xia Computer and Information Science and Engineering Department University of Florida 301 CSE Building, PO Box 116120 Gainesville, FL 32611-6120 Email: {schan, yx1}@cise.ufl.edu Abstract In this paper, we investigate the issue of node selection for parallel access in overlay networks, which is a fundamental problem in nearly all recent content distribution systems, grid computing or other peer-to-peer applications. To achieve high performance and resilience to failures, a client can make connections with multiple servers simultaneously and receive different portions of the data from the servers in parallel. However, selecting the best set of servers from the set of all candidate nodes is not a straightforward task, and the obtained performance can vary dramatically depending on the selection result. In this paper, we present a node selection scheme in a hypercube-like overlay network that generates the optimal server set with respect to the worst-case link stress (WLS) criterion. The algorithm allows scaling to very large system because it is very efficient and does not require network measurement or collection of topology or routing information. It has performance advantages in a number of areas, particularly against the random selection scheme. First, it minimizes the level of congestion at the bottleneck link. This is equivalent to maximizing the achievable throughput. Second, it consumes less network resources in terms of the total number of links used and the total bandwidth usage. Third, it leads to low average round-trip time to selected servers, hence, allowing nearby nodes to exchange more data, an objective sought by many content distribution systems.
    [Show full text]
  • CS302 Final Exam, December 5, 2016 - James S
    CS302 Final Exam, December 5, 2016 - James S. Plank Question 1 For each of the following algorithms/activities, tell me its running time with big-O notation. Use the answer sheet, and simply circle the correct running time. If n is unspecified, assume the following: If a vector or string is involved, assume that n is the number of elements. If a graph is involved, assume that n is the number of nodes. If the number of edges is not specified, then assume that the graph has O(n2) edges. A: Sorting a vector of uniformly distributed random numbers with bucket sort. B: In a graph with exactly one cycle, determining if a given node is on the cycle, or not on the cycle. C: Determining the connected components of an undirected graph. D: Sorting a vector of uniformly distributed random numbers with insertion sort. E: Finding a minimum spanning tree of a graph using Prim's algorithm. F: Sorting a vector of uniformly distributed random numbers with quicksort (average case). G: Calculating Fib(n) using dynamic programming. H: Performing a topological sort on a directed acyclic graph. I: Finding a minimum spanning tree of a graph using Kruskal's algorithm. J: Finding the minimum cut of a graph, after you have found the network flow. K: Finding the first augmenting path in the Edmonds Karp implementation of network flow. L: Processing the residual graph in the Ford Fulkerson algorithm, once you have found an augmenting path. Question 2 Please answer the following statements as true or false. A: Kruskal's algorithm requires a starting node.
    [Show full text]
  • Dualheap Sort Algorithm: an Inherently Parallel Generalization of Heapsort
    Dualheap Sort Algorithm: An Inherently Parallel Generalization of Heapsort Greg Sepesi Eduneer, LLC [email protected] 2007 June 20 ABSTRACT The proposed dualheap sort algorithm employs the dualheap selection algorithm [3] to recursively partition A generalization of the heapsort algorithm is proposed. subheaps in half as shown in Figure 1-1. When the At the expense of about 50% more comparison and subheaps become too small to partition any more, the move operations for typical cases, the dualheap sort array is sorted. In the figure, the downward triangles algorithm offers several advantages over heapsort: represent the partitions with larger values, the upward improved cache performance, better performance if triangles represent the partitions with smaller values, the input happens to be already sorted, and easier and the arrow represents the direction of increasing parallel implementations. values and increasing heap indices, indicating that the subheaps with smaller values employ negative indices. 1. ALGORITHM OVERVIEW At the expense of about 50% more comparison and A heap is an array with elements regarded as nodes in move operations for the typical case, the dualheap sort algorithm offers significant improvements to heapsort’s a complete binary tree, where node j is the parent of small but important set of inefficiencies: nodes 2j and 2j+1, and where the value of each parent node is superior to the values of its children. This superiority of all the parent nodes is commonly called • When the input is already sorted, dualheap the heap condition. sort performs zero move operations and just NlogN comparison operations. • Heapsort is an elegant and popular sorting algorithm The dualheap sort has better cache by J.W.J.
    [Show full text]
  • Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ
    Divide and Conquer CISC4080, Computer Algorithms CIS, Fordham Univ. ! Instructor: X. Zhang Acknowledgement • The set of slides have use materials from the following resources • Slides for textbook by Dr. Y. Chen from Shanghai Jiaotong Univ. • Slides from Dr. M. Nicolescu from UNR • Slides sets by Dr. K. Wayne from Princeton • which in turn have borrowed materials from other resources • Other online resources 2 Outline • Sorting problems and algorithms • Divide-and-conquer paradigm • Merge sort algorithm • Master Theorem • recursion tree • Median and Selection Problem • randomized algorithms • Quicksort algorithm • Lower bound of comparison based sorting 3 Sorting Problem • Problem: Given a list of n elements from a totally-ordered universe, rearrange them in ascending order. CS 477/677 - Lecture 1 4 Sorting applications • Straightforward applications: • organize an MP3 library • Display Google PageRank results • List RSS news items in reverse chronological order • Some problems become easier once elements are sorted • identify statistical outlier • binary search • remove duplicates • Less-obvious applications • convex hull • closest pair of points • interval scheduling/partitioning • minimum spanning tree algorithms • … 5 Classification of Sorting Algorithms • Use what operations? • Comparison based sorting: bubble sort, Selection sort, Insertion sort, Mergesort, Quicksort, Heapsort, … • Non-comparison based sort: counting sort, radix sort, bucket sort • Memory (space) requirement: • in place: require O(1), O(log n) memory • out of place:
    [Show full text]
  • (Deterministic & Randomized): Finding the Median in Linear Time
    Lecture 2 Selection (deterministic & randomized): finding the median in linear time 2.1 Overview Given an unsorted array, how quickly can one find the median element? Can one do it more quickly than by sorting? This was an open question for some time, solved affirmatively in 1972 by (Manuel) Blum, Floyd, Pratt, Rivest, and Tarjan. In this lecture we describe two linear-time algorithms for this problem: one randomized and one deterministic. More generally, we solve the problem of finding the kth smallest out of an unsorted array of n elements. 2.2 The problem and a randomized solution Consider the problem of finding the kth smallest element in an unsorted array of size n. (Let’s say all elements are distinct to avoid the question of what we mean by the kth smallest when we have equalities). One way to solve this problem is to sort and then output the kth element. We can do this in time O(n log n) if we sort using Mergesort, Quicksort, or Heapsort. Is there something faster – a linear-time algorithm? The answer is yes. We will explore both a simple randomized solution and a more complicated deterministic one. The idea for the randomized algorithm is to start with the Randomized-Quicksort algorithm (choose a random element as “pivot”, partition the array into two sets LESS and GREATER consisting of those elements less than and greater than the pivot respectively, and then recursively sort LESS and GREATER). Then notice that there is a simple speedup we can make if we just need to find the kth smallest element.
    [Show full text]
  • Arxiv:1810.12047V1 [Cs.DS] 29 Oct 2018 Es EA21) H Ipicto Sachieved Is Simplification the 2016)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The IT University of Copenhagen's Repository Simple and Fast BlockQuicksort using Lomuto’s Partitioning Scheme Martin Aum¨uller Nikolaj Hass October 30, 2018 Abstract worst-case aware quicksort variant called introsort This paper presents simple variants of the Block- [15], Oracle’s Java, which uses a two-pivot quick- Quicksort algorithm described by Edelkamp and sort algorithm [23], and Microsoft’s C#, which uses Weiss (ESA 2016). The simplification is achieved a traditional median-of-three quicksort approach. by using Lomuto’s partitioning scheme instead of In the pursuit of improving the performance Hoare’s crossing pointer technique to partition the of quicksort-based implementations, a long line input. To achieve a robust sorting algorithm that of papers [16, 23, 13, 3, 21] have looked at the works well on many different input types, the paper benefits of introducing more than one pivot in introduces a novel two-pivot variant of Lomuto’s the algorithm. Here, [13, 3, 21] showed that the partitioning scheme. A surprisingly simple twist memory access behavior improves with a small to the generic two-pivot quicksort approach makes number of pivots — an effect that cannot be the algorithm robust. The paper provides an anal- achieved by other more traditional means such as ysis of the theoretical properties of the proposed al- choosing a pivot from a sample of elements [18]. gorithms and compares them to their competitors. However, better cache behavior leaves the problem The analysis shows that Lomuto-based approaches of branch mispredictions unsolved, which is one incur a higher average sorting cost than the Hoare- of the largest bottleneck’s in today’s processor based approach of BlockQuicksort.
    [Show full text]
  • Insights Into the C++ Standard Library Pavel Novikov @Cpp Ape R&D Align Technology What’S Ahead
    Под капотом стандартной библиотеки C++ Insights into the C++ standard library Pavel Novikov @cpp_ape R&D Align Technology What’s ahead • use std::vector by default instead of std::list • emplace_back and push_back • prefer to use std::make_shared • avoid static objects with non-trivial constructors/destructors • small string optimization • priority queue and heap algorithms • sorting and selection • guarantee of strengthened worst case complexity O(n log(n)) for std::sort • when to use std::sort, std::stable_sort, std::partial_sort, std::nth_element • use unordered associative containers by default • beware of missing the variable name 2 using GadgetList = std::list<std::shared_ptr<Gadget>>; GadgetList findAllGadgets(const Widget &w) { GadgetList gadgets; for (auto &item : w.getAllItems()) if (isGadget(item)) gadgets.push_back(getGadget(item)); return gadgets; } void processGadgets(const GadgetList &gadgets) { for (auto &gadget : gadgets) processGadget(*gadget); } 3 using GadgetList = std::list<std::shared_ptr<Gadget>>; GadgetList findAllGadgets(const Widget &w) { GadgetList gadgets; for (auto &item : w.getAllItems()) if (isGadget(item)) gadgets.push_back(getGadget(item)); return gadgets; } void processGadgets(const GadgetList &gadgets) { for (auto &gadget : gadgets) processGadget(*gadget); } is this reasonable use of std::list? 3 std::list No copy/move while adding elements. Memory allocation for each element. • expensive • may fragment memory • in general worse element locality compared to std::vector 4 std::vector std::vector<T,A>::push_back() has amortized O 1 complexity std::vector<int> v; // capacity=0 v.push_back(1); // allocate, capacity=3 v.push_back(2); v.push_back(3); v.push_back(4); //alloc, move 3 elements, capacity=6 v.push_back(5); 5 6 std::vector 푐 — initial capacity 푚 — reallocation factor To push back 푁 elements we need log푚 푁/푐 reallocations.
    [Show full text]
  • Fast Deterministic Selection
    Fast Deterministic Selection Andrei Alexandrescu The D Language Foundation, Washington, USA Abstract The selection problem, in forms such as finding the median or choosing the k top ranked items in a dataset, is a core task in computing with numerous applications in fields as diverse as statist- ics, databases, Machine Learning, finance, biology, and graphics. The selection algorithm Median of Medians, although a landmark theoretical achievement, is seldom used in practice because it is slower than simple approaches based on sampling. The main contribution of this paper is a fast linear-time deterministic selection algorithm MedianOfNinthers based on a refined definition of MedianOfMedians. A complementary algorithm MedianOfExtrema is also proposed. These algorithms work together to solve the selection problem in guaranteed linear time, faster than state-of-the-art baselines, and without resorting to randomization, heuristics, or fallback approaches for pathological cases. We demonstrate results on uniformly distributed random numbers, typical low-entropy artificial datasets, and real-world data. Measurements are open- sourced alongside the implementation at https://github.com/andralex/MedianOfNinthers. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems Keywords and phrases Selection Problem, Quickselect, Median of Medians, Algorithm Engin- eering, Algorithmic Libraries Digital Object Identifier 10.4230/LIPIcs.SEA.2017.24 1 Introduction The selection problem is widely researched and has numerous applications. Selection is finding the kth smallest element (also known as the kth order statistic): given an array A of length |A| = n, a non-strict order ≤ over elements of A, and an index k, the task is to find the element that would be in slot A[k] if A were sorted.
    [Show full text]