Practical Domain Name System Security: a Survey of Common Hazards and Preventative Measures Nicholas A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Domain Name System 1 Domain Name System
Domain Name System 1 Domain Name System The Domain Name System (DNS) is a hierarchical distributed naming system for computers, services, or any resource connected to the Internet or a private network. It associates various information with domain names assigned to each of the participating entities. A Domain Name Service translates queries for domain names (which are easier to understand and utilize when accessing the internet) into IP addresses for the purpose of locating computer services and devices worldwide. An often-used analogy to explain the Domain Name System is that it serves as the phone book for the Internet by translating human-friendly computer hostnames into IP addresses. For example, the domain name www.example.com translates to the addresses 192.0.43.10 (IPv4) and 2620:0:2d0:200::10 (IPv6). The Domain Name System makes it possible to assign domain names to groups of Internet resources and users in a meaningful way, independent of each entity's physical location. Because of this, World Wide Web (WWW) hyperlinks and Internet contact information can remain consistent and constant even if the current Internet routing arrangements change or the participant uses a mobile device. Internet domain names are easier to remember than IP addresses such as 208.77.188.166 (IPv4) or 2001:db8:1f70::999:de8:7648:6e8 (IPv6). Users take advantage of this when they recite meaningful Uniform Resource Locators (URLs) and e-mail addresses without having to know how the computer actually locates them. The Domain Name System distributes the responsibility of assigning domain names and mapping those names to IP addresses by designating authoritative name servers for each domain. -
Secure Domain Name System (DNS) Deployment Guide
NIST Special Publication 800-81-2 Secure Domain Name System (DNS) Deployment Guide Ramaswamy Chandramouli Scott Rose C O M P U T E R S E C U R I T Y NIST Special Publication 800-81-2 Secure Domain Name System (DNS) Deployment Guide Ramaswamy Chandramouli Computer Security Division Information Technology Laboratory Scott Rose Advanced Network Technology Division Information Technology Laboratory September 2013 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST to further its statutory responsibilities under the Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official. -
BIND 9 Administrator Reference Manual Release BIND 9.16.21 (Extended Support Version)
BIND 9 Administrator Reference Manual Release BIND 9.16.21 (Extended Support Version) Internet Systems Consortium 2021-09-07 CONTENTS 1 Introduction 1 1.1 Scope of Document ............................................ 1 1.2 Organization of This Document ..................................... 1 1.3 Conventions Used in This Document ................................... 1 1.4 The Domain Name System (DNS) .................................... 2 2 BIND Resource Requirements 7 2.1 Hardware Requirements ......................................... 7 2.2 CPU Requirements ............................................ 7 2.3 Memory Requirements .......................................... 7 2.4 Name Server-Intensive Environment Issues ............................... 7 2.5 Supported Operating Systems ...................................... 8 3 Name Server Configuration 9 3.1 Sample Configurations .......................................... 9 3.2 Load Balancing .............................................. 10 3.3 Name Server Operations ......................................... 11 3.4 Plugins .................................................. 13 4 BIND 9 Configuration Reference 15 4.1 Configuration File Elements ....................................... 15 4.2 Configuration File Grammar ....................................... 18 4.3 Zone File ................................................. 101 4.4 BIND 9 Statistics ............................................. 107 5 Advanced DNS Features 113 5.1 Notify ................................................... 113 5.2 Dynamic -
Recommendation for Key Management, Part 3: Application
NIST Special Publication 800-57 Part 3 Revision 1 Recommendation for Key Management Part 3: Application-Specific Key Management Guidance Elaine Barker Quynh Dang This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1 C O M P U T E R S E C U R I T Y NIST Special Publication 800-57 Part 3 Revision 1 Recommendation for Key Management Part 3: Application-Specific Key Management Guidance Elaine Barker Quynh Dang Computer Security Division Information Technology Laboratory This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-57pt3r1 January 2015 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Willie May, Acting Under Secretary of Commerce for Standards and Technology and Acting Director Authority This publication has been developed by NIST to further its statutory responsibilities under the Federal Information Security Management Act (FISMA), Public Law (P.L.) 107-347. NIST is responsible for developing information security standards and guidelines, including minimum requirements for Federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate Federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130, Section 8b(3), Securing Agency Information Systems, as analyzed in Circular A-130, Appendix IV: Analysis of Key Sections. Supplemental information is provided in Circular A-130, Appendix III, Security of Federal Automated Information Resources. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on Federal agencies by the Secretary of Commerce under statutory authority. -
A New Approach to DNS Security (DNSSEC)
A New Approach to DNS Security (DNSSEC) Giuseppe Ateniese Stefan Mangard Department of Computer Science and Institute for Applied Information JHU Information Security Institute Processing and Communications (IAIK) The Johns Hopkins University Graz University of Technology 3400 North Charles Street Inffeldgasse 16a Baltimore, MD 21218, USA 8010 Graz, Austria [email protected] [email protected] ABSTRACT the company but rather the DNS server upstream in the The Domain Name System (DNS) is a distributed database network. that allows convenient storing and retrieving of resource Increasingly, DNS is also being used to perform load dis- records. DNS has been extended to provide security ser- tribution among replicated servers. For instance, companies vices (DNSSEC) mainly through public-key cryptography. such as Akamai have used DNS to provide Web content dis- We propose a new approach to DNSSECthat may result tribution. Moreover, there is consensus that, since DNS is a in a significantly more efficient protocol. We introduce a global and available database, it can be employed as a Pub- new strategy to build chains of trust from root servers to lic Key Infrastructure (PKI) which would help with enabling authoritative servers. The techniques we employ are based e-commerce applications by making public keys globally ac- on symmetric-key cryptography. cessible. Securing DNS means providing data origin authentication and integrity protection. Confidentiality is not required as Keywords the information stored in the DNS database is supposedly Domain Name System Security (DNSSEC), Authentication public. When communication requirements call for private Protocols, Digital Signatures, Symmetric Encryption channels, IP security (IPSEC) is the currently selected can- didate system which could easily interface with DNS.