The Glasgow Haskell Compiler: a Technical Overview

Total Page:16

File Type:pdf, Size:1020Kb

The Glasgow Haskell Compiler: a Technical Overview The Glasgow Haskell compiler a technical overview Simon L Peyton Jones Cordy Hall Kevin Hammond Will Partain Phil Wadler Department of Computing Science University of Glasgow G QQ email simonpjdcsglasgowacuk December This paper appears in the Proceedings of the UK Joint systems We hop e that this pap er serves to substantiate Framework for Information Technology JFIT Technical this p oint Conference Keele The compiler work describ ed in this pap er is one of the two strands of the SERCfunded GRASP pro ject The other concerns parallel functional programming on the Abstract GRIP multiprocessor but space precludes coverage of b oth We give an overview of the Glasgow Haskell compiler fo cusing esp ecially on way in which we have b een able to exploit the rich theory of functional languages to give Goals very practical improvements in the compiler Haskell is a purely functional nonstrict language de The compiler is p ortable mo dular generates go o d co de signed by an international group of researchers Hudak and is freely available et al It has now b ecome a de facto standard for the nonstrict or lazy functional programming commu nity with at least three compilers available Introduction Our goals in writing a new compiler were these Computer Science is b oth a scientic and an engineering discipline As a scientic discipline it seeks to establish To make freely available a robust and portable com generic principles and theories that can b e used to ex piler for Haskel l that generates good quality code plain or underpin a variety of particular applications As This goal is more easily stated than achieved Haskell an engineering discipline it constructs substantial arte is a rather large language incorp orating a rich syn facts of software and hardware sees where they fail and tax a new type system that supp orts systematic where they work and develops new theory to underpin overloading using socalled type classes Wadler areas that are inadequately supp orted Milner elo Blott a wide variety of builtin data types quently argues for this dual approach in Computer Sci including arbitraryprecision integers rationals and ence arrays a mo dule system and an inputoutput sys Functional programming is a research area that oers an tem unusually close interplay b etween these two asp ects Pey To provide a modular foundation that other re ton Jones b Theory often has immediate practical searchers can extend and develop In our exp erience application and practice often leads directly to new de researchers are often unable to evaluate their ideas mands on theory This pap er describ es our exp erience of b ecause the sheer eort of building the framework re building a substantial new compiler for the purely func quired is to o great We have tried very hard to build tional language Haskell We discuss our motivations ma our compiler in a welldocumented and mo dular way jor design decisions and achievements paying particular so that others will nd it relatively easy to mo dify attention to the interaction of theory and practice Scaling prototypes up into large real systems app ears To learn what real programs do The intuition of to b e less valued in the academic community than small an implementor is a notoriously p o or basis for tak systems that demonstrate concepts b eing sometimes b e ing critical design decisions The RISC revolution in ing dismissed as just development work Nevertheless computer architecture was based partly on the sim we b elieve that many research problems can only b e ex ple idea of measuring what real programs actually do p osed during the act of constructing large and complex most often and implementing those op erations very Mo dule Lines well Hennessy Patterson Lazy functional Major passes programs execute in a particularly nonintuitive fash Main ion and we plan to make careful quantitative mea Parser surements of their b ehaviour Renamer Type inference An overview of the compiler Desugaring Corelanguage transformation The compiler and its runtime system have the following STGlanguage transformation ma jor characteristics Co de generation Data type denition and manipulation It is written almost entirely in Haskell The only Haskell abstract syntax exception is that the parser is written in Yacc and Core language C STG language Abstract C It generates C as its target co de This has now b e Identier representations come relatively common conferring as it do es wide Type representations p ortability The big question is of course what ef Prelude denitions ciency p enalty is paid a matter we discuss in Sec Utility modules tion Utilities Proling We have extended the language to allow mixed TOTAL language programming by supp orting arbitrary in line statements written in C It is of course not p os Figure Breakdown of mo dule sizes sible to do this in a completely secure way for ex ample the C pro cedure could overwrite the Haskell heap but our technique is referentially transparent parser the compiler itself the C compiler the Unix as that is all the usual program transformations remain sembler and the Unix linker The main passes of the valid compiler itself are shown in Figure They are as follows Figure summarises their sizes This mixedlanguage working allows us to extend Haskell easily for example to provide access to ex A simple recursivedescent parser recognises the sim isting pro cedure libaries Without a general way of ple syntax output by the separate main parser pro calling C each such extension would require a sepa cess The abstract syntax tree pro duced by this rate mo dication to the co de generator parser faithfully represents every construct in the Haskells monolithic arrays are fully implemented Haskell source language even where a distinction is with O access time In addition we have ex purely syntactic This improves the readability of tended the language with incrementallyupdatable error messages from the type checker arrays indeed the monolithic arrays are imple The renamer resolves scoping and naming issues es mented using these mutable arrays p ecially those concerned with mo dule imp orts and exp orts The interface b etween the storage manager and the compiler is carefully dened and highly congurable The type inference pass annotates the program with For example the storage manager comes with no type information and transforms out all the over fewer than four dierent garbage collectors including loading The details of the latter transformation are a generational one given by Wadler Blott we do not discuss it further here The compiler and its runtime system also supp ort comprehensive runtime proling of b oth space and The desugarer converts the rich Haskell abstract syn time at b oth the user level and the evaluationmodel tax into a very much simpler functional language we level Sansom Peyton Jones call the Core language Notice that desugaring fol lows type inference As a result type error messages Organisation are expressed in terms of the original source and they also app ear more quickly The overall organisation of the compiler is quite conven tional A driver program runs a sequence of Unix pro A variety of optional Corelanguage transformation cesses namely a literatescript prepro cessor the main passes improve the co de Other front ends Haskell source Lex/Yacc parser CoreSyntax Transform Prefix form CoreToStg Reader StgSyntax Transform AbsSyntax CodeGen Renamer Abstract C AbsSyntax Other code Flatten generators Typechecker C AbsSyntax C compiler Desugarer Native code Figure Overview of the Glasgow Haskell Compiler Copy propagation is a sp ecial case of inlining a A simple pass then converts Core to the Shared Term 1 letb ound variable Graph STG language an even simpler but still purely functional language let v w in e e w =v A variety of optional STGlanguage transformation passes improve the STG co de where v and w are variables It is a sp ecial case b ecause the rule remains valid even if w is an arbi The code generator converts the STG language to Ab trary expression which is certainly not true in an stract C Abstract C is no more than an internal data imp erative language type that can b e printed in C syntax or if preferred though we have not done this in assemblylanguage Pro cedure inlining is an example of b eta reduction syntax for a particular machine If f is dened like this The targetcode printer prints Abstract C in a form f xy b acceptable to a C compiler then an expression with a call of f such as f a a 1 2 can b e transfomed to b a =x ; a =y 1 2 Compilation by transformation Lifting invariant expressions out of lo ops corresp onds A consistent theme runs through all our design deci to a simple transformation called the full laziness sions namely that most of the compilation process is transformation Hughes Peyton Jones expressed as correctnesspreserving transformations of a Lester purelyfunctional program A wide variety of conventional imp erativeprogram optimisations have simple counter parts as functionallanguage transformations each of This idea of compilation by transformation is not new which replaces equals by equals Here are just three App el Fradet Metayer Kelsey examples but it is particularly applicable in a nonstrict language Although nonstrict semantics carries an implementation 1 The STG language was originally short for Spineless Tagless cost it also means that transformation rules such as those Gmachine language but in fact the language is entirely indep en ab ove can b e applied globally and
Recommended publications
  • Causal Commutative Arrows Revisited
    Causal Commutative Arrows Revisited Jeremy Yallop Hai Liu University of Cambridge, UK Intel Labs, USA [email protected] [email protected] Abstract init which construct terms of an overloaded type arr. Most of the Causal commutative arrows (CCA) extend arrows with additional code listings in this paper uses these combinators, which are more constructs and laws that make them suitable for modelling domains convenient for defining instances, in place of the notation; we refer such as functional reactive programming, differential equations and the reader to Paterson (2001) for the details of the desugaring. synchronous dataflow. Earlier work has revealed that a syntactic Unfortunately, speed does not always follow succinctness. Al- transformation of CCA computations into normal form can result in though arrows in poetry are a byword for swiftness, arrows in pro- significant performance improvements, sometimes increasing the grams can introduce significant overhead. Continuing with the ex- speed of programs by orders of magnitude. In this work we refor- ample above, in order to run exp, we must instantiate the abstract mulate the normalization as a type class instance and derive op- arrow with a concrete implementation, such as the causal stream timized observation functions via a specialization to stream trans- transformer SF (Liu et al. 2009) that forms the basis of signal func- formers to demonstrate that the same dramatic improvements can tions in the Yampa domain-specific language for functional reactive be achieved without leaving the language. programming (Hudak et al. 2003): newtype SF a b = SF {unSF :: a → (b, SF a b)} Categories and Subject Descriptors D.1.1 [Programming tech- niques]: Applicative (Functional) Programming (The accompanying instances for SF , which define the arrow operators, appear on page 6.) Keywords arrows, stream transformers, optimization, equational Instantiating exp with SF brings an unpleasant surprise: the reasoning, type classes program runs orders of magnitude slower than an equivalent pro- gram that does not use arrows.
    [Show full text]
  • GHC Reading Guide
    GHC Reading Guide - Exploring entrances and mental models to the source code - Takenobu T. Rev. 0.01.1 WIP NOTE: - This is not an official document by the ghc development team. - Please refer to the official documents in detail. - Don't forget “semantics”. It's very important. - This is written for ghc 9.0. Contents Introduction 1. Compiler - Compilation pipeline - Each pipeline stages - Intermediate language syntax - Call graph 2. Runtime system 3. Core libraries Appendix References Introduction Introduction Official resources are here GHC source repository : The GHC Commentary (for developers) : https://gitlab.haskell.org/ghc/ghc https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary GHC Documentation (for users) : * master HEAD https://ghc.gitlab.haskell.org/ghc/doc/ * latest major release https://downloads.haskell.org/~ghc/latest/docs/html/ * version specified https://downloads.haskell.org/~ghc/9.0.1/docs/html/ The User's Guide Core Libraries GHC API Introduction The GHC = Compiler + Runtime System (RTS) + Core Libraries Haskell source (.hs) GHC compiler RuntimeSystem Core Libraries object (.o) (libHsRts.o) (GHC.Base, ...) Linker Executable binary including the RTS (* static link case) Introduction Each division is located in the GHC source tree GHC source repository : https://gitlab.haskell.org/ghc/ghc compiler/ ... compiler sources rts/ ... runtime system sources libraries/ ... core library sources ghc/ ... compiler main includes/ ... include files testsuite/ ... test suites nofib/ ... performance tests mk/ ... build system hadrian/ ... hadrian build system docs/ ... documents : : 1. Compiler 1. Compiler Compilation pipeline 1. compiler The GHC compiler Haskell language GHC compiler Assembly language (native or llvm) 1. compiler GHC compiler comprises pipeline stages GHC compiler Haskell language Parser Renamer Type checker Desugarer Core to Core Core to STG STG to Cmm Assembly language Cmm to Asm (native or llvm) 1.
    [Show full text]
  • Dynamic Extension of Typed Functional Languages
    Dynamic Extension of Typed Functional Languages Don Stewart PhD Dissertation School of Computer Science and Engineering University of New South Wales 2010 Supervisor: Assoc. Prof. Manuel M. T. Chakravarty Co-supervisor: Dr. Gabriele Keller Abstract We present a solution to the problem of dynamic extension in statically typed functional languages with type erasure. The presented solution re- tains the benefits of static checking, including type safety, aggressive op- timizations, and native code compilation of components, while allowing extensibility of programs at runtime. Our approach is based on a framework for dynamic extension in a stat- ically typed setting, combining dynamic linking, runtime type checking, first class modules and code hot swapping. We show that this framework is sufficient to allow a broad class of dynamic extension capabilities in any statically typed functional language with type erasure semantics. Uniquely, we employ the full compile-time type system to perform run- time type checking of dynamic components, and emphasize the use of na- tive code extension to ensure that the performance benefits of static typing are retained in a dynamic environment. We also develop the concept of fully dynamic software architectures, where the static core is minimal and all code is hot swappable. Benefits of the approach include hot swappable code and sophisticated application extension via embedded domain specific languages. We instantiate the concepts of the framework via a full implementation in the Haskell programming language: providing rich mechanisms for dy- namic linking, loading, hot swapping, and runtime type checking in Haskell for the first time. We demonstrate the feasibility of this architecture through a number of novel applications: an extensible text editor; a plugin-based network chat bot; a simulator for polymer chemistry; and xmonad, an ex- tensible window manager.
    [Show full text]
  • What I Wish I Knew When Learning Haskell
    What I Wish I Knew When Learning Haskell Stephen Diehl 2 Version This is the fifth major draft of this document since 2009. All versions of this text are freely available onmywebsite: 1. HTML Version ­ http://dev.stephendiehl.com/hask/index.html 2. PDF Version ­ http://dev.stephendiehl.com/hask/tutorial.pdf 3. EPUB Version ­ http://dev.stephendiehl.com/hask/tutorial.epub 4. Kindle Version ­ http://dev.stephendiehl.com/hask/tutorial.mobi Pull requests are always accepted for fixes and additional content. The only way this document will stayupto date and accurate through the kindness of readers like you and community patches and pull requests on Github. https://github.com/sdiehl/wiwinwlh Publish Date: March 3, 2020 Git Commit: 77482103ff953a8f189a050c4271919846a56612 Author This text is authored by Stephen Diehl. 1. Web: www.stephendiehl.com 2. Twitter: https://twitter.com/smdiehl 3. Github: https://github.com/sdiehl Special thanks to Erik Aker for copyediting assistance. Copyright © 2009­2020 Stephen Diehl This code included in the text is dedicated to the public domain. You can copy, modify, distribute and perform thecode, even for commercial purposes, all without asking permission. You may distribute this text in its full form freely, but may not reauthor or sublicense this work. Any reproductions of major portions of the text must include attribution. The software is provided ”as is”, without warranty of any kind, express or implied, including But not limitedtothe warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authorsor copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, Arising from, out of or in connection with the software or the use or other dealings in the software.
    [Show full text]
  • An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices
    Technological University Dublin ARROW@TU Dublin Theses LTTC Programme Outputs 2015-11 An Exploration Of The Effects Of Enhanced Compiler Error Messages For Computer Programming Novices Brett A. Becker Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/ltcdis Part of the Computer and Systems Architecture Commons, and the Educational Methods Commons Recommended Citation Becker, B. (2015) An exploration of the effects of enhanced compiler error messages for computer programming novices. Thesis submitted to Technologicl University Dublin in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education, November 2015. This Theses, Masters is brought to you for free and open access by the LTTC Programme Outputs at ARROW@TU Dublin. It has been accepted for inclusion in Theses by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices A thesis submitted to Dublin Institute of Technology in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education by Brett A. Becker November 2015 Supervisor: Dr Claire McDonnell Learning Teaching and Technology Centre, Dublin Institute of Technology Declaration I certify that this thesis which I now submit for examination for the award of Masters (M.A.) in Higher Education is entirely my own work and has not been taken from the work of others, save and to the extent that such work has been cited and acknowledged within the text of my own work.
    [Show full text]
  • Directing Javascript with Arrows
    Directing JavaScript with Arrows Khoo Yit Phang Michael Hicks Jeffrey S. Foster Vibha Sazawal University of Maryland, College Park {khooyp,mwh,jfoster,vibha}@cs.umd.edu Abstract callback with a (short) timeout. Unfortunately, this style of event- JavaScript programmers make extensive use of event-driven pro- driven programming is tedious, error-prone, and hampers reuse. gramming to help build responsive web applications. However, The callback sequencing code is strewn throughout the program, standard approaches to sequencing events are messy, and often and very often each callback must hard-code the names of the next lead to code that is difficult to understand and maintain. We have events and callbacks in the chain. found that arrows, a generalization of monads, are an elegant solu- To combat this problem, many researchers and practitioners tion to this problem. Arrows allow us to easily write asynchronous have developed libraries to ease the construction of rich and highly programs in small, modular units of code, and flexibly compose interactive web applications. Examples include jQuery (jquery. them in many different ways, while nicely abstracting the details of com), Prototype (prototypejs.org), YUI (developer.yahoo. asynchronous program composition. In this paper, we present Ar- com/yui), MochiKit (mochikit.com), and Dojo (dojotoolkit. rowlets, a new JavaScript library that offers arrows to the everyday org). These libraries generally provide high-level APIs for com- JavaScript programmer. We show how to use Arrowlets to construct mon features, e.g., drag-and-drop, animation, and network resource a variety of state machines, including state machines that branch loading, as well as to handle API differences between browsers.
    [Show full text]
  • The Glasgow Haskell Compiler User's Guide, Version 4.08
    The Glasgow Haskell Compiler User's Guide, Version 4.08 The GHC Team The Glasgow Haskell Compiler User's Guide, Version 4.08 by The GHC Team Table of Contents The Glasgow Haskell Compiler License ........................................................................................... 9 1. Introduction to GHC ....................................................................................................................10 1.1. The (batch) compilation system components.....................................................................10 1.2. What really happens when I “compile” a Haskell program? .............................................11 1.3. Meta-information: Web sites, mailing lists, etc. ................................................................11 1.4. GHC version numbering policy .........................................................................................12 1.5. Release notes for version 4.08 (July 2000) ........................................................................13 1.5.1. User-visible compiler changes...............................................................................13 1.5.2. User-visible library changes ..................................................................................14 1.5.3. Internal changes.....................................................................................................14 2. Installing from binary distributions............................................................................................16 2.1. Installing on Unix-a-likes...................................................................................................16
    [Show full text]
  • The Glorious Glasgow Haskell Compilation System User's Guide
    The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.2 i The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.2 The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.2 ii COLLABORATORS TITLE : The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.2 ACTION NAME DATE SIGNATURE WRITTEN BY The GHC Team April 11, 2014 REVISION HISTORY NUMBER DATE DESCRIPTION NAME The Glorious Glasgow Haskell Compilation System User’s Guide, Version 7.8.2 iii Contents 1 Introduction to GHC 1 1.1 Obtaining GHC . .1 1.2 Meta-information: Web sites, mailing lists, etc. .1 1.3 Reporting bugs in GHC . .2 1.4 GHC version numbering policy . .2 1.5 Release notes for version 7.8.1 . .3 1.5.1 Highlights . .3 1.5.2 Full details . .5 1.5.2.1 Language . .5 1.5.2.2 Compiler . .5 1.5.2.3 GHCi . .6 1.5.2.4 Template Haskell . .6 1.5.2.5 Runtime system . .6 1.5.2.6 Build system . .6 1.5.3 Libraries . .6 1.5.3.1 array . .6 1.5.3.2 base . .7 1.5.3.3 bin-package-db . .7 1.5.3.4 binary . .7 1.5.3.5 bytestring . .7 1.5.3.6 Cabal . .8 1.5.3.7 containers . .8 1.5.3.8 deepseq . .8 1.5.3.9 directory . .8 1.5.3.10 filepath . .8 1.5.3.11 ghc-prim . .8 1.5.3.12 haskell98 .
    [Show full text]
  • SOME USEFUL STRUCTURES for CATEGORICAL APPROACH for PROGRAM BEHAVIOR in Computer Science, Where We Often Use More Complex Structures Not Expressible by Sets
    JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 02/11; ACCEPTED 03/11 UDC 004.423.45 [ SomeSome useful Useful structures Structures for categorical for Categorical approach Approach for program for Programbehavior Behavior Viliam Slodicákˇ [email protected] Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical university of Košice Letná 9, 042 00 Košice Slovak Republic Abstract Using of category theory in computer science has extremely grown in the last decade. Categories allow us to express mathematical structures in unified way. Algebras are used for constructing basic structures used in computer programs. A program can be considered as an element of the initial algebra arising from the used programming language. In our contribution we formulate two ways of expressing algebras in categories. We also construct the codomain functor from the arrow category of algebras into the base category of sets which objects are also the carrier-sets of the algebras. This functor expresses the relation between algebras and carrier-sets. Keywords: Algebra, arrow category, monad, Kleisli category, codomain functor 1. Introduction Knowing and proving of the expected behavior of complex program systems is very important and actual rôle. It carries the time and cost savings: in mathematics [8] or in practical applications of economical character. The aim of programming is to construct such correct programs and program systems that during their execution provide expected behavior [7]. A program can be considered as an element of the initial algebra arising from the used programming language [14]. Algebraic structures and number systems are widely used in computer science.
    [Show full text]
  • The Bluej Environment Reference Manual
    The BlueJ Environment Reference Manual Version 2.0 for BlueJ Version 2.0 Kasper Fisker Michael Kölling Mærsk Mc-Kinney Moller Institute University of Southern Denmark HOW DO I ... ? – INTRODUCTION ........................................................................................................ 1 ABOUT THIS DOCUMENT................................................................................................................................. 1 RELATED DOCUMENTS.................................................................................................................................... 1 REPORT AN ERROR.......................................................................................................................................... 1 USING THE CONTEXT MENU........................................................................................................................... 1 1 PROJECTS.......................................................................................................................................... 2 1.1 CREATE A NEW PROJECT................................................................................................................... 2 1.2 OPEN A PROJECT ............................................................................................................................... 2 1.3 FIND OUT WHAT A PROJECT DOES .................................................................................................... 2 1.4 COPY A PROJECT ..............................................................................................................................
    [Show full text]
  • Companion Object
    1. Functional Programming Functional Programming What is functional programming? What is it good for? Why to learn it? Functional Programming Programs as a composition of pure functions. Pure function? Deterministic. Same result for the same inputs. Produces no observable side eects. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(500), Account(1000)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Referential Transparency Function can be replaced with its corresponding value without changing the program's behavior. Based on the substitution model. Referential Transparency Better reasoning about program behavior. Pure functions referentially transparent. Substitution model Replace a named reference (function) by its value. Based on equational reasoning. Unlocks local reasoning. fun add(a: Int, b: Int): Int = a + b val two = add(1, 1) // could be replaced by 2 everywhere in the program val equal = (two == 1 + 1) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Substitution model Same example, but with two Accounts. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(100), Account(200)) // could be replaced by Account(300) everywhere // in the program val equal = (mergedAcc == Account(300)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Side eect? Function tries to access or modify the external world. val accountDB = AccountDB() fun mergeAccounts(acc1: Account, acc2: Account): Account { val merged = Account(acc1.balance + acc2.balance) accountDB.remove(listOf(acc1, acc2)) // side effect! accountDB.save(merged) // side effect! return merged } val merged = mergeAccounts(Account(100), Account(400)) Target platform: JVM Running on Arrow v.
    [Show full text]
  • Freebsd Foundation February 2018 Update
    FreeBSD Foundation February 2018 Update Upcoming Events Message from the Executive Director Dear FreeBSD Community Member, AsiaBSDCon 2018 Welcome to our February Newsletter! In this newsletter you’ll read about FreeBSD Developers Summit conferences we participated in to promote and teach about FreeBSD, March 8-9, 2018 software development projects we are working on, why we need Tokyo, Japan funding, upcoming events, a release engineering update, and more. AsiaBSDCon 2018 Enjoy! March 8-11, 2018 Tokyo, Japan Deb SCALE 16x March 8-11, 2018 Pasadena, CA February 2018 Development Projects FOSSASIA 2018 March 22-25, 2018 Update: The Modern FreeBSD Tool Chain: Singapore, Singapore LLVM's LLD Linker As with other BSD distributions, FreeBSD has a base system that FreeBSD Journal is developed, tested and released by a single team. Included in the base system is the tool chain, the set of programs used to build, debug and test software. FreeBSD has relied on the GNU tool chain suite for most of its history. This includes the GNU Compiler Collection (GCC) compiler, and GNU binutils which include the GNU "bfd" linker. These tools served the FreeBSD project well from 1993 until 2007, when the GNU project migrated to releasing its software under the General Public License, version 3 (GPLv3). A number of FreeBSD developers and users objected to new restrictions included in GPLv3, and the GNU tool chain became increasingly outdated. The January/February issue of the FreeBSD Journal is now available. Don't miss articles on The FreeBSD project migrated to Clang/LLVM for the compiler in Tracing ifconfig Commands, Storage FreeBSD 10, and most of GNU binutils were replaced with the ELF Tool Multipathing, and more.
    [Show full text]