Planetary Seismology

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Seismology This article was originally published in Treatise on Geophysics, Second Edition, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Lognonné P., and Johnson C.L Planetary Seismology. In: Gerald Schubert (editor-in- chief) Treatise on Geophysics, 2nd edition, Vol 10. Oxford: Elsevier; 2015. p. 65-120. Author's personal copy 10.03 Planetary Seismology P Lognonne´, Universite´ Paris Diderot -Sorbonne Paris Cite´, Institut de Physique du Globe de Paris, Paris, France CL Johnson, University of British Columbia, Vancouver, BC, Canada; Planetary Science Institute, Tucson, AZ, USA ã 2015 Elsevier B.V. All rights reserved. 10.03.1 Introduction 65 10.03.2 Lunar Results 70 10.03.2.1 The Apollo PSE Data 70 10.03.2.2 Seismic-Velocity Structure: Crust and Mantle 72 10.03.2.3 Very Deep Interior 77 10.03.2.4 Mineralogical and Thermal Interpretation of Lunar Seismic Models 78 10.03.3 Seismic Activity of the Moon and Terrestrial Planets 81 10.03.3.1 Internal Seismic Activity 81 10.03.3.2 External Seismic activity: Artificial and Natural Impacts 86 10.03.4 Atmospheric Seismology 90 10.03.4.1 Theoretical Background 90 10.03.4.2 Mars Hum and Martian Atmospheric Sources 94 10.03.4.3 Venus Atmospheric Seismology 96 10.03.4.4 Giant Planets Seismology 99 10.03.5 The New Step: Mars Seismology 103 10.03.5.1 Interior Structure of Mars 103 10.03.5.2 Martian Seismic Noise 105 10.03.5.3 Body-Wave Detection 106 10.03.5.4 Normal Mode Excitation and Tidal Observations 109 10.03.5.5 Surface Waves 111 10.03.6 Concluding Remarks 113 Acknowledgments 114 References 114 10.03.1 Introduction measurements of the core radius of the Moon or Mars; no direct information on the martian mantle structure, including One hundred and twenty five years have passed since Von its discontinuities; no definitive direct measurements of mar- Rebeur-Paschwitz (1889) first detected a remote seismic tian seismic activity; and no direct measurement of the mean event, and almost 70 years have passed since the creation of crustal thickness of Mars. the first mean seismic models of the Earth based on body-wave The use of seismometers in planetary exploration was pro- travel times (Bullen, 1947). As a result, seismology is now posed early in the history of space missions (e.g., Press et al., generally accepted as the geophysical tool best able to 1960). Yet, almost 52 years after the launch of the first seis- determine the internal structure of a planet. Seismology has mometer to a telluric body (Ranger 3, in 1962), planetary and also led to a revolution in Earth science, especially since the small-body seismology has only been successfully studied on advent of three-dimensional (3D) tomographic models of the Earth’s Moon. The Apollo program deployed a network of four Earth’s mantle (e.g., Dziewonski et al., 1977; Woodhouse and seismic stations on the Moon (Latham et al., 1969, 1970a,b, Dziewonski, 1984) that depict major discontinuities in the 1971), as well as the short-lived Apollo 11 seismometer for mantle and reflect convection patterns and lateral variations passive monitoring, and three active seismic experiments were in its temperature or mineralogy. For a complete and extensive conducted during the missions of Apollo 14, 15, 16, and 17 description of seismology as applied to Earth, see volume 1 of (Kovach and Watkins, 1973a; Watkins and Kovach, 1972). The Treatise on Geophysics: Deep Earth Seismology. thirteen other extraterrestrial seismometer experiments that We are a long way from achieving this level of seismological launched successfully never recorded any quakes (see Table 1). knowledge for bodies other than Earth, however, and the These nonyielding lunar missions include the seismometers seismic identification of the Earth’s core, realized by R.D. Old- (Lehner et al., 1962; Press et al., 1960) onboard the 3 Ranger ham one century ago (Oldham, 1906), remains the only exam- lunar probes, which were lost with their missions in the early ple of detecting seismic waves refracted by a planetary core. The 1960s; the seismometer lost with the cancellation of the Apollo situation is similar for the detection of a planet’s normal 13 Moon landing; and the gravimeter onboard the last Apollo modes, with the first successful detection of normal modes 17 mission, which failed to operate despite expectations that it on Earth following the great Chilean Earthquake in 1960 would extend the work of the previous Apollo instruments by (e.g., Benioff et al., 1961). As a consequence (see the other providing long-period (LP) seismic data. Several attempts have chapters of this Treatise), we currently have no precise been made to conduct seismic experiments on Mars. Two Treatise on Geophysics, Second Edition http://dx.doi.org/10.1016/B978-0-444-53802-4.00167-6 65 Treatise on Geophysics, 2nd edition, (2015), vol. 10, pp. 65-120 Author's personal copy 66 Planetary Seismology Table 1 Summary and history of planetary seismology experiments delivered to launch Mission Launch Major mission events Instrument description Seismometer deployment References Ranger 3 1962-01-26 Failure due to the booster. Vertical axis seismometer, Seismometer in a lunar Lehner et al. Moon missed with a free frequency of capsule designed for a (1962) 1 Ranger 4 1962-04-23 Failure of spacecraft central 1 Hz (mass: 3.36 kg) 130–160 km hÀ landing. processor. Moon crash Batteries powered for Ranger 5 1962-10-18 Failure in the spacecraft 30 days of operation power system. Moon missed Apollo 11 1969-7-16 Successful installation. Passive seismic experiment Installation performed by Latham et al. Powered by solar panel, (PSE). Triaxis long-period crew. Seismometers were (1969, worked during the first (LP) seismometer and one manually leveled and 1970a,b) lunation and stopped after vertical short-period (SP) oriented with bubble level 21 days seismometer, with and sun compass. A sun Apollo 12 1969-11-14 Successful installation of a resonance periods of 15 protection/thermal shroud Apollo 14 1971-01-31 network of 4 stations. and 1 s, respectively (mass: was covering the Apollo 15 1971-07-26 Except for the Apollo 12 SP 11.5 kg, power: 4.3–7.4 W) instruments. Power was Apollo 16 1972-04-16 seismometer and Apollo delivered by a plutonium 14 vertical LP seismometer, radioisotope thermoelectric all operated until the end of generator for A12–14– September 1977, when all 15–16 were turned off after a command from the Earth. 26.18 active station years of data collected Apollo 13 1970-4-11 Moon landing aborted. No installation of the PSE experiment, but the lunar crash of the Apollo 13 Saturn-IV upper stage was recorded by the A12 PSE Apollo 14 1971-01-31 Successful installation and String of three geophones on Geophones were anchored Watkins and Apollo 16 1972-04-16 operation of the active A-14 and A-16 and on four into the surface by short Kovach Apollo 17 1972-12-07 seismic experiments. geophones on A-17. spikes as they were (1972), Seismic sources were Frequency was 3–250 Hz unreeled from the thumper/ Kovach and thumper devices (A14, A16) geophone assembly Watkins containing 21 (A14) and (1973a,b) 19 (A16) small explosive sources and a rocket grenade launcher with three sources exploding up to 900 m on A16. Eight sources were used containing up to 2722 g of explosive and deployed up to about 2800 m by astronauts on A17 Apollo 17 1972-12-07 Deployment of the Lunar Gravimeter designed for Installation performed by Weber Surface Gravimeter. The gravity-wave detection. crew (1971), gravimeter was unable to Additional LP vertical Tobias 11 operate properly due to an seismic output (10À lunar (1978) error in the design of the g resolution) for free proof mass oscillation detection, with a 16-Hz sampling Viking Lander 1975-08-20 Successful landing but SP instrument, with an The seismometer was Anderson 1 instrument failure undamped natural period of installed on the Lander et al. Viking 1975-09-09 Successful landing and 0.25 s, a mass of 2.2 kg, a platform. No recentering (1977a,b) Lander 2 19 months of nearly size of 12 15 12 cm and was necessary, because   continuous operation. Too a nominal power the 3-axis seismometer high wind sensitivity consumption of 3.5 W had been designed to associated to the elastic function even when tilted recovery of the Viking to up to 23 (Continued) Treatise on Geophysics, 2nd edition, (2015), vol. 10, pp. 65-120 Author's personal copy Planetary Seismology 67 Table 1 (Continued) Mission Launch Major mission events Instrument description Seismometer deployment References landing legs to the loading of the station by pressure fluctuations induced by the wind Phobos 1-2 1988-07-07 Phobos 1 was lost during Instrument onboard the long- Surkov 1988-07-12 transfer to Mars and service lander (1990) Phobos. Contact with Phobos 2 was lost just before the final phase of lander deployment, after Mars orbit insertion Mars 96 1996-11-16 Failure of the block-D LP vertical-axis seismometer Seismometer in the small Lognonne´ Small surface propulsion system in (0.1–4 Hz, 0.405 kg for the surface station.
Recommended publications
  • A Possible Explanation of the Secular Increase of the Astronomical Unit 1
    T. Miura 1 A possible explanation of the secular increase of the astronomical unit Takaho Miura(a), Hideki Arakida, (b) Masumi Kasai(a) and Syuichi Kuramata(a) (a)Faculty of Science and Technology,Hirosaki University, 3 bunkyo-cyo Hirosaki, Aomori, 036-8561, Japan (b)Education and integrate science academy, Waseda University,1 waseda sinjuku Tokyo, Japan Abstract We give an idea and the order-of-magnitude estimations to explain the recently re- ported secular increase of the Astronomical Unit (AU) by Krasinsky and Brumberg (2004). The idea proposed is analogous to the tidal acceleration in the Earth-Moon system, which is based on the conservation of the total angular momentum and we apply this scenario to the Sun-planets system. Assuming the existence of some tidal interactions that transfer the rotational angular momentum of the Sun and using re- d ported value of the positive secular trend in the astronomical unit, dt 15 4(m/s),the suggested change in the period of rotation of the Sun is about 21(ms/cy) in the case that the orbits of the eight planets have the same "expansionrate."This value is suf- ficiently small, and at present it seems there are no observational data which exclude this possibility. Effects of the change in the Sun's moment of inertia is also investi- gated. It is pointed out that the change in the moment of inertia due to the radiative mass loss by the Sun may be responsible for the secular increase of AU, if the orbital "expansion"is happening only in the inner planets system.
    [Show full text]
  • DENSITY of the MANTLE of MARS Kenneth A. Goettel, Dept. of Earth and Planetary Sciences, Mcdonnell Center for the Space Sciences, Washington, University, St
    DENSITY OF THE MANTLE OF MARS Kenneth A. Goettel, Dept. of Earth and Planetary Sciences, McDonnell Center for the Space Sciences, Washington, University, St. Louis, MO 63130 The zero pressure density of the Martian mantle is an important constraint on the composition and mineralogy of the mantle. The mean density and moment of inertia factor of Mars constrain the density of the Martian mantle, but do not define it uniquely. The mean density of Mars, 3.933+0.002 g/cm3 (1) is well determined. The estimated moment of inertia factor wFich Mars would have if Mars were in hydrostatic equilibrium, 0.365 (2,3), may still be significantly model dependent. With these constraints, the estimated zero pressure density of the Martian mantle varies as a function of the core composition assumed and as a function of the elastic data chosen as represent- ative of the Martian interior. Recent estimates of the zero pressure density of the Martian mantle are shown in Table 1. The results of Johnston et a1 . (4) were based on a value of 0.377 for the moment of inertia factor of Mars. The results of Johnston and ToksBz (5) and Okal and Anderson (6) were both based on the revised (2,3) value of 0.365 for the moment of inertia factor. The results of (5) and (6) are not completely comparable, since (5) did not give the densities assumed for their core compositions, and (6) did not give compositions corresponding to their core densities. Part of the motivation for the present work was to explore the reasons for the differences between the results of (5) and (6).
    [Show full text]
  • Interior Structure of Terrestrial Planets Tilman Spohn Überblick Überblick Komplexe Systeme Weltraum
    Interior Structure of Terrestrial Planets Tilman Spohn Überblick Überblick Komplexe Systeme Weltraum ErosionErosion durchdurch Sonnenwind;Sonnenwind; ImpakteImpakte Biosphäre Hydrosphäre Atmosphäre Kruste Biogeochemiche Wechselwirkungen stabilisieren die VulkanismusVulkanismus AusgasenAusgasen Oberflächentemperatur (Kohlenstoff Zyklus) Mantel Weltraum Magnetosphäre ErosionErosion durchdurch AbschiirmungAbschiirmung Sonnenwind;Sonnenwind; ImpakteImpakte Biosphäre Hydrosphäre Atmosphäre Kruste Subduktion,Subduktion, VolatilrückführungVolatilrückführung undund VulkanismusVulkanismus AusgasenAusgasen verstärkteverstärkte KühlungKühlung Mantel KonvektiveKonvektive KühlungKühlung Kern DynamoDynamo Die Allianz Interior Structure 7 Tilman Spohn, IfP Münster 0.5 ME 0.8 ME 1 ME 2.5 ME 5 ME Interior Structure Interior Structure models aim at determining Mars the masses of major chemical reservoirs the depths to chemical discontinuities and phase transition boundaries the variation with depth of thermodynamic state variables (r, P, T) and transport parameters Folie 9 > Spohn Of Particular Interest… Core radius State of the core Inner core radius Heat flow from the core Transport parameters Folie 10 > Spohn Interior Structure Constraints Mass Moment of inertia factor Gravity field, Topography Rotation parameters Tides Surface rock chemistry/ mineralogy Cosmochemical constraints Laboratory data Magnetism MGS Gravity Field of Mars Future: Seismology! Heat flow Folie 11 > Spohn Doppler Principle 12 T. Spohn, IfP June 24, 2003 Mars Jupiter Ganymede Chemical Components: Gas (H, He), Ice (NH3, CH4, H2O), Rock/Iron 13 Page 14 > Objectives and Accomplishments > Prof. Dr.Tilman Spohn Chemistry Chondritic ratio Fe/Si = 1.71 Mg2SiO4 (olivine) mantle and Fe core 16 Surface Rock 17 SNC Meteorites Samples from Mars? SNC: Shergotty,Nahkla, Chassigny Most of them are young: a few 100 million to 1 billion years Basalts 18 Tilman Spohn, IfP Münster 1st HGF Alliance Week, Berlin,14 May 2008 Dynamic Tidal Response Constraint Tidal deformation is characterized by ..
    [Show full text]
  • Enceladus: Present Internal Structure and Differentiation by Early and Long-Term Radiogenic Heating
    Icarus 188 (2007) 345–355 www.elsevier.com/locate/icarus Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating Gerald Schubert a,b,∗, John D. Anderson c,BryanJ.Travisd, Jennifer Palguta a a Department of Earth and Space Sciences, University of California, 595 Charles E. Young Drive East, Los Angeles, CA 90095-1567, USA b Institute of Geophysics and Planetary Physics, University of California, 603 Charles E. Young Drive East, Los Angeles, CA 90095-1567, USA c Global Aerospace Corporation, 711 West Woodbury Road, Suite H, Altadena, CA 91001-5327, USA d Earth & Environmental Sciences Division, EES-2/MS-F665, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Received 30 May 2006; revised 27 November 2006 Available online 8 January 2007 Abstract Pre-Cassini images of Saturn’s small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus’ interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus’ thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water–ice shell.
    [Show full text]
  • Geology of Dwarf Planet Ceres and Meteorite Analogs H
    80th Annual Meeting of the Meteoritical Society 2017 (LPI Contrib. No. 1987) 6003.pdf GEOLOGY OF DWARF PLANET CERES AND METEORITE ANALOGS H. Y. McSween1, C. A. Raymond2, T. H. Prettyman3, M. C. De Sanctis4, J. C. Castillo-Rogez2, C. T. Russell5, and the Dawn Science Team, 1Department of Earth & Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, [email protected]. 2Jet Propulsion Laboratory, Pasadena, CA 91109, 3Planetary Science Institute, Tucson, AZ 85719, 4Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica, Rome, Italy, 5Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA 90095. Introduction: Although no known meteorites are thought to derive from Ceres, CI/CM carbonaceous chondrites are potential analogs for its composition and alteration [1]. These meteorites have primitive chemical compositions, despite having suffered aqueous alteration; this paradox can be explained by closed-system alteration in small parent bodies where low permeability limited fluid transport. In contrast, Ceres, the largest asteroidal body, has experi- enced extensive alteration accompanied by differentiation of silicates and volatiles [2]. The ancient surface of Ceres has a crater density similar to Vesta, but basins >400 km are absent or relaxed. The Dawn spacecraft’s GRaND instrument revealed near-surface ice concentrations in the regolith at high latitudes [3], exposed on the surface locally in a few craters [4]. The VIR instrument indicates a dark surface interpreted as a lag deposit from ice sublimation and composed of ammoniated clays, serpentine, MgCa-carbonates, and a darkening component [5]. Elemental analysis of Fe and H abundances in the non-icy regolith are lower and higher, respective- ly, than for CI/CM chondrites [3].
    [Show full text]
  • The Moment of Inertia Factor of Mars: Implications for Geochemical Models of the Mar- Tian Interior
    Lunar and Planetary Science XXVIII 1147.PDF The Moment of Inertia Factor of Mars: Implications for Geochemical Models of the Mar- tian Interior. C.M. Bertka and Y. Fei, Geophysical Laboratory and Center for High-Pressure Re- search, Carnegie Institution of Washington, 5251 Broad Branch Rd., N.W., Washington DC 20015 (e-mail: [email protected]) Introduction: Data constraining the Results: The Dreibus and Wänke model structure and composition of the Martian in- predicts a core composition of Fe with terior are limited. Presently, the strongest 14 wt% S. The moment of inertia factor that geophysical constraint we have for Mars is we calculate for a DW model mantle and core knowledge of the mass and radius of the is 0.368. This calculation assumes a high- planet. Using the mass and radius of the temperature P-T profile for the Martian inte- planet and the moment of inertia factor as rior and does not include a crust. Choosing a constraints, two of three variables, mantle low-temperature profile for the interior results density, core size, and core density, can be in an increase of the moment of inertia factor calculated as a function of one of the three of 0.001. We have also considered a variation variables. Unfortunately, the Martian moment in core composition from pure Fe to FeS. This of inertia factor is not well known either. Bills variation results in a corresponding variation (1) has argued that the commonly accepted in core size, core size increases with increas- moment of inertia factor of 0.365 may be too ing S content, but changes the moment of in- high and that lower values are equally feasi- ertia factor by only ± 0.001.
    [Show full text]
  • CORELESS TERRESTRIAL EXOPLANETS Linda T
    The Astrophysical Journal, 688:628Y635, 2008 November 20 A # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. CORELESS TERRESTRIAL EXOPLANETS Linda T. Elkins-Tanton Department Earth, Atmospheric, and Planetary Sciences, MIT, Building 54-824, 77 Massachusetts Avenue, Cambridge MA 02139; [email protected] and Sara Seager Department Earth, Atmospheric, and Planetary Sciences, Department of Physics, MIT, Building 54-1626, 77 Massachusetts Avenue, Cambridge MA 02139 Received 2008 March 8; accepted 2008 July 26 ABSTRACT Differentiation in terrestrial planets is expected to include the formation of a metallic iron core. We predict the existence of terrestrial planets that have differentiated but have no metallic core, planets that are effectively a giant silicate mantle. We discuss two paths to forming a coreless terrestrial planet, whereby the oxidation state during planetary accretion and solidification will determine the size or existence of any metallic core. Under this hypothesis, any metallic iron in the bulk accreting material is oxidized by water, binding the iron in the form of iron oxide into the silicate minerals of the planetary mantle. The existence of such silicate planets has consequences for interpreting the compositions and interior density structures of exoplanets based on their mass and radius measurements. Subject headinggs: accretion, accretion disks — planets and satellites: formation — solar system: formation Online material: color figure 1. INTRODUCTION the planet as well (Rubie et al. 2003; Terasaki et al. 2005; Jacobsen 2005). Heat is converted from the kinetic energy of Understanding the interior composition of exoplanets based on accretion and from potential energy release during differentiation. their mass and radius measurements is a growing field of study.
    [Show full text]
  • Internal Differentiation and Thermal History of Giant Icy Moons: Implications for the Dichotomy Between Ganymede and Callisto
    EPSC Abstracts Vol. 5, EPSC2010-185, 2010 European Planetary Science Congress 2010 c Author(s) 2010 Internal differentiation and thermal history of giant icy moons: implications for the dichotomy between Ganymede and Callisto Jun Kimura and Kiyoshi Kuramoto Center for Planetary Science/Hokkaido University, Sapporo, JAPAN ([email protected] / Fax: +81-11-706-2760) Abstract [13] to explain this contrasting characteristic between two moons. Here we focus on an internal evolution in The Ganymede’s interior appears to be clearly early stage and on a dehydration process of pristine differentiated and has a metallic core, judging from rock-metal-mixed core in both moons. the gravity and magnetic field measurements. However processes and timing of the internal 2. Inferred interior structure differentiation including the core formation are highly unclear. Also, origin of different internal state Ganymede and Callisto share similar size and mean of Callisto which has larger moment of inertia factor density at the first glance. However, volume ratio of compared with Ganymede in spite of the similarity in water and rock (and metal) derived from the mean their sizes has not been well understood. We focus on density of both moons are significantly different. a process of dehydration of pristine rock-metal- Assumed that both moons consist of two components mixed core in both moons, and have numerically (water with density of 930 kg m-3 and rock with investigated the moons’ thermal history to explain density of 3,300 kg m-3), core radius is ~1,980 km for the difference in differentiation state between both Ganymede, and ~1,750 km for Callisto.
    [Show full text]
  • Rotational Dynamics of Europa 119
    Bills et al.: Rotational Dynamics of Europa 119 Rotational Dynamics of Europa Bruce G. Bills NASA Goddard Space Flight Center and Scripps Institution of Oceanography Francis Nimmo University of California, Santa Cruz Özgür Karatekin, Tim Van Hoolst, and Nicolas Rambaux Royal Observatory of Belgium Benjamin Levrard Institut de Mécanique Céleste et de Calcul des Ephémérides and Ecole Normale Superieure de Lyon Jacques Laskar Institut de Mécanique Céleste et de Calcul des Ephémérides The rotational state of Europa is only rather poorly constrained at present. It is known to rotate about an axis that is nearly perpendicular to the orbit plane, at a rate that is nearly constant and approximates the mean orbital rate. Small departures from a constant rotation rate and os- cillations of the rotation axis both lead to stresses that may influence the location and orienta- tion of surface tectonic features. However, at present geological evidence for either of these processes is disputed. We describe a variety of issues that future geodetic observations will likely resolve, including variations in the rate and direction of rotation, on a wide range of timescales. Since the external perturbations causing these changes are generally well known, observations of the amplitude and phase of the responses will provide important information about the internal structure of Europa. We focus on three aspects of the rotational dynamics: obliquity, forced librations, and possible small departures from a synchronous rotation rate. Europa’s obliquity should be nonzero, while the rotation rate is likely to be synchronous unless lateral shell thickness variations occur. The tectonic consequences of a nonzero obliquity and true polar wander have yet to be thoroughly investigated.
    [Show full text]
  • Interior Structure and Tidal Response of Venus: Implications for Future Missions
    EPSC Abstracts Vol. 15, EPSC2021-542, 2021 https://doi.org/10.5194/epsc2021-542 Europlanet Science Congress 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Interior structure and tidal response of Venus: Implications for future missions Michaela Walterova1, Frank W. Wagner2, Ana-Catalina Plesa1, and Doris Breuer1 1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2Scientific Software & Compute Services (SSCS), Ulm University, Ulm, Germany Introduction An invaluable source of information about the present interior structure of Venus is the measurement of surface deflections and disturbances to the planet's gravity field caused by tidal deformation. The planet is mainly loaded by the semidiurnal solar tide that probes the interior at the angular frequency ω ≈ 1.25×10-6 rad s-1 [e.g., 1]. The tidal response is then determined by the rheological properties of the body. In this work, we combine interior structure and tidal modeling of Venus to compute and compare measurable quantities, namely the tidal Love numbers k2, the moment of inertia factor MoIF, and the tidal quality factor Q. Our predictions can be tested with future measurements, should current Venus mission proposals (e.g., Veritas and EnVision) be selected. Interior structure and thermal state models In order to calculate the tidal parameters (k2 and Q), we first generate 1-D interior structure models of Venus. Our method is similar to that of [2] in which the interior is subdivided into chemically separated layers: an iron core, a rocky mantle, and a basaltic crust. In addition, steady-state temperature profiles are calculated by applying a mixing-length approach [3], and we vary poorly constrained parameters (crustal density and thickness, iron content in the mantle, reference viscosity of mantle and core, surface and core-mantle heat fluxes).
    [Show full text]
  • From Mercury to a Coreless Terrestrial Planet
    Lunar and Planetary Science XXXIX (2008) 1366.pdf EFFECTS OF OXIDATION ON BUILDING ROCKY PLANETS: FROM MERCURY TO A CORELESS TERRESTRIAL PLANET. L. T. Elkins-Tanton and S. Seager, MIT, Dept. of Earth, Atmospheric, and Planetary Sciences, Cambridge MA, 02139, [email protected]. Introduction: Differentiation in terrestrial planets is overturn through processes of iron enrichment during expected to include the formation of a metallic core. progressive solidification from the bottom of the We suggest that oxidation state during accretion and mantle upward. The unstable material can flow in the solidification may determine the size of any metallic solid state to gravitational stability, with higher-iron core, and we predict the existence of terrestrial planets compositions at lower planetary radii. This critical step that have differentiated but have no metallic core. in planetary evolution from a magma ocean stage Under this hypothesis, any metallic iron in the bulk results in a mantle that is gravitationally stable, with accreting material is oxidized by water, binding the densest silicates lying at lowest radii, and most iron in the form of iron oxide into the silicate minerals buoyant silicates nearest the planetary surface. Thus of the planetary mantle. The planet becomes planetary differentiation includes not only separation effectively a giant silicate mantle without a metal core. of metallic from silicate stages, but also compositional In this case, planetary differentiation will involve only separation of silicates. silicates and volatiles. Conversely, unusually reducing Reducing followed by oxidizing conditions: The conditions near the Sun may have produced the large metallic cores of the terrestrial planets require that core fraction of Mercury.
    [Show full text]
  • Thermal Convection
    Evoluzione termofisica dei corpi minori del Sistema Solare MICHELANGELO FORMISANO ANNIBALE DE GASPARIS WORKSHOP – NAPOLI - 7/8 NOVEMBRE 2019 Definition of Small Solar System Bodies (1) A PLANET IS A CELESTIAL BODY THAT: a)IS IN ORBIT AROUND THE SUN; b)HAS SUFFICIENT MASS FOR ITS SELF-GRAVITY TO OVERCOME RIGID BODY FORCES SO THAT IT ASSUMES A HYDROSTATIC EQUILIBRIUM (NEARLY ROUND) SHAPE; (3) All other objects, c)HAS CLEARED THE NEIGHBOURHOOD AROUND ITS ORBIT. except satellites, orbiting the Sun shall be referred to (2) A "DWARF PLANET" IS A CELESTIAL BODY THAT: collectively as "Small Solar a)IS IN ORBIT AROUND THE SUN; System Bodies". b)HAS SUFFICIENT MASS FOR ITS SELF-GRAVITY TO OVERCOME RIGID BODY FORCES SO THAT IT ASSUMES A HYDROSTATIC EQUILIBRIUM (NEARLY ROUND) SHAPE; c)HAS NOT CLEARED THE NEIGHBOURHOOD AROUND ITS ORBIT; d)IS NOT A SATELLITE. Why studying small bodies? SMALL BODIES ARE OBJECTS THAT HAVE PRESERVED INFORMATION ABOUT THE PRIMORDIAL PHASES OF OUR SOLAR SYSTEM. Information about the primordial processes of the planetary formation, water origin on Earth, water role in the thermophysical evolution of planets, role of the organics, etc... What is the planetary differentiation? • DIFFERENTIATION MEANS TO MAKE A HOMOGENOUS BODY HETEROGENEOUS. • IT IS THE PROCESS THAT LEADS TO THE STRATIFICATION OF THE ASTEROID/PLANET BASED ON ITS PHYSICAL AND/OR CHEMICAL PROPERTIES. DIFFERENTIATION MINIMIZATION OF GRAVITATIONAL POTENTIAL ENERGY Main stages of the life of a small body - Accretion - Sintering - Core Formation - Mantle convection - Cooling phase Minimum Size for Differentiation The minimum size for the differentiation will be set by the rate of conductive heat loss.
    [Show full text]