The Double SN2' Substitution Performed on Diynes: a New

Total Page:16

File Type:pdf, Size:1020Kb

The Double SN2' Substitution Performed on Diynes: a New Master thesis in organic Chemistry and catalysis The double SN2’ substitution performed on diynes: A New Reaction for the Arsenal of the Organic Chemist C.C.A. van Heerewaarden July 2017 Faculty of mathematics and natural science Stratingh Institute for Chemistry University of Groningen C.C.A. van Heerewaarden Master research thesis Date final report: 13 July 2017 Faculty of mathematics and natural science Stratingh Institute for Chemistry University of Groningen 1st assessor: Prof. Dr. Ir. A.J. Minnaard 2nd assessor: Dr. M.D. Witte Table of contents LIST OF ABBREVIATIONS & SYMBOLS ...................................................................................................... 4 SUMMARY ............................................................................................................................................... 5 1. INTRODUCTION ................................................................................................................................... 6 1.1 Carbon-carbon coupling reactions ................................................................................................ 6 1.2 Cross-coupling reactions ............................................................................................................... 6 1.3 Synthesis, characteristics and applications of dendralenes .......................................................... 9 1.4 Developments towards new reactions for dendralenes ............................................................. 12 1.5 Project aim .................................................................................................................................. 13 1.6 References ................................................................................................................................... 13 2. RESULTS & DISCUSSIONS ................................................................................................................... 16 2.1 Introduction to the double SN2’ substitution reaction on diynes ............................................... 16 2.2 Methodology & optimization ...................................................................................................... 17 2.3 Investigation of the scope of the reaction .................................................................................. 20 2.4 Proposed mechanism .................................................................................................................. 26 2.5 Dicobaltoctacarbonyl complexation............................................................................................ 29 2.6 Outlook & recommendations ...................................................................................................... 31 2.7 References ................................................................................................................................... 32 3. CONCLUSIONS ................................................................................................................................... 34 4. EXPERIMENTALS ................................................................................................................................ 35 4.1 General methods ......................................................................................................................... 35 4.2 General procedure for performing a quantitative NMR experiment .......................................... 35 4.3 Synthesis of compounds .............................................................................................................. 36 4.4 DOT study for the quantitative NMR .......................................................................................... 42 4.5 NMR spectra of isolated compounds .......................................................................................... 43 4.6 FT-IR spectra of cobalt complexes ............................................................................................... 62 4.7 GC-MS spectra of isolated ........................................................................................................... 63 4.8 X-ray parameters and spectra ..................................................................................................... 71 4.9 References ................................................................................................................................... 73 ACKNOWLEDGMENTS ........................................................................................................................... 74 LIST OF ABBREVIATIONS & SYMBOLS α - Alpha β - Beta δ - Delta 1H - Proton 13C - Carbon-13 acac - Acetylacetone Ar - Aryl BuLi - Butyllithium Cat - Catalyst Co - Cobalt CDCl3 - Chloroform-d DCM - Dichloromethane DMS - Dimethylsulfide DMSO - Dimethylsulfoxide dppe - 1,2-bis(difenylfosfino)ethane dppf - 1,1′-Ferrocenediyl-bis(diphenylphosphine) dppp - 1,3-Bis(diphenylphosphino)propane DTDA - Diene‐transmissive Diels‐Alder Et2O - Diethyl ether FT-IR - Fourier transform infrared spectroscopy GC-MS - Gas chromatography mass spectroscopy HCl - Hydrogen chloride IPr - (1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazo-2-ylidene) J - Coupling constant MgSO4 - Magnesium sulfate NaHCO3 - Sodium bicarbonate NaSO4 - Sodium sulfate NCS - N-chlorosuccinimide Ni - Nickel NMR - Nuclear magnetic resonance Nu - Nucleophile OLED - Organic light-emitting diode OPV - Organic photovoltaic Pd - Palladium Q-NMR - Quantitative nuclear magnetic resonance r.t. - Room temperature t-BuOK - Potassium tert-butoxide t-BuOH - Tert-butyl alcohol THF - Tetrahydrofuran LIST OF ABBREVIATIONS & SYMBOLS Page 4 SUMMARY This thesis describes the newly discovered double SN2’ substitution reaction on diynes. This reaction was discovered in the search for new routes towards dendralenes utilizing double SN2’ cross-coupling reactions. In this new discovered double SN2’ substitution reaction, two Grignard nucleophiles are coupled with a diyne containing two leaving group functionalities. This coupling is performed in the presence of a Nickel catalyst and results in a rearrangement which yields a conjugated system with one internal alkyne functionality as shown below. The double SN2’ substitution reaction performed on a diyne using phenylmagnesiumbromide. In the first stage of this thesis the reaction was optimized in term of its yield in which the influence of different catalysts, ligands and their concentration was investigated. The use of nickel catalysts with a dppp ligand gave the highest yield. Next, reaction conditions like solvent, initial starting temperature, and the amount of Grignard reagent were studied. This resulted in the conclusion that THF was the best solvent, -15 oC was the best initial reaction temperature and three equivalents of Grignard reagent resulted in the highest yield. After the optimization, there was investigated which types of Grignard reagents could be used in this reaction. The use of Aromatic Grignard reagents gave moderate to good yields. Aliphatic and alkyne Grignard reagents gave little to no yield. There was also looked at the effect of different methyl substituents on the carbons in the diyne and the use of methoxy leaving groups. However, the use of chlorine leaving groups and the use of no methyl substituents gave the best yield in most cases. The purification of the products seemed problematic due to limited stability of the products at room temperature. In an effort to solve this there was attempted to stabilize the resulting products by reacting them with dicobalt octacarbonyl directly after the reaction. This strategy did not seem to stabilize the final products, but it was possible to recrystallize the resulting complex and record an x- ray diffraction spectrum which confirmed the structure. The stability of these molecules remained a problem which could only be solved by working around by storing the products at -20 oC or by introducing methyl substituents. Yields could in most cases only be reported using quantitative 1H- NMR unless the yield was high enough to isolate product. SUMMARY Page 5 1. INTRODUCTION 1.1 Carbon-carbon coupling reactions During the past decades, organic chemists have seen a wide expansion in molecules and reactions which are available to them. Many new reactions have been developed which allow the preparation of complex organic molecules with excellent regio-, chemo-, diastereo-, and enantioselectivity.[1] Especially the formation of carbon-carbon bonds has received wide attention and is considered to be the heart of organic synthesis.[2] Many different reactions have been developed during the past decades to achieve efficient carbon-carbon bond formation. Some famous examples include the Grignard reaction, the Claisen condensation, the Wittig reaction, the Michael addition and the Diels- alder reaction. Although almost any organic molecule can be made nowadays, limits are often encountered in yield and efficiency within synthetic pathways. This gave rise to questions have been raised about negative impacts on environment and society of organic chemistry and led chemists to look into further into improving selectivity, yield and methodology of reactions during the last decades. The previously mentioned carbon-carbon bond forming Grignard reaction which was first reported in 1900 is now widely applied in industry and researched throughout many group within academia.[3,4] Grignard reagents are organometallic reagents and onwards from the discovery of Grignard reagents many other organometallics
Recommended publications
  • Carbonylation of Protected Or Non-Protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl
    772 Bull. Korean Chem. Soc. 1994, Vol. 15, No. 9 Sang Chui Shim et al. Carbonylation of Protected or Non-protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl Sang Chui S버 m*, Dong Yub Lee, Heung Jin Choi, Chil Hoon Doh1, and Keun Tai Huh* ^Department of Industrial Chemistry, Kyungpook National University, Taegu 701-702, Korea ^Department of Materials Science and Engineering Kyungsung University, Pusan 608-736, Korea Korea Electrotechnology Research Institute, Changwon, Korea Received May 11, 1994 The cobalt catalyzed carbonylation of bromobenzene having protected aldehyde group gives the corresponding ester in good yields, but 2-bromobenzaldehyde gives 3-alkoxyphthalide in the noticeable yield instead of alkyl 2-formylben- zoates. Introduction Table 1. Carbonylation of 2-Bromobenzenes Having Protected Aldehyde Groups to 2-Substituted Alkyl Benzoates Catalyzed by The metal-catalyzed carbonyl가 ion of aryl halides has ver­ Cobalt CarbonyF satile utility in the preparative organic chemistry1. Of many Run Reactant catalysts2 used in the carbonylation of aryl halides cobalt Alcohol Product Yield (%y carbonyl species have been conducted under mild conditions, 1 1 CH3CH2OH 2b 88 room temperature and one atmospheric pressure of carbon 2 1 CH3CH2OH 2b 75 。 monoxide. More recently, using dicobalt octacarbonyl at room 3 1 CH3CH2OH 2b 38d temperature under one atmospheric pressure of carbon mo­ 4 1 CH3OH 2a 80 noxide many applications were reported on the carbonylation 5 1 CH3CH2CH2OH 2c 85 of benzal halides,3-5 and halo (halomethyl)benzenes6-8. 6 (CH3)2CHOH 21 However, studies2,9-11 on the carbonylation of aryl halides 1 2d 7 CH3CH2CH2CH2OH having other reactive functional groups are rare.
    [Show full text]
  • An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum Krt
    CROATICA CHEMICA ACTA CCACAA 56 (2) 191-197 (1983) YU ISSN 0011-1643 CCA-1368 UDC 547 :541.6 Originai Scientific Paper An Empirical Formula Expressing the Mutual Dependence of C-C Bond Distances* Arpad Furka Department of Organic Chemistry Eotvos Lorcind University, Muzeum krt. 4/B Budapest, 1088, Hungary Received August 30, 1982 An empirical formula is suggested to describe the mutuaJ dependence of the length of the bonds formed by a central atom in systems built up from equivalent carbon atoms, e.g. diamond, graphite, the cumulene and polyyne chains and intermediate struc­ tures between them. A geometrical representation of the relation­ ship is a regular tetrahedron. A point of this tetrahedron charac­ terizes the arrangement of the atoms around the central one. From the position of the point the bond distances - and possibly the bond angles - can be deduced. Experimental bond length determinations have made clear in the last few decades that the C-C bond distances vary over a relatively long range, from about 1.2 A to about 1.6 A. There were several attempts to correlate these bond distances on empirical way to different factors like double-bond 1 2 4 character, • n:-bond order,3 state of hybridization, •5 the number of adjacent bonds,6 or the overlap integrals.7 Recently ·a new empirical formula has been suggested to describe the mutual dependence of the C-C bond distances.8 The subject of this paper is the interpretation of this empirical equation. Carbon has three allotropic modifications: diamond, graphite and the not completely characterized chain form9•10 (carbynes).
    [Show full text]
  • A General Synthesis of Dendralenes†
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue A general synthesis of dendralenes† Cite this: Chem. Sci.,2019,10, 9969 Josemon George, Jas S. Ward and Michael S. Sherburn * All publication charges for this article The first general synthetic approach to substituted [3]- and higher dendralenes is reported. Fifty-one mono- have been paid for by the Royal Society of Chemistry through to penta-substituted dendralenes carrying alkyl-, cycloalkyl-, alkenyl-, alkynyl-, aryl- and heteroaryl-substitutents are accessed, and the first (E)/(Z)-stereoselective syntheses of dendralenes are reported (twenty-eight examples). The approach involves twofold Pd(0)-catalyzed Negishi couplings of Received 9th August 2019 1,1-dibromoalkenes with alkenylzinc reagents, and exploits both substrate- and catalyst-controlled Accepted 11th September 2019 aspects of chemo-, regio- and stereoselectivity in the two C(sp2)–C(sp2) bond forming steps. The value DOI: 10.1039/c9sc03976g of the new hydrocarbons in rapid structural complexity generation is demonstrated through their rsc.li/chemical-science deployment in unprecedented diene- and triene-transmissive pericyclic reaction sequences. Introduction undergo sequential additions in an interconnected (i.e. diene- transmissive) manner.3,8,9 Creative Commons Attribution 3.0 Unported Licence. In hydrocarbons comprising carbon atoms that are sp2 As the potential of dendralenes has been more widely hybridized, the absence or presence of chain bifurcations and recognized, numerous publications focusing on dendralene 10 rings permit four fundamental structural families to be synthesis have recently appeared. The rapid expansion of designed (Fig. 1).1 Dendralenes are the acyclic, branched class interest in dendralenes, combined with the paucity of synthetic of structures that, until the turn of this century, were widely methods to access them, renders the recent contributions perceived to be unmanageable.2,3 [3]Dendralene through [12] signicant.
    [Show full text]
  • Conversion of Methoxy and Hydroxyl Functionalities of Phenolic Monomers Over Zeolites Rajeeva Thilakaratne Iowa State University
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 2016 Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Rajeeva Thilakaratne Iowa State University Jean-Philippe Tessonnier Iowa State University, [email protected] Robert C. Brown Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/cbe_pubs Part of the Biomechanical Engineering Commons, and the Catalysis and Reaction Engineering Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ cbe_pubs/328. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Conversion of methoxy and hydroxyl functionalities of phenolic monomers over zeolites Abstract This study investigates the mechanisms of gas phase anisole and phenol conversion over zeolite catalyst. These monomers contain methoxy and hydroxyl groups, the predominant functionalities of the phenolic products of lignin pyrolysis. The proposed reaction mechanisms for anisole and phenol are distinct, with significant differences in product distributions. The nia sole mechanism involves methenium ions in the conversion of phenol and alkylating aromatics inside zeolite pores. Phenol converts primarily to benzene and naphthalene via a ring opening reaction promoted by hydroxyl radicals. The hep nol mechanism sheds insights on how reactive bi-radicals generated from fragmented phenol aromatic rings (identified as dominant coke precursors) cyclize rapidly to produce polyaromatic hydrocarbons (PAHs).
    [Show full text]
  • Stabilization of Anti-Aromatic and Strained Five-Membered Rings with A
    ARTICLES PUBLISHED ONLINE: 23 JUNE 2013 | DOI: 10.1038/NCHEM.1690 Stabilization of anti-aromatic and strained five-membered rings with a transition metal Congqing Zhu1, Shunhua Li1,MingLuo1, Xiaoxi Zhou1, Yufen Niu1, Minglian Lin2, Jun Zhu1,2*, Zexing Cao1,2,XinLu1,2, Tingbin Wen1, Zhaoxiong Xie1,Paulv.R.Schleyer3 and Haiping Xia1* Anti-aromatic compounds, as well as small cyclic alkynes or carbynes, are particularly challenging synthetic goals. The combination of their destabilizing features hinders attempts to prepare molecules such as pentalyne, an 8p-electron anti- aromatic bicycle with extremely high ring strain. Here we describe the facile synthesis of osmapentalyne derivatives that are thermally viable, despite containing the smallest angles observed so far at a carbyne carbon. The compounds are characterized using X-ray crystallography, and their computed energies and magnetic properties reveal aromatic character. Hence, the incorporation of the osmium centre not only reduces the ring strain of the parent pentalyne, but also converts its Hu¨ckel anti-aromaticity into Craig-type Mo¨bius aromaticity in the metallapentalynes. The concept of aromaticity is thus extended to five-membered rings containing a metal–carbon triple bond. Moreover, these metal–aromatic compounds exhibit unusual optical effects such as near-infrared photoluminescence with particularly large Stokes shifts, long lifetimes and aggregation enhancement. romaticity is a fascinating topic that has long interested Results and discussion both experimentalists and theoreticians because of its ever- Synthesis, characterization and reactivity of osmapentalynes. Aincreasing diversity1–5. The Hu¨ckel aromaticity rule6 applies Treatment of complex 1 (ref. 32) with methyl propiolate to cyclic circuits of 4n þ 2 mobile electrons, but Mo¨bius topologies (HC;CCOOCH3) at room temperature produced osmapentalyne favour 4n delocalized electron counts7–10.
    [Show full text]
  • Direct Carboniiatiom of Aromatic Nttriles Using
    DIRECT CARBONIIATIOM OF AROMATIC NTTRILES USING DICOBALT OCTACARBONIL by JOSEPH EDMUND GERVAX B..Sc Honours, University of Montreal, Loyola College, l?6l A THESIS SUBMITTED IN PARTIAL FUIFIIMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Chemistry We accept this; thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June, 1963 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that per• mission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying, or publi• cation of this thesis for financial gain shall not be allowed without my written permission. Department of CHEMISTRY The University of British Columbia,. Vancouver 8, Canada. Date June 2°» W ABSTRACT A new method of synthesizing N-substituted phthalimidines is described. When benzonitrile was reacted with carbon monoxide containing about 0.0k volume percent of hydrogen and in the presence of dicobalt octacarbonyl and pyridine in benzene solution at 235° and 3U00 p.s.i. pressure the following compounds were produced: MTbenzyphthalimidine (8$), N-phenylphthalimidine (3»7%), and benzamide (3*9%)- When lj.0 p.s.i. hydrogen was added under the same reaction conditions, the yield of N-benzylphthalimidine increased (16%)., When benzonitrile was subjected to the same reaction conditions using 2U0 p.s.d* hydrogen and no pyridine, N-benzylphthalimidine (1%%) and sym-dibenzylurea (8$) were produced.
    [Show full text]
  • Chemical Intercalation of Zerovalent Metals Into 2D Layered Bi2se3 Nanoribbons † † ‡ † † † § Kristie J
    Article pubs.acs.org/JACS Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons † † ‡ † † † § Kristie J. Koski, Colin D. Wessells, Bryan W. Reed, Judy J. Cha, Desheng Kong, and Yi Cui*, , † Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States ‡ Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States § SLAC National Accelerator Laboratory, Stanford Institute for Materials and Energy Sciences, 2575 Sand Hill Road, Menlo Park, California 94025, United States *S Supporting Information ABSTRACT: We have developed a chemical method to intercalate a variety of zerovalent metal atoms into two-dimen- sional (2D) layered Bi2Se3 chalcogenide nanoribbons. We use a chemical reaction, such as a disproportionation redox reaction, to generate dilute zerovalent metal atoms in a refluxing solution, which intercalate into the layered Bi2Se3 structure. The zerovalent nature of the intercalant allows superstoichiometric intercalation of metal atoms such as Ag, Au, Co, Cu, Fe, In, Ni, and Sn. We foresee the impact of this methodology in establishing novel fundamental physical behaviors and in possible energy applications. 1. INTRODUCTION Ni, and Sn. Some interesting effects that could arise with − 7−10 intercalation are superconductivity, such as in Cu Bi2Se3, Intercalation is the insertion of a guest species into a host 6 lattice. Intercalation into layered materials is essential to battery enhanced conductivity, or possibly opening a surface state gap electrodes, electrochromics, detergents, and solid lubricants and in topological insulator Bi2Se3. This method of zerovalent metal is important in exotic fundamental two-dimensional (2D) intercalation may also be extended to other layered materials.
    [Show full text]
  • Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc
    Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc Richard H. Duncan Lyngdoh*,a, Henry F. Schaefer III*,b and R. Bruce King*,b a Department of Chemistry, North-Eastern Hill University, Shillong 793022, India B Centre for Computational Quantum Chemistry, University of Georgia, Athens GA 30602 ABSTRACT: This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) n+ the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) , (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging.
    [Show full text]
  • Supporting Information
    Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 Supporting information Thermal cyclotrimerization of tetraphenyl[5]cumulene (tetraphenylhexapentaene) to tricyclodecadiene derivative † Nazrul Islam, Takashi Ooi , Tetsuo Iwasawa, Masaki Nishiuchi and Yasuhiko * Kawamura Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan †Institute of Health Biosciences, The University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan *Corresponding author. E-mail: [email protected] Experimental section 1. General Methods: Chemicals were obtained from Tokyo Kasei (Tokyo Chemical Industry), Wako (Wako Pure Chemical Industries), Aldrich, and Merck and used as received if not specified 1 13 otherwise. H NMR and C NMR spectra were recorded in CDCl3 on a JEOL EX-400 spectrometer with TMS as an internal standard. HPLC analysis was performed on a JASCO high-performance liquid chromatography system equipped with a 4.6 x 250 mm silica gel column (JASCO Finepak® SIL) and a HITACHI diode array detector (HITACHI L-2450; detector wavelength = 254 nm; mobile phase, CH3CN : H2O = 8:2 v/v). UV-VIS spectra were measured with a Hitachi UV-2000 spectrophotometer. Mass spectra were determined by a Shimadzu GC-MS QP-1000 with a direct inlet attachment using an ionizing voltage of 20 and 70 eV. Elemental analyses were performed by using Yanoco MT-5 instrument at the microanalytical laboratory of this university. X-ray crystallographic analysis was performed with a Rigaku RAXIS-RAPID instrument 1 Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008 (Rigaku Corporation).
    [Show full text]
  • A Study of [3] Dendralene, Its Synthesis and Applications
    A STUDY OF [3] DENDRALENE, ITS SYNTHESIS AND APPLICATIONS by Susannah M. Gillam Thesis presented for the degree of Doctor of Philosophy University of Edinburgh January 1990 fk 9 To my parents and my sister for their continuous support DECLARATION I declare that this thesis is my own composition, that it is a record of the work which has been carried out by myself, and that it has not been submitted in any previous application for a higher degree. The thesis describes the results of research carried out in the Department of Chemistry, University of Edinburgh, under the supervision of Dr. I. Gosney since 1st October 1986, the date of my admission as a research student. POST-GRADUATE LECTURE COURSES The following is a statement of the courses attended during the period of research: - Organic Research seminars (3 years attendance) - Current Topics in Organic Chemistry, various lecturers, (15 lectures) - Strategy of Synthesis, Dr. I. Gosney (5 lectures). - Structural Elucidation, Dr. D. Leaver (5 lectures) - Mass Spectrornetry, Prof. K.R. Jennings (5 lectures). - Medicinal Chemistry, Prof. P.G. Sammes, 1988 (5 lectures). - Medicinal Chemistry, Dr. P. Leeson and Dr. R. Baker, 1989, (5 lectures). - Recent Advances in Organic Chemistry, various speakers (5 lectures). - Multipulse n.m.r. Spectroscopy, Dr. I. Sadler (5 lectures). - Two Dimensional n.m.r. Spectroscopy, Dr. I. Sadler, Dr. R. Baxter and Dr. B. Birdsall (5 lectures). Attended and passed the Scientific German Course 1987. ACKNOWLEDGEMENTS I would like to thank my Ph.D. supervisor Dr. Ian Gosney for his help and support throughout this work. I would also like to extend my thanks to the technical staff here at the University of Edinburgh and particularly to J.
    [Show full text]
  • Synthesis of Bowl-Shaped Polycyclic Aromatic Compounds and Homo-Bi-Dentate 4,5-Diarylphenanthrene Ligands
    Graduate Theses, Dissertations, and Problem Reports 2008 Synthesis of bowl-shaped polycyclic aromatic compounds and homo-bi-dentate 4,5-diarylphenanthrene ligands Daehwan Kim West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Kim, Daehwan, "Synthesis of bowl-shaped polycyclic aromatic compounds and homo-bi-dentate 4,5-diarylphenanthrene ligands" (2008). Graduate Theses, Dissertations, and Problem Reports. 4391. https://researchrepository.wvu.edu/etd/4391 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Synthesis of Bowl-shaped Polycyclic Aromatic Compounds and Homo-bi-dentate 4,5-Diarylphenanthrene Ligands Daehwan Kim Dissertation Submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Organic Chemistry Kung K. Wang, Ph. D., Chair Peter M. Gannett, Ph. D. John H. Penn, Ph. D. Michael Shi, Ph. D. Björn C.
    [Show full text]
  • Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical Studies."
    rl ì 6. .B,1l thesis titled: "Gas Phase Synthesis of Interstellar Cumulenes. Mass Spectrometric and Theoretical studies." submitted for the Degree of Doctor of Philosophy (Ph.D') by Stephen J. Blanksby B.Sc.(Hons,) from the Department of ChemistrY The University of Adelaide Cì UCE April 1999 Preface Contents Title page (i) Contents (ii) Abstract (v) Statement of OriginalitY (vi) Acknowledgments (vii) List of Figures (ix) Phase" I Chapter 1. "The Generation and Characterisation of Ions in the Gas 1.I Abstract I 1.II Generating ions 2 t0 l.ru The Mass SPectrometer t2 1.IV Characterisation of Ions 1.V Fragmentation Behaviour 22 Chapter 2 "Theoretical Methods for the Determination of Structure and 26 Energetics" 26 2,7 Abstract 27 2.IT Molecular Orbital Theory JJ 2.TII Density Functional Theory 2.rv Calculation of Molecular Properties 34 2.V Unimolecular Reactions 35 Chapter 3 "Interstellar and Circumstellar Cumulenes. Mass Spectrometric and 38 Related Studies" 3.I Abstract 38 3.II Interstellar Cumulenes 39 3.III Generation of Interstellar Cumulenes by Mass Spectrometry 46 3.IV Summary 59 Preface Chapter 4 "Generation of Two Isomers of C5H from the Corresponding Anions' 61 ATheoreticallyMotivatedMassSpectrometricStudy.'. 6l 4.r Abstract 62 4.rl Introduction 66 4.III Results and Discussion 83 4.IV Conclusions 84 4.V Experimental Section 89 4.VI Appendices 92 Chapter 5 "Gas Phase Syntheses of Three Isomeric CSHZ Radical Anions and Their Elusive Neutrals. A Joint Experimental and Theoretical Study." 92 5.I Abstract 93 5.II Introduction 95 5.ru Results and Discussion t12 5.IV Conclusions 113 5.V Experimental Section ttl 5.VI Appendices t20 Chapter 6 "Gas Phase Syntheses of Three Isomeric ClHz Radical Anions and Their Elusive Neutrals.
    [Show full text]