Nutritional and Bioactive Compounds in Mexican Lupin Beans Species: a Mini-Review

Total Page:16

File Type:pdf, Size:1020Kb

Nutritional and Bioactive Compounds in Mexican Lupin Beans Species: a Mini-Review nutrients Review Nutritional and Bioactive Compounds in Mexican Lupin Beans Species: A Mini-Review Mario Alberto Ruiz-López 1,*, Lucia Barrientos-Ramírez 2, Pedro Macedonio García-López 1, Elia Herminia Valdés-Miramontes 3, Juan Francisco Zamora-Natera 1, Ramón Rodríguez-Macias 1, Eduardo Salcedo-Pérez 1, Jacinto Bañuelos-Pineda 4 and J. Jesús Vargas-Radillo 2 1 Botany and Zoology Department, CUCBA, University of Guadalajara, Zapopan, Jalisco ZP 45110, Mexico 2 Wood, Pulp and Paper Department, CUCEI, University of Guadalajara, Zapopan, Jalisco ZP 45110, Mexico 3 Research in Behavioral Feeding and Nutrition Institute CUSUR, University of Guadalajara, Cd. Guzman, Jalisco ZP 49000, Mexico 4 Veterinary Medicine Departarment CUCBA, University of Guadalajara, Zapopan, Jalisco ZP 45110, Mexico * Correspondence: [email protected]; Tel.: +52-(33)-37771192 (ext. 33007) Received: 1 July 2019; Accepted: 27 July 2019; Published: 2 August 2019 Abstract: As a source of bioactive compounds, species of the genus Lupinus are interesting legumes from a nutritional point of view. Although wild species are abundant and represent a potential source of nutrients and biologically active compounds, most research has focused on domesticated and semi-domesticated species, such as Lupinus angustifolius, Lupinus albus, Lupinus luteus, and Lupinus mutabilis. Therefore, in this review, we focus on recent research conducted on the wild Lupinus species of Mexico. The nutritional content of these species is characterized (similar to those of the domesticated species), including proteins (isolates), lipids, minerals, dietary fiber, and bioactive compounds, such as oligosaccharides, flavonoids, and alkaloids. Keywords: legumes; Mexican lupins; protein isolates; dietary fiber; nutrients; bioactives compounds 1. Introduction At present, epidemiological studies have shown that plant-based diets reduce the risks of developing chronic diseases [1,2]. In this sense, legumes represent one of the most important food categories. They have been widely cultivated and used as basic food sources to cover protein and energy needs throughout human history [3]. Legume seeds are used as a source of proteins, lipids, and dietary fiber in human and animal nutrition, and they are also adapted to marginal soils and climates. In many regions of the world, legumes are the only source of dietary protein and have been used as an effective substitute for animal protein at a lower cost. Additionally, it has been proven that legumes contain a large number of bioactive compounds with potential health benefits, such as the prevention of coronary heart disease, cancer, and diabetes. Among these compounds are oligosaccharides, phenols, and alkaloids. The interest in these compounds is due to their possible beneficial applications (Figure1) as metabolic, hormonal, and digestive system regulators, as well as prebiotics [4], so it is of great interest to increase the knowledge of legumes as functional foods and the importance of their bioactive compounds [2]. Nutrients 2019, 11, 1785; doi:10.3390/nu11081785 www.mdpi.com/journal/nutrients Nutrients 2019, 11, 1785 2 of 19 Nutrients 2019,, 11,, xx FORFOR PEERPEER REVIEWREVIEW 2 of 19 Figure 1. Bioactive compounds compounds in in legume legume seeds and their and physiological effects effects (adapted from Muzquiz et al., 2012 [[4]).4]). L-DOPA (L-Dopaminie),(L-Dopaminie), ODAPODAP (oxalyl-L-(oxalyl-L-αα,,ββ-diaminopropionic-diaminopropionic acid).acid)acid) 2. Domesticated Domesticated Lupins Lupins Despite their high protein and dietary fiber fiber contentcontent and potential health benefits, benefits, lupins are undervalued legumes.legumes. There There is ais great a great diversity diversity of species, of species, but few arebut cultivated. few are Lupinuscultivated. angustifolius Lupinus, angustifoliusLupinus albus,, ,LupinusLupinusLupinus albusalbus luteus,, LupinusLupinus, and Lupinus luteusluteus mutabilis,, andand LupinusLupinus(Figures mutabilismutabilis2–5) are (( FigureFigure among 22 those FigureFigure that 33 FigureFigure are domesticated. 44 FigureFigure 5)5) areDomesticated among those species that are have domesticated. been improved Domesticated and have (a) speciesspecies low alkaloid havehave beenbeen content improvedimproved to increase andand havehave edibility (a)(a) lowlow for alkaloidhumans content and animals, to increase (b) soft edibility seeds with for humans high germination, and animals, and (b) (c) soft indehiscent seeds with pods high that germination, keep their andseeds (c) and indehiscent yield effi cientpods harveststhat keep [5 their]. seeds and yield efficient harvests [5]. Figure 2. LupinusLupinus angusifolius angusifolius (narrow-leafed(narrow-leafed lupin), lupin), Photo: Photo: P.P. White. White. Figure 3. Lupinus albus (withe lupin) Photo: B.Buirchell. Figura 3.. Lupinus albus (withe(withe lupin)lupin) Photo:Photo: B.BuirchellB.Buirchell Nutrients 2019,, 11,, 1785x FOR PEER REVIEW 33 of of 19 Nutrients 2019, 11, x FOR PEER REVIEW 3 of 19 Figure 4. Lupinus luteus (Yellow lupin) Photo: P. White Figure 4. Lupinus luteus (Yellow lupin) Photo: P. White. Figure 4. Lupinus luteus (Yellow lupin) Photo: P. White Figure 5. Lupinus mutabilis (pearl lupin) Photo: P. White. Figure 5. Lupinus mutabilis (pearl lupin) Photo: P. White In relation to theirFigure nutritional 5. Lupinus properties, mutabilis the (pearl protein lupin) content Photo: in P. lupine White seeds is similar to that in soyIn (Tablerelation1), to with their an nutritional acceptable properties, content of the essential protein amino content acids. in lupine In addition, seeds is similar the presence to that of in In relation to their nutritional properties, the protein content in lupine seeds is similar to that in prolaminssoy (Table and 1), lowwith glutelin an acceptable content makescontent lupine of essential proteins amino desirable acids. forthe In preparationaddition, the of foodspresence low inof soy (Table 1), with an acceptable content of essential amino acids. In addition, the presence of gluten.prolamins A gluten-low and low glutelin diet is content one that makes excludes lupine most proteins grains anddesirable is recommended for the preparation for people of foods who have low prolamins and low glutelin content makes lupine proteins desirable for the preparation of foods low celiacin gluten. disease A gluten-low or gluten sensitivity. diet is one For that other excludes people, most however, grains going and is gluten-free recommended can be for unhealthy. people who The in gluten. A gluten-low diet is one that excludes most grains and is recommended for people who benefitshave celiac and risksdisease of aor gluten-free gluten sensitivity. diet should For be carefullyother people, weighed, however, especially going if the gluten-free person starting can thebe have celiac disease or gluten sensitivity. For other people, however, going gluten-free can be newunhealthy. diet does The not benefits truly needand risks to restrict of a gluten-free gluten intake. diet should be carefully weighed, especially if the unhealthy.person starting The thebenefits new anddiet doesrisks notof a truly gluten-free need to di restrictet should gluten be carefully intake. weighed, especially if the person startingTable 1. theChemical new diet composition does not and truly alkaloids need to in therestrict seeds gluten of four intake. lupine species (g/100 g DM). Table 1. Chemical composition and alkaloids in the seeds of four lupine species (g/100 g DM). TableComponent 1. Chemical compositionL. albus and alkaloids L. angustifolius in the seeds of four L. lupine luteus species L. (g/100 mutabilis g DM). ComponentDry matter L. albus 90.4 L. angustifolius 90.6 91.7L. luteus 62.0L. mutabilis Component L. albus L. angustifolius L. luteus L. mutabilis Dry matterProteins 90.4 36.390.6 33.0 46.591.7 44.7 62.0 DryProteins matterAshes 90.436.3 3.990.633.0 3.7 3.791.746.5 3.0 62.044.7 ProteinsAshesCrude fat36.33.9 11.533.03.7 6.8 4.646.53.7 14.07 44.73.0 Crude fiber 14.4 14.0 13.9 7.04 CrudeAshes fat 11.53.9 3.76.8 3.74.6 14.073.0 Alkaloids 0.04 0.06 0.1 1.27 CrudeCrude fiber fat 11.514.4 14.06.8 13.94.6 14.077.04 Source: [6,7]. CrudeAlkaloids fiber 14.40.04 14.00.06 13.90.1 7.041.27 Alkaloids 0.04 0.06 0.1 1.27 The protein fractions of several species ofSource: lupines [6,7]. have been isolated, and the two most important Source: [6,7]. are albumins and globulins, which are present at a ratio of 1:9. Globulins represent about 90% of the The protein fractions of several species of lupines have been isolated, and the two most total protein content in the seeds, and they can be separated by ultracentrifugation and chromatography importantThe protein are albumins fractions and of globulins, several whichspecies are of presentlupines at have a ratio been of 1:9. isolated, Globulins and represent the two aboutmost into two main components, vicilins and legumins (also called α-conglutin and β-conglutin), and two important90% of the are total albumins protein andcontent globulins, in the whichseeds, andare present they can at bea ratio separated of 1:9. byGlobulins ultracentrifugation represent about and minor proteins, γ-conglutin and δ-conglutin [8]. 90%chromatography of the total protein into two content main componentsin the seeds,, andvicilins they and can legumins be separated (also by called ultracentrifugation α-conglutin and and β- Lupinus albus γ-conglutin in vitro models have demonstrated the biological activity that potentiates chromatographyconglutin), and two into
Recommended publications
  • Final Report Template
    Native Legumes as a Grain Crop for Diversification in Australia RIRDC Publication No. 10/223 RIRDCInnovation for rural Australia Native Legumes as a Grain Crop for Diversification in Australia by Megan Ryan, Lindsay Bell, Richard Bennett, Margaret Collins and Heather Clarke October 2011 RIRDC Publication No. 10/223 RIRDC Project No. PRJ-000356 © 2011 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-188-4 ISSN 1440-6845 Native Legumes as a Grain Crop for Diversification in Australia Publication No. 10/223 Project No. PRJ-000356 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Agro-Morphological Evaluation of Lupinus Mutabilis in Two Locations in Greece and Association with Insect Pollinators
    agriculture Article Agro-Morphological Evaluation of Lupinus mutabilis in Two Locations in Greece and Association with Insect Pollinators Myrto S. Barda , Tilemachos Chatzigeorgiou , George K. Papadopoulos and Penelope J. Bebeli * Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; [email protected] (M.S.B.); [email protected] (T.C.); [email protected] (G.K.P.) * Correspondence: [email protected]; Tel.: +30-210-529-4626 Abstract: Lupinus mutabilis Sweet is an Andean protein crop with agro-economic potential. However, it is characterized by low yields and phenotypic plasticity related to environmental conditions when cultivated in different locations in Europe. Current research objective was to evaluate L. mutabilis agro-morphological performance in two locations in Greece and to record its pollinators, since these can contribute to optimization of crop performance. For this purpose, eight Andean lupin accessions, one white and one blue lupin commercial varieties were evaluated for 71 agro-morphological traits in a Randomized Complete Block design with three replications. Combined Analysis over Location presented a significant accession-location interaction for traits of economic interest such as seed crude protein and 100 seed weight. Seed crude protein was higher in L. mutabilis accessions (up to 43.8 g 100 g−1 seed) than white and blue lupins. Andean lupin yielded up to 327 kg ha−1 (LIB214) in Kalamata, while its yield was lower than the white lupin in Athens. Using principal component analysis, three groups of accessions were formed, one by each lupin species and three within Andean lupin accessions.
    [Show full text]
  • Growth, Yield and Yield Component Attributes of Narrow-Leafed Lupin
    Tropical Grasslands-Forrajes Tropicales (2019) Vol. 7(1):48–55 48 DOI: 10.17138/TGFT(7)48-55 Research Paper Growth, yield and yield component attributes of narrow-leafed lupin (Lupinus angustifolius L.) varieties in the highlands of Ethiopia Crecimiento, rendimiento y componentes del rendimiento de variedades de lupino dulce de hoja angosta (Lupinus angustifolius L.) en las tierras altas de Etiopía FRIEHIWOT ALEMU1, BIMREW ASMARE2 AND LIKAWENT YEHEYIS3 1Woldiya University, Department of Animal Science, Woldiya, Amhara, Ethiopia. www.wldu.edu.et 2Bahir Dar University, Department of Animal Production and Technology, Bahir Dar, Amhara, Ethiopia. www.bdu.edu/caes 3Amhara Agricultural Research Institute, Bahir Dar, Amhara, Ethiopia. www.arari.gov.et Abstract An experiment was conducted to characterize the growth and yield performance of narrow-leafed sweet blue lupin varieties (Lupinus angustifolius L.) in northwestern Ethiopia. The experiment was laid out in a randomized complete block design with 4 replications and included 7 varieties (Bora, Probor, Sanabor, Vitabor, Haags blaue, Borlu and Boregine). Data on days to flowering and to maturity, flower color, plant height, numbers of leaflets, branches and pods per plant, pod length, number of seeds per pod, forage dry matter (DM) yield, grain yield and 1,000-seed weight were recorded. The results showed that plant height, number of branches per plant, forage DM yield, number of seeds per pod, grain yield and 1,000-seed weight varied significantly (P<0.01) among varieties. The highest forage DM yield at 50% flowering (2.67 t/ha), numbers of pods per plant (16.9) and of seeds per pod (4.15), grain yield (1,900 kg/ha) and 1,000- seed weight (121 g) were obtained from the Boregine variety.
    [Show full text]
  • Andean Lupin (Lupinus Mutabilis)
    Andean lupin (Lupinus mutabilis) Cropping and its opportunities for Europe Udo Prins, Rob van Haren Professor João Neves Martins PhD, Universidade de Lisboa, ISA - Instituto Superior de Agronomia Department with promising Andean lupin accession from LIBBIO project. 1 Lupin as sustainable crop The Andean lupin, Lupinus mutabilis, is one of the four lupin species which is suitable for human consumption. The Andean lupin originates from South- America where it has been part of the menu for thousands of years. The other three lupin species originate from the Middle East, Southern Europe and North Africa. These lupins are the White, Yellow and the Blue (narrow-leaved) lupins. Andean lupin is like the soy bean high in oil and protein content and therefore has the potential to be a good alternative to many soy bean applications. The objective of the LIBBIO project is to introduce Andean lupin to Europe, as a new crop for food and non-food applications. Andean lupin has the advantages that it grows on marginal soils, makes its own nitrogen fertilizer from air by natural symbiosis with bacteria and, when harvested, has nutritious beans, rich in proteins, vegetable oil and prebiotics. Andean lupin oil is rich in unsaturated fatty acids and high in anti- oxidants and Vitamin-E (tocopherol), thereby contributing to a healthy menu. Lupin pod with lupin beans Good for the soil A farmer with care for his soil might consider cultivation of lupin crops. Lupins offer many benefits in a sustainable cropping rotation scheme. Symbiotic bacteria living in root nodules on the roots of lupins fixate nitrogen from the air into N-fertilizer for the crop.
    [Show full text]
  • Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection
    sustainability Review Perennial Grain Legume Domestication Phase I: Criteria for Candidate Species Selection Brandon Schlautman 1,2,* ID , Spencer Barriball 1, Claudia Ciotir 2,3, Sterling Herron 2,3 and Allison J. Miller 2,3 1 The Land Institute, 2440 E. Water Well Rd., Salina, KS 67401, USA; [email protected] 2 Saint Louis University Department of Biology, 1008 Spring Ave., St. Louis, MO 63110, USA; [email protected] (C.C.); [email protected] (S.H.); [email protected] (A.J.M.) 3 Missouri Botanical Garden, 4500 Shaw Blvd. St. Louis, MO 63110, USA * Correspondence: [email protected]; Tel.: +1-785-823-5376 Received: 12 February 2018; Accepted: 4 March 2018; Published: 7 March 2018 Abstract: Annual cereal and legume grain production is dependent on inorganic nitrogen (N) and other fertilizers inputs to resupply nutrients lost as harvested grain, via soil erosion/runoff, and by other natural or anthropogenic causes. Temperate-adapted perennial grain legumes, though currently non-existent, might be uniquely situated as crop plants able to provide relief from reliance on synthetic nitrogen while supplying stable yields of highly nutritious seeds in low-input agricultural ecosystems. As such, perennial grain legume breeding and domestication programs are being initiated at The Land Institute (Salina, KS, USA) and elsewhere. This review aims to facilitate the development of those programs by providing criteria for evaluating potential species and in choosing candidates most likely to be domesticated and adopted as herbaceous, perennial, temperate-adapted grain legumes. We outline specific morphological and ecophysiological traits that may influence each candidate’s agronomic potential, the quality of its seeds and the ecosystem services it can provide.
    [Show full text]
  • Y Su Relación Con La Latencia Física En Semillas Del Género Lupinus Spp
    INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C. POSGRADO EN CIENCIAS APLICADAS Identificación del “hueco de agua” y su relación con la latencia física en semillas del género Lupinus spp. de Jalisco, México Tesis que presenta Erika Robles Díaz Para obtener el grado de Maestra en Ciencias Aplicadas En la opción de Ciencias Ambientales Director de la Tesis: Dr. Joel David Flores Rivas Asesores: Dr. Enrique Jurado Ybarra Dr. Mario Alberto Ruiz López San Luis Potosí, S.L.P., septiembre de 2011 Biol. Erika Robles Díaz. Constancia de aprobación de la tesis La tesis “Identificación del “hueco de agua” y su relación con la latencia física en semillas del género Lupinus spp. de Jalisco, México” presentada para obtener el Grado de Maestro(a) en Ciencias Aplicadas en la opción de Ciencias Ambientales fue elaborada por Erika Robles Díaz y aprobada el 07 de septiembre de 2011 por los suscritos, designados por el Colegio de Profesores de la División de Ciencias Ambientales del Instituto Potosino de Investigación Científica y Tecnológica, A.C. ______________________ Dr. Joel David Flores Rivas Director de la tesis _____________________ Dr. Enrique Jurado Ybarra Asesor de la tesis _____________________ Dr. Mario Alberto Ruiz López Asesor de la tesis ii Biol. Erika Robles Díaz. Créditos Institucionales Esta tesis fue elaborada en el Laboratorio de Ecología y Cambio Ambiental Global de la División de Ciencias Ambientales del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección del Dr. Joel David Flores Rivas, asesoría del Dr. Enrique Jurado Ybarra (UANL) y Dr. Mario Alberto Ruiz López (UdeG).
    [Show full text]
  • Natural Resource Management in Syrian Villages (MSR XX, 2017)
    Did the Mamluks Have an Environmental Sense? Bethany Walker, Sofia Laparidou, Natural Resource Management in Syrian Villages Annette Hansen, and Chiara Cor- BBethan WBethaB SBeth LAethany B ABethan HBethaB Bet eBethA eBethan bino Did the Mamluks Have and Environmental Sense? Bethany Walker Sofia Laparidou University of Bonn University of Thessaloniki Annette Hansen Chiara Corbino University of Groningen University of Sheffield Did the Mamluks Have an Environmental Sense?: Natural Resource Management in Syrian Villages The economic changes of Sultan Barqūq’s reign and the post-Barqūqī era have increasingly come under scrutiny in recent years, changing the way we under- stand the transition to the Circassian Mamluk Sultanate. 1 The erosion of the iqṭāʿ 10.6082/M1H1304R system, through the transformation of state lands to private property, and the http://hdl.handle. “wave of waqf ” that emptied the Bayt al-Māl by Barqūq’s reign (and then again at net/11417/736 the end of the Mamluk Sultanate), necessitating a reorganization of the state fis- cal administration and the creation of new financial bureaus, are topics that have generated a respectable body of scholarship. 2 In the background of these trends is the ever-changing status of land tenure and land use. The co-authors of this article gratefully acknowledge the long-term support of the Jordanian Department of Antiquities and the American Center of Oriental Research in Amman during our many years of fieldwork in Jordan. Through a Harris Grant from the American Schools of Ori- ental Research we were able to conduct in 2014 the laser survey and 3-D documentation of sub- terranean water systems in support of our study of medieval-era irrigation.
    [Show full text]
  • A New Cultivar of White Lupin with Determined Bushy Growth Habit, Sweet Grain and High Protein Content
    SCIENTIFIC NOTE 577 PECOSA-BAER: A NEW CULTIVAR OF WHITE LUPIN WITH DETERMINED BUSHY GROWTH HABIT, SWEET GRAIN AND HIGH PROTEIN CONTENT Erik von Baer1*, Ingrid von Baer1, and Ricardo Riegel2 ABSTRACT The expansion of white lupin (Lupinus albus L.) cultivation in Chile is subject to the availability of cultivars presenting high yield potential, tolerance to the main fungal diseases and homogeneous ripening. In response to these requirements, a new cultivar has been developed and registered as ‘Liapec-1’, commercially registered as ‘Pecosa-Baer’. This new cultivar has determined bushy growth habit. Its flowering period is concentrated in approximately 40 days, less than the 77 days of cv. Rumbo-Baer. This trait allows it to reach harvest without heterogeneity problems. The seed is speckled, flat and medium-sized (370 g/1000 grains aprox.). The kernels are sweet and have a high protein content of around 41% (dry matter basis). In field assays, ‘Pecosa-Baer’ presents a good tolerance to diseases caused by Colletotrichum lupini and Pleiochaeta setosa. The new cultivar has outstanding stability and yield levels, even under low fertilization conditions. An average yield of 5.43 t ha-1 was obtained over four seasons in two locations. In order to maximize its yield, ‘Pecosa-Baer’ must be sown between April and June at a rate of 140-160 kg ha-1. Given the high protein content and low alkaloid levels of the seeds, they can be included in the diet of all types of animals. Key words: Lupinus albus, cultivar, Colletotrichum, Pleiochaeta. INTRODUCTION Servicio Agrícola y Ganadero (SAG) the cvs.
    [Show full text]
  • Is the Andean Lupin Bean the New Quinoa?
    Is the Andean lupin bean the new quinoa? Andean lupin and its food and non-food applications for the consumer www.libbio.net Is tarwi the new quinoa? New food: Andean lupin and its applications for the consumer, food and non-food Introducing the Andean lupin bean The Andean lupin, Lupinus mutabilis, is one of four lupin species suitable for human consumption. This lupin originates from South-America where it has been part of the menu for thousands of years. Like the soy bean, the Andean lupin bean is high in oil and proteins and has the potential to be a good alternative for many soy bean applications. The LIBBIO project aims to introduce the Andean lupin in Europe as a new crop for food and non-food applications. It has several great advantages: it grows in marginal soil, for example; it creates its own nitrogen fertilizer from the air by natural symbiosis with bacteria Traditional Andean lupin cropping and, when harvested, has nutritious Ecuador beans rich in proteins, vegetable oil and prebiotics. Andean lupin oil is rich in unsaturated fatty acids and high in anti- oxidants and Vitamin-E (tocopherol), thereby contributing to a healthy menu. A very special bean All markets in the Andes region in Peru sell the Andean lupin bean, also known as tarwi, chocho, altramuz or pearl lupin. Andean lupin is the traditional food of the peasants. In Europe it is hardly known, which is rather surprising. There’s no reason for it to be not just as popular as quinoa, which also originates from Peru, because tarwi is extraordinarily nutritious, contains very high levels of proteins and vitamins and is as least as, if not more, wholesome than soy.
    [Show full text]
  • Taxonomic Consequences of Seed Morphology and Anatomy in Three Lupinus Species (Fabaceae-Genisteae)
    CATRINA (2006), 1 (2): 1 -8 PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON CONSERVATION AND MANAGEMENT © 2006 BY THE EGYPTIAN SOCIETY FOR ENVIRONMENTAL SCIENCES OF NATURAL RESOURCES, ISMAILIA, EGYPT, JUNE 18-19, 2006 Taxonomic Consequences of Seed Morphology and Anatomy in Three Lupinus Species (Fabaceae-Genisteae) Ream I. Marzouk Botany Department, Faculty of Science, Alexandria University, Alexandria, Egypt ABSTRACT The objective of this paper is to study seed coat morphological and anatomical features of three Lupinus species; L. albus L., L. digitatus Forssk. and L. angustifolius L., in order to reveal the taxonomic relationships among them. Among seed coat macromorphological characters used were seed dimensions, seed weight and testa color, while those of the hilum were lens and macula raphalis. Seed coat micromorphological features revealed a similarity between L. digitatus and L. angustifolius since the outer periclinal walls of the isodiametric epidermal cells are tuberculate. The summit of each tubercle takes the form of umbrella with a central elevation in the former species, while each tubercle possesses long and narrow tips in the latter one. However, in L. albus the outer periclinal walls of the isodiametric epidermal cells are combination between pusticulate and reticulate. The anatomy of seed coat of Lupinus species shows that it is formed of two layers, the exotesta and the mesotesta. The exotesta is distinguished into two sublayers; the outer epidermis which is formed of malpighian cellulosic thick- walled cells (macrosclereids) and the inner hypodermis of hourglass thick-walled cells with large intercellular spaces (osteosclereids). On the other hand the mesotesta layer is formed of parenchyma cells.
    [Show full text]
  • Molecular Detection of Bean Yellow Mosaic Virus in Lupinus Albus
    ls & vira An ti ti n re A t r f o o v l Barakat and Torky, J Antivir Antiretrovir 2017, 9:2 i r a a Journal of n l r s u DOI: 10.4172/1948-5964.1000159 o J ISSN: 1948-5964 Antivirals & Antiretrovirals Research Article Article Open Access Molecular Detection of Bean Yellow Mosaic Virus in Lupinus albus Plants and its Associated Alterations in Biochemical and Physiological Parameters Ahmed Barakat and Zenab Aly Torky* Department of Microbiology, Faculty of Science, Ain Shams University, Egypt Abstract Bean yellow mosaic virus is one of the most devastating diseases of cultivated Leguminosae plants worldwide causing mosaic, mottling, malformation and distortion in infected cultivar plants. Present study was conducted to investigate the possibility of infection of Lupinus albus (Lupine) with Bean yellow mosaic virus. Virus isolate was identified by detection of the coat protein gene amplified by reverse transcription polymerase chain reaction and also via Chenopodium Amaranticolor as a diagnostic host plant. Results showed that infection can be induced under greenhouse conditions and infected plants showed a considerable level of mosaic symptoms. As disease development in infected plants is always associated with physiological and chemical changes, some metabolic alterations parameters have been evaluated like photosynthetic pigment contents, total carbohydrate content, total soluble protein, total protein, total free amino acid, proline induction, total phenolics, salicylic acid, and abscisic acid content in healthy and infected lupine plants. Results showed a great variation in all the biochemical categories in Lupinus albus infected with bean yellow mosaic virus as compared to healthy plants.
    [Show full text]
  • Andean Lupin (Lupinus Mutabilis Sweet) a Plant with Nutraceutical and Medicinal Potential
    ISSN 2007-3380 REVISTA BIO CIENCIAS http://revistabiociencias.uan.edu.mx http://dx.doi.org/10.15741/revbio.03.03.03 Review/Artículo de Revisión Andean Lupin (Lupinus mutabilis Sweet) a plant with nutraceutical and medicinal potential Tarwi (Lupinus mutabilis Sweet) una planta con potencial nutritivo y medicinal Chirinos-Arias, M.C. Universidad Nacional Agraria La Molina; Centro de Diagnóstico Molecular S.A.C., Calle Monterosa 270 oficina 503, Chacarilla del estanque, Lima 33, Lima, Perú. A B S T R A C T R E S U M E N Lupinus mutabilis Sweet “Andean Lupin” has Lupinus mutabilis Sweet “Tarwi” es un culti- been a neglected and marginalized Andean crop since vo andino que ha sido relegado y marginado desde las the last decades. This plant grows naturally in Peru and últimas décadas. Esta planta crece en el Perú de forma in other cases it is cultivated for its delicious seeds. Un- natural y en otros casos es cultivada por sus deliciosas semillas. Lamentablemente, hay muy pocos estudios lle- fortunately, there are very few laboratory studies carried vados en laboratorio sobre este vegetal y muchas de sus out on this plant and many of its benefits have not been ventajas no han sido estudiadas o están en fases preli- studied or are in preliminary stages. So what is known minares. De modo que lo que se conoce proviene de los comes from the ancestral knowledge of indigenous peo- conocimientos ancestrales de las poblaciones indígenas ple who grow it (mainly from Peru and Bolivia). In order que lo cultivan (principalmente de Perú y Bolivia).
    [Show full text]