Diurnal and Seasonal Variations of Thermal Stratification and Vertical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lake Constance)
Characteristics and implications of surface gravity waves in the littoral zone of a large lake (Lake Constance) Dissertation Zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Biologie vorgelegt von Hilmar Hofmann Konstanz, 2007 Tag der mündlichen Prüfung: 23.06.2008 Referent: Prof. Dr. Frank Peeters Referent: Dr. habil. Klaus Jöhnk Referent: Prof. Dr. habil. Karl-Otto Rothhaupt Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar. 1. Aufl. - Göttingen : Cuvillier, 2008 Zugl.: Konstanz, Univ., Diss., 2007 978-3-86727-714-3 © CUVILLIER VERLAG, Göttingen 2008 Nonnenstieg 8, 37075 Göttingen Telefon: 0551-54724-0 Telefax: 0551-54724-21 www.cuvillier.de Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Weg (Fotokopie, Mikrokopie) zu vervielfältigen. 1. Auflage, 2008 Gedruckt auf säurefreiem Papier 978-3-86727-714-3 Table of contents Summary 1 Zusammenfassung 3 General introduction 7 Chapter 1: Temporal scales of water level fluctuations in lakes and 17 their ecological implications Introduction 18 Materials and methods 19 Results 20 Discussion 25 Conclusions 32 Chapter 2: The relative importance of wind and ship waves in the 35 littoral zone -
Lake Ecology
Fundamentals of Limnology Oxygen, Temperature and Lake Stratification Prereqs: Students should have reviewed the importance of Oxygen and Carbon Dioxide in Aquatic Systems Students should have reviewed the video tape on the calibration and use of a YSI oxygen meter. Students should have a basic knowledge of pH and how to use a pH meter. Safety: This module includes field work in boats on Raystown Lake. On average, there is a death due to drowning on Raystown Lake every two years due to careless boating activities. You will very strongly decrease the risk of accident when you obey the following rules: 1. All participants in this field exercise will wear Coast Guard certified PFDs. (No exceptions for teachers or staff). 2. There is no "horseplay" allowed on boats. This includes throwing objects, splashing others, rocking boats, erratic operation of boats or unnecessary navigational detours. 3. Obey all boating regulations, especially, no wake zone markers 4. No swimming from boats 5. Keep all hands and sampling equipment inside of boats while the boats are moving. 6. Whenever possible, hold sampling equipment inside of the boats rather than over the water. We have no desire to donate sampling gear to the bottom of the lake. 7. The program director has final say as to what is and is not appropriate safety behavior. Failure to comply with the safety guidelines and the program director's requests will result in expulsion from the program and loss of Field Station privileges. I. Introduction to Aquatic Environments Water covers 75% of the Earth's surface. We divide that water into three types based on the salinity, the concentration of dissolved salts in the water. -
Residence Time and Physical Processes in Lakes
Papers from Bolsena Conference (2002). Residence time in lakes:Science, Management, Education J. Limnol., 62(Suppl. 1): 1-15, 2003 Residence time and physical processes in lakes Walter AMBROSETTI*, Luigi BARBANTI and Nicoletta SALA1) CNR Institute of Ecosystem Study, L.go V. Tonolli 50, 28922 Verbania Pallanza, Italy 1)University of Italian Switzerland- Academy of Architecture, Mendrisio (TI) *e-mail corresponding author: [email protected] ABSTRACT The residence time of a lake is highly dependent on internal physical processes in the water mass conditioning its hydrodynam- ics; early attempts to evaluate this physical parameter emphasize the complexity of the problem, which depends on very different natural phenomena with widespread synergies. The aim of this study is to analyse the agents involved in these processes and arrive at a more realistic definition of water residence time which takes account of these agents, and how they influence internal hydrody- namics. With particular reference to temperate lakes, the following characteristics are analysed: 1) the set of the lake's caloric com- ponents which, along with summer heating, determine the stabilizing effect of the surface layers, and the consequent thermal stratifi- cation, as well as the winter destabilizing effect; 2) the wind force, which transfers part of its momentum to the water mass, generat- ing a complex of movements (turbulence, waves, currents) with the production of active kinetic energy; 3) the water flowing into the lake from the tributaries, and flowing out through the outflow, from the standpoint of hydrology and of the kinetic effect generated by the introduction of these water masses into the lake. -
Article Is Available Gen Availability
Hydrol. Earth Syst. Sci., 23, 1763–1777, 2019 https://doi.org/10.5194/hess-23-1763-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Oxycline oscillations induced by internal waves in deep Lake Iseo Giulia Valerio1, Marco Pilotti1,4, Maximilian Peter Lau2,3, and Michael Hupfer2 1DICATAM, Università degli Studi di Brescia, via Branze 43, 25123 Brescia, Italy 2Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany 3Université du Quebec à Montréal (UQAM), Department of Biological Sciences, Montréal, QC H2X 3Y7, Canada 4Civil & Environmental Engineering Department, Tufts University, Medford, MA 02155, USA Correspondence: Giulia Valerio ([email protected]) Received: 22 October 2018 – Discussion started: 23 October 2018 Revised: 20 February 2019 – Accepted: 12 March 2019 – Published: 2 April 2019 Abstract. Lake Iseo is undergoing a dramatic deoxygena- 1 Introduction tion of the hypolimnion, representing an emblematic exam- ple among the deep lakes of the pre-alpine area that are, to a different extent, undergoing reduced deep-water mixing. In Physical processes occurring at the sediment–water inter- the anoxic deep waters, the release and accumulation of re- face of lakes crucially control the fluxes of chemical com- duced substances and phosphorus from the sediments are a pounds across this boundary (Imboden and Wuest, 1995) major concern. Because the hydrodynamics of this lake was with severe implications for water quality. In stratified shown to be dominated by internal waves, in this study we in- lakes, the boundary-layer turbulence is primarily caused by vestigated, for the first time, the role of these oscillatory mo- wind-driven internal wave motions (Imberger, 1998). -
Global Lake Responses to Climate Change
REVIEWS Global lake responses to climate change R. Iestyn Woolway 1,2 ✉ , Benjamin M. Kraemer 3,11, John D. Lenters4,5,6,11, Christopher J. Merchant 7,8,11, Catherine M. O’Reilly 9,11 and Sapna Sharma10,11 Abstract | Climate change is one of the most severe threats to global lake ecosystems. Lake surface conditions, such as ice cover, surface temperature, evaporation and water level, respond dramatically to this threat, as observed in recent decades. In this Review, we discuss physical lake variables and their responses to climate change. Decreases in winter ice cover and increases in lake surface temperature modify lake mixing regimes and accelerate lake evaporation. Where not balanced by increased mean precipitation or inflow, higher evaporation rates will favour a decrease in lake level and surface water extent. Together with increases in extreme- precipitation events, these lake responses will impact lake ecosystems, changing water quantity and quality, food provisioning, recreational opportunities and transportation. Future research opportunities, including enhanced observation of lake variables from space (particularly for small water bodies), improved in situ lake monitoring and the development of advanced modelling techniques to predict lake processes, will improve our global understanding of lake responses to a changing climate. Lakes are critical natural resources that are sensitive to For example, changes in ice cover and water temperature changes in climate. There are more than 100 million modify (and are influenced by) evaporation rates9, which lakes globally1, holding 87% of Earth’s liquid sur can subsequently alter lake levels and surface water face freshwater2. Lakes support a global heritage of extent12. -
Metalimnetic Oxygen Minimum in Green Lake, Wisconsin
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2020 Metalimnetic Oxygen Minimum in Green Lake, Wisconsin Mahta Naziri Saeed Michigan Technological University, [email protected] Copyright 2020 Mahta Naziri Saeed Recommended Citation Naziri Saeed, Mahta, "Metalimnetic Oxygen Minimum in Green Lake, Wisconsin", Open Access Master's Thesis, Michigan Technological University, 2020. https://doi.org/10.37099/mtu.dc.etdr/1154 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Environmental Engineering Commons METALIMNETIC OXYGEN MINIMUM IN GREEN LAKE, WISCONSIN By Mahta Naziri Saeed A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Environmental Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2020 © 2020 Mahta Naziri Saeed This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Environmental Engineering. Department of Civil and Environmental Engineering Thesis Advisor: Cory McDonald Committee Member: Pengfei Xue Committee Member: Dale Robertson Department Chair: Audra Morse Table of Contents List of figures .......................................................................................................................v List of tables ....................................................................................................................... ix Acknowledgements ..............................................................................................................x -
A Lake and Pond Classification System for the Northeast and Mid-Atlantic States
A Lake and Pond Classification System for the Northeast and Mid-Atlantic States November 2014 Mark Anderson, Arlene Olivero Sheldon, Alex Jospe The Nature Conservancy Eastern Regional Office Call Outline • Goal • Process • Key Variables – Trophic Level – Alkalinity – Temperature – Depth • Integration of Variables into Types • Distributable Information • Web Mapping Service Goal: A classification and map of waterbodies in the Northeast Product is not intended to override existing state or regional classifications, but is meant to complement and build upon existing classifications to create a seemless eastern U.S. aquatic classification that will provide a means for looking at patterns across the region. Counterpart to the NE Aquatic Habitat Classification Streams and • Lakes and Ponds Rivers Olivero, A, and M.G. Anderson. 2008. The Northeast Aquatic Habitat Classification. The Nature Conservancy, Eastern Conservation Science. 90 pp. http://www.rcngrants.org/spatialData Steering Committee State/Federal Name Agency EPA Jeff Hollister Environmental Protection Agency ME Dave Halliwell Department of Environmental Protection Develop Douglas Suitor Department of Environmental Protection frame- Linda Bacon Department of Environmental Protection Dave Coutemanch The Nature Conservancy work NH Matt Carpenter Division of Fish and Game VT Kellie Merrell Department of Environmental Conservation MA Richard Hartley Department of Fish and Game Share Mark Mattson Department of Environmental Protection CT Brian Eltz DEEP Inland Fisheries Division data NY -
Effects of Similar Weather Patterns on the Thermal Stratification, Mixing
BOREAL ENVIRONMENT RESEARCH 23: 237–247 © 2018 ISSN 1797-2469 (online) Helsinki 29 August 2018 Effects of similar weather patterns on the thermal stratification, mixing regimes and hypolimnetic oxygen depletion in two boreal lakes with different water transparency Ivan Mammarella1,*, Galyna Gavrylenko2, Galina Zdorovennova2, Anne Ojala1,3,5, Kukka-Maaria Erkkilä1, Roman Zdorovennov2, Oleg Stepanyuk1,4, Nikolay Palshin2, Arkady Terzhevik2, Timo Vesala1,5 & Jouni Heiskanen1,6 1) Faculty of Science, Institute for Atmosphere and Earth System Research/Physics, P.O. Box 68, FI-00014 University of Helsinki, Finland (*corresponding author’s e-mail: [email protected]) 2) Northern Water Problems Institute, Karelian Research Centre, Russian Academy of Sciences, Aleksander Nevsky st. 50, RU-185030 Petrozavodsk, Russia 3) Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Niemenkatu 73, FI-15140 Lahti, Finland 4) Institution of Russian Academy of Sciences, Dorodnicyn Computing Centre of RAS, Vavilov st. 40, RU-119333 Moscow, Russia 5) Institute for Atmosphere and Earth System Research/Forest Sciences, P.O. Box 27, Faculty of Agriculture and Forestry, FI-00014 University of Helsinki, Finland 6) ICOS ERIC, Erik Palménin aukio 1, FI-00560 Helsinki, Finland Received 18 Aug. 2017, final version received 22 Aug. 2018, accepted 23 Aug. 2018 Mammarella I., Gavrylenko G., Zdorovennova G., Ojala A., Erkkilä K.-M., Zdorovennov R., Stepanyuk O., Palshin N., Terzhevik A., Vesala T. & Heiskanen J. 2018: Effects of similar weather patterns on the thermal stratification, mixing regimes and hypolimnetic oxygen depletion in two boreal lakes with differ- ent water transparency. Boreal Env. Res. 23: 237–247. Mechanistic understanding of the impacts of changing climate on the thermal stratification and mixing dynamics of oxygen in lake ecosystems is hindered by limited evidence on how functioning of individual lakes is affected by interannual variability in meteorological conditions. -
Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake
Volume 32 APRIL 2018 Diurnal and Seasonal Variations of Thermal Stratification and Vertical Mixing in a Shallow Fresh Water Lake Yichen YANG1,2, Yongwei WANG1,3*, Zhen ZHANG1,4, Wei WANG1,4, Xia REN1,3, Yaqi GAO1,3, Shoudong LIU1,4, and Xuhui LEE1,5 1 Yale–NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China 2 School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China 3 School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China 4 School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China 5 School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA (Received June 21, 2017; in final form November 18, 2017) ABSTRACT Among several influential factors, the geographical position and depth of a lake determine its thermal structure. In temperate zones, shallow lakes show significant differences in thermal stratification compared to deep lakes. Here, the variation in thermal stratification in Lake Taihu, a shallow fresh water lake, is studied systematically. Lake Taihu is a warm polymictic lake whose thermal stratification varies in short cycles of one day to a few days. The thermal stratification in Lake Taihu has shallow depths in the upper region and a large amplitude in the temperature gradient, the maximum of which exceeds 5°C m–1. The water temperature in the entire layer changes in a relatively consistent manner. Therefore, compared to a deep lake at similar latitude, the thermal stratification in Lake Taihu exhibits small seasonal differences, but the wide variation in the short term becomes important. -
Importance of the Autumn Overturn and Anoxic Conditions in The
lmportance of the Autumn Overturn and Anoxie Conditions in the Hypolimnion for the Annual Methane Emissions from a Temperate Lake Jorge Encinas Fernandez, Frank Peeters, and Hilmar Hofmann* Environmental Pbysics, Limnologicallnstitute, University of Konstanz, Mainanstr. 252, D 78464 Konstanz, Germany • Supporting Information 1 ABSTRACT: Changes in tbe budget of dissolved metbane O. (mgL·'l Stable stratification Overturn period O.(mgL- 1 ~ measured in a small temperate lake over 1 year indicate tbat .....:...L.f_ - I 0 Diffusivc flux - 200 T (OC) anoxic conditions in tbe bypolimnion and tbe auturnn t overtum period represent key factors for tbe overall annual metbane emissions from lakes. During periods of stable stratüication, !arge amounts of methane accurnulate in anoxic deep waters. Approximately 46% of tbe stored metbane was emitted during tbe autumn overtum, contributing ~80% of the annual diffusive methane emissions to tbe atmosphere. After the overturn period, tbe entire water column was oxic, and only 1% of tbe original quantity of methane remained in tbe water column. Current estimates of global methane emissions assume that all of the stored metbane is released, whereas several studies of individuallakes have suggested tbat a major fraction of the stored methane is oxidized during overtums. Our results provide evidence tbat not all of the stored metbane is released to the atmosphere during tbe overtum period. However, the fraction of stored methane emitted to tbe atmosphere during overturn may be substantially larger and tbe fraction of stored methane oxidiLed may be smaller tban in the previous studies suggesting high oxidation Iosses of metbane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from smalllakes, may be an important aspect to consider for impact assessments of climate warming on the metbane emissions from lakes. -
2014 Temperature Monitoring Project Report
2014 Temperature Monitoring Project Report January 13, 2015 Lakes Environmental Association 230 Main Street Bridgton, ME 04009 207-647-8580 [email protected] Project Summary LEA began using in-lake data loggers to acquire high resolution temperature measure- ments in 2013. We expanded in 2014 to include 15 basins on 12 lakes and ponds in the Lakes Region of Western Maine. The loggers, also known as HOBO temperature sensors, allow us to obtain important information that was previously out of reach because of the high cost of man- ual sampling. Using digital loggers to record temperature gives us both a more detailed and longer record of temperature fluctuations. This information will help us better understand the physical structure, water quality, and extent and impact of climate change on the waterbody tested. Most of the lakes tested reached their maximum temperature on July 23rd. Surface tem- perature patterns were similar across all basins. The date of complete lake mixing varied con- siderably, with shallower lakes destratifying in September and others not fully mixed until No- vember. Differences in yearly stratification were seen in lakes with HOBO sensor chain data from 2013 and 2014. A comparison with routine water testing data confirmed the accuracy of the HOBO sensors throughout the season. A month-by-month comparison of temperature pro- files in each lake showed the strongest stratification around the time of maximum temperature, in late July. In addition, August stratification was stronger than June and early July stratifica- tion. Shallow sensors showed similar average temperatures between 2013 and 2014. Deployment of temperature sensors on Trickey Pond. -
Lake Stratification and Mixing
Lake Stratification and Mixing Many of our Illinois lakes and reservoirs are deep force strong enough to resist the wind's mixing forces enough to stratify, or form "layers" of water with (it only takes a difference of a few degrees Fahrenheit different temperatures. Such thermal stratification to prevent mixing). The lake now stratifies into three occurs because of the large differences in density layers of water—a situation termed summer (weight) between warm and cold waters. Density stratification. The upper layer is a warm (lighter), depends on temperature: water is most dense (heaviest) well-mixed zone called the epilimnion. Below this is a at about 39EF, and less dense (lighter) at temperatures transitional zone where temperatures rapidly change warmer and colder than 39EF. called the metalimnion. The thermocline is a horizontal plane within the metalimnion through the The Stratification Process point of greatest water temperature change. The metalimnion is very resistant to wind mixing. Beneath In the fall, chilly air temperatures cool the lake's the metalimnion and extending to the lake bottom is surface. As the surface water cools, it becomes more the colder (heavier), usually dark, and relatively dense and sinks to the bottom. Eventually the entire undisturbed hypolimnion. lake reaches about 39EF (4EC). As the surface water cools even more, it becomes less dense and "floats" on The most important actions causing lake mixing are top of the denser 39EF water, forming ice at 32EF wind, inflowing water, and outflowing water. While (0EC). The lake water below the ice remains near wind influences the surface waters of all lakes, its 39EF.