Program and Course Catalog 2015-2016 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ph.D. in Mechanical Engineering with Dissertation in Intelligent Energetic Systems Program
A proposal for the Doctor of Philosophy Degree in Mechanical Engineering with Dissertation in Intelligent Energetic Systems at the New Mexico Institute of Mining and Technology October 2015 1 Executive Summary ............................................................................................................... 4 A Purpose of the Program ................................................................................................... 5 A.1 The Primary Purpose of the Proposed Program ....................................................... 5 A.2 Consistency of the Proposed Program with the Role and Scope of the Institution .. 6 A.3 Priority of the Institution for the Proposed Program ................................................ 7 A.4 Curriculum ............................................................................................................... 8 B Justification for the Program ......................................................................................... 11 B.1 State and Regional Need ........................................................................................ 11 B.2 Duplication ............................................................................................................. 13 B.3 Inter-Institutional Collaboration and Cooperation ................................................. 16 C Clientele and Projected Enrollment............................................................................... 21 C.1 Clientele ................................................................................................................ -
A Parametric Investigation and Optimization of a Cylindrical Explosive Charge Logan Ellsworth Beaver Marquette University
Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects A Parametric Investigation and Optimization of a Cylindrical Explosive Charge Logan Ellsworth Beaver Marquette University Recommended Citation Beaver, Logan Ellsworth, "A Parametric Investigation and Optimization of a Cylindrical Explosive Charge" (2017). Master's Theses (2009 -). 425. http://epublications.marquette.edu/theses_open/425 A PARAMETRIC INVESTIGATION AND OPTIMIZATION OF A CYLINDRICAL EXPLOSIVE CHARGE by Logan Ellsworth Beaver A Thesis Submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Milwaukee, Wisconsin August 2017 ABSTRACT A PARAMETRIC INVESTIGATION AND OPTIMIZATION OF A CYLINDRICAL EXPLOSIVE CHARGE Logan Ellsworth Beaver Marquette University, 2017 Explosive device design has a wide impact in the space, manufacturing, military, and mining industries. As a step toward computer assisted design of explosives, an optimization framework was developed using the Design Analysis Kit for Optimization and Terrascale Applications (Dakota). This software was coupled with the hydrocode CTH. This framework was applied to three exploding cylinder models, two in 1D and one in 2D. Gradient descent, dividing rectangles, and a genetic algorithm were each applied to the one-dimensional models. Parametric studies were performed as a basis for comparison with the optimization algorithms, as well as qualifying the 1D model's accuracy. The gradient descent algorithm performed the best, when it converged on the optimum. Dividing rectangles took approximately twice as many iterations to converge as gradient descent, and the genetic algorithm performed marginally better than a full parametric study. i ACKNOWLEDGMENTS Logan Ellsworth Beaver I would like to acknowledge and thank the many people that have helped me along the way toward earning my degree. -
Validation of the Gurney Model for Heterogeneous Systems
Validation of the Gurney Model for Heterogeneous Systems Jason Loiseau Supervisor: Prof. Andrew J. Higgins Department of Mechanical Engineering McGill University A dissertation submitted to McGill University in partial fullfilment of the requirements for the degree of Doctor of Philosophy Copyright©2017 Jason Loiseau February 2018 Acknowledgements I first and foremost thank my supervisor, Prof. Andrew J. Higgins, for his support above and beyond the call of duty. In my Master’s thesis I had written about using up all of my second chance(s); in finishing my PhD I have most certainly burned through many more. This disser- tation, and my current career track would not be what they are today without Prof. Higgins. I would also like to thank Prof. David Frost for his unofficial supervisory role. Prof. Frost was instrumental in completing much the work presented here, as well as motivating the studies involving metallized explosives and the explosive dispersal of granular material. This thesis would be a shell of its present form without his contributions and interpersonal support. I am also grateful for the support of my fellow graduate students: Justin Huneault and Myles Hildebrand were instrumental in the development of the implosion gun that consumed the early years of my PhD (which sadly didn’t make it into this thesis for the sake of coherence). They also provided the all-important social backdrop of bike rides and inebriation that seems to help so many of us make it through graduate school. William Georges was essential in getting the experiments that comprise the first two chapters done, as well as keeping me sane in the lab. -
VITA – Seokbin (Bin) Lim, Ph.D Page 2 of 6
Page 1 of 6 SEOKBIN (BIN) LIM, Ph.D. Pete V. Domenici Endowed Associate Professor Research Scientist (Joint appointment) Energetic Systems Research Group EMRTC (Energetic Materials Research and Testing Center) Department of Mechanical Engineering New Mexico Tech New Mexico Tech 801 Leroy Place, Socorro, NM 87801 801 Leroy Place, Socorro, NM 87801 Phone: 575 835 6589 Email: [email protected] EXPERTISE Energetic material science/technology/safety, Shock/Tension physics, Computational modeling, Design of energetic-mechanical systems, Mechanics of detonation gas, Shaped charges (CSCs and LSCs), EFPs. US citizen. EDUCATION Ph.D. Energetic Material (EM) emphasis, Missouri S&T (formerly University of Missouri-Rolla), Rolla, MO, May 2006 Dissertation title: Investigation of the Blade Formation Process of Linear Shaped Charges M.S. Energetic Material (EM) emphasis, Missouri S&T (formerly University of Missouri-Rolla), Rolla, MO, Dec 2003 Thesis title: Investigation of the Characteristics of Linear Shaped Charges used in Demolition B.S. Mechanical Design Engineering. Chungnam National University, South Korea, February 2000 EMPLOYMENT HISTORY Jul 2020 ~ Current Department Chair, Department of Mechanical Engineering New Mexico Institute of Mining Technology, Socorro, NM Oct 2018 ~ June 2019 Associate Department Chair, Department of Mechanical Engineering New Mexico Institute of Mining Technology, Socorro, NM May 2014 ~ Current Research Scientist, EMRTC (Joint Appointment) New Mexico Institute of Mining Technology, Socorro, NM May 2013 ~ Current Associate -
A Modified Initiation and Cut Profile Study of the 10500 Grain Per Foot Linear Shaped Charge
Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2014 A modified initiation and cut profile study of the 10500 grain per foot linear shaped charge Matthew Ortel Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Explosives Engineering Commons Department: Recommended Citation Ortel, Matthew, "A modified initiation and cut profile study of the 10500 grain per foot linear shaped charge" (2014). Masters Theses. 7337. https://scholarsmine.mst.edu/masters_theses/7337 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. A MODIFIED INITIATION AND CUT PROFILE STUDY OF THE 10500 GRAIN PER FOOT LINEAR SHAPED CHARGE By MATTHEW ORTEL A THESIS Presented to the Graduate Faculty of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTERS OF SCIENCE IN EXPLOSIVES ENGINEERING 2014 Approved Jason Baird, Advisor Paul Worsey John Hogan © 2014 MATTHEW A. ORTEL ALL RIGHTS RESERVED iii ABSTRACT A 10,500 grain per foot (gr/ft.) linear shaped charge (LSC) was developed to cut targets that were too thick for smaller LSC. The manufacturer observed shallower penetration from the 10,500 gr/ft. LSC than was expected. This prompted investigations to uncover the cause of the perceived reduced performance. A study performed at the Missouri University of Science and Technology changed the initiation method of the 10,500 gr/ft.