Hung Viet Pham

Total Page:16

File Type:pdf, Size:1020Kb

Hung Viet Pham FABRICATION AND ELECTRICAL CHARACTERISATION OF GRAPHITIC SCHOTTKY CONTACTS TO SILICON, SILICON CARBIDE AND GALLIUM OXIDE A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Hung Viet Pham Master of Electrical and Computer Engineering by RMIT University School of Engineering College of Science, Engineering and Health RMIT University August 2019 AUTHOR’S DECLARATION I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work, which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged. Hung Viet Pham 02/08/2019 ii ACKNOWLEDGMENTS This PhD thesis cannot be accomplished without the support, advice and encouragement from many sincere and generous people. I want to show special appreciation to my supervisor, Associate Professor Anthony Holland, for his constant academic guidance throughout my PhD candidature at RMIT University. I will always be impressed and grateful for your dedication toward student despite of distance and time. I would also like to send the deepest gratitude to my co-senior supervisor, Doctor James Partridge. Your professional and disciplined hard-working attitude as well as your broad Physics insight has become the model for me to learn and follow. My appreciation extends to many staffs and friends at RMIT Vietnam who support in laboratory and administration, especially Head of School of Science and Technology Associate Professor Alex Stocevski and Professor Eric Dimla who provided strong academic environment to support PhD students. Within a short period of time in RMIT Melbourne, I had the opportunities to work intensively in RMMF (RMIT Microscopy and Microanalysis Facility) to fulfill my PhD. This visit cannot happen without sponsorship from Doctor James Partridge and Professor Dougal McCulloch, and relentless effort of Associate Professor Anthony Holland. I also want to thank Hiep Tran, Tuan Bui and Phuong Le for their enthusiastic support during my time in Melbourne. Finally, I send special thanks to all my friends and colleagues who walk along with me through the long journey. iii PUBLICATIONS Journal publication: [1] H. V. Pham et al., "Temperature dependent electrical characteristics of rectifying graphitic contacts to p-type silicon," Semiconductor Science and Technology, vol. 34, no. 1, p. 015003, 2018. [2] H. Pham, H. N. Tran, A. S. Holland, and J. G. Partridge, "Temperature-Dependent Electrical Characteristics and Extraction of Richardson Constant from Graphitic- C/n-Type 6H-SiC Schottky Diodes," Journal of Electronic Materials, pp. 1-6, 2019. This article has been chosen by the Editors of the Journal of Electronic Materials to appear on Springer's website as a "Free Access" article. IEEE Conference Proceeding [3] Hung V. Pham, N. Le Huy, A. Stojcevski, and A. S. Holland, "Impact of impurities in 4H, 6H and 3C-SiC substrate on reverse recovery time of pn junction," in Information Science and Technology (ICIST), 2017 Seventh International Conference on, 2017, pp. 299-303: IEEE. [4] Hung V. Pham, A. S. Holland, H. L. Nguyen, J. G. Partridge, and H. N. Tran, "Modified electrical characteristics of filtered cathodic vacuum arc amorphous carbon film on n-Si (100) by heat treatment," in Micro and Nanoelectronics (RSM), 2017 IEEE Regional Symposium on, 2017, pp. 38-41: IEEE. [5] Hung V. Pham, S. N. Demidenko, and G. M. Merola, "Eliminating Re-Burn-In in semiconductor manufacturing through statistical analysis of production test data," iv in Instrumentation and Measurement Technology Conference (I2MTC), 2017 IEEE International, 2017, pp. 1-6: IEEE. [6] H. V. Pham, S. Luong, A. S. Holland, and H. L. Nguyen, "Impact of temperature on electrical performance of Ni film on n-type 4H-SÌC contacts in terms of micropipes density," in Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), 2018 2nd International Conference on, 2018, pp. 132-135: IEEE. v TABLE OF CONTENTS AUTHOR’S DECLARATION ........................................................................................... ii ACKNOWLEDGMENTS ................................................................................................. iii PUBLICATIONS ............................................................................................................... iv TABLE OF CONTENTS ................................................................................................... vi LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ............................................................................................................ xv LIST OF SYMBOLS ....................................................................................................... xvi LIST OF SYNONYMS.................................................................................................. xviii ABSTRACT ..................................................................................................................... xix CHAPTER 1 INTRODUCTION ........................................................................................ 1 1.1 Motivation and rationale ..................................................................................... 1 1.2 Silicon ................................................................................................................. 2 1.3 Silicon Carbide ................................................................................................... 4 1.4 Gallium Oxide ..................................................................................................... 8 1.5 Challenges for high power devices ................................................................... 10 1.6 Schottky diodes ................................................................................................. 11 1.6.1 Brief overview of metal-semiconductor junction formation and electrical properties ................................................................................................................... 14 1.6.2 Application .................................................................................................... 16 1.7 Carbon materials ............................................................................................... 16 vi 1.8 Experiment activities ........................................................................................ 19 1.9 Thesis organization ........................................................................................... 20 1.10 References ......................................................................................................... 21 CHAPTER 2 BACKGROUND AND RECENT ADVANCES IN CARBON-BASED SCHOTTKY DEVICES ................................................................................................... 31 2.1 Introduction ....................................................................................................... 31 2.2 Schottky diode .................................................................................................. 31 2.2.1 Interface states .............................................................................................. 34 2.2.2 Image force lowering .................................................................................... 36 2.2.3 Current-voltage characteristics ..................................................................... 38 2.2.4 Current transportation ................................................................................... 39 2.2.5 Schottky barrier inhomogeneity .................................................................... 45 2.3 Carbon-semiconductor Schottky diodes ........................................................... 48 2.4 Summary ........................................................................................................... 57 2.5 References ......................................................................................................... 58 CHAPTER 3 FABRICATION & CHARACTERISATION METHODS ........................ 65 3.1 Schottky diode fabrication ................................................................................ 65 3.1.1 Substrate dicing ............................................................................................. 65 3.1.2 Wafer cleaning .............................................................................................. 66 3.1.3 Spin coating .................................................................................................. 67 3.1.4 Mask alignment and UV exposure ................................................................ 68 3.1.5 Energetic carbon deposition using a filtered cathodic vacuum arc (FCVA) 70 3.1.6 Ion beam sputtering of metallic device contact layers .................................. 73 3.2 Electrical characterization ................................................................................. 74 3.2.1 Current-voltage characterization ................................................................... 74 3.2.2 Temperature dependent electrical measurements ......................................... 75 vii 3.2.3 Capacitance-voltage characterization ..........................................................
Recommended publications
  • Copyrighted Material - Taylor & Francis
    6 Low-Power Commercial, Automotive, and Appliance Connections AnthonyCopyrighted Lee and George Drew Material - Taylor & Francis They weighed me, dust by dust— They balanced film by film Emily Dickinson COntents 6.1 Introduction ........................................................................................................................ 376 6.2 Connectors ..........................................................................................................................377 6.2.1 Functional Requirements .....................................................................................377 6.2.2 Types of Connectors .............................................................................................. 378 6.2.3 Mechanical Considerations .................................................................................. 381 6.3 Contact Terminals ..............................................................................................................384 6.3.1 Contact Physics ......................................................................................................384 6.3.2 Terminal Types ......................................................................................................384 6.3.3 Other Electrical Contact Parameters ................................................................... 392 6.4 Degradation of Connector Contact ................................................................................. 393 6.4.1 Surface Films .........................................................................................................
    [Show full text]
  • The Pennsylvania State University the Graduate School THE
    The Pennsylvania State University The Graduate School THE EFFECTS OF INTERFACE AND SURFACE CHARGE ON TWO DIMENSIONAL TRANSITORS FOR NEUROMORPHIC, RADIATION, AND DOPING APPLICATIONS A Dissertation in Electrical Engineering by Andrew J. Arnold © 2020 Andrew J. Arnold Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2020 The dissertation of Andrew J. Arnold was reviewed and approved by the following: Thomas Jackson Professor of Electrical Engineering Co-Chair of Committee Saptarshi Das Assistant Professor of Engineering Science and Mechanics Dissertation Advisor Co-Chair of Committee Swaroop Ghosh Assistant Professor of Electrical Engineering Rongming Chu Associate Professor of Electrical Engineering Sukwon Choi Assistant Professor of Mechanical Engineering Kultegin Aydin Professor of Electrical Engineering Head of the Department of Electrical Engineering ii Abstract The scaling of silicon field effect transistors (FETs) has progressed exponentially following Moore’s law, and is nearing fundamental limitations related to the materials and physics of the devices. Alternative materials are required to overcome these limitations leading to increasing interest in two dimensional (2D) materials, and transition metal dichalcogenides (TMDs) in particular, due to their atomically thin nature which provides an advantage in scalability. Numerous investigations within the literature have explored various applications of these materials and assessed their viability as a replacement for silicon FETs. This dissertation focuses on several applications of 2D FETs as well as an exploration into one of the most promising methods to improve their performance. Neuromorphic computing is an alternative method to standard computing architectures that operates similarly to a biological nervous system. These systems are composed of neurons and operate based on pulses called action potentials.
    [Show full text]
  • High-Throughput Measurement of the Contact Resistance of Metal Electrode Materials and Uncertainty Estimation
    electronics Article High-Throughput Measurement of the Contact Resistance of Metal Electrode mAterials and Uncertainty Estimation Chao Zhang and Wanbin Ren * School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China; [email protected] * Correspondence: [email protected] Received: 30 October 2020; Accepted: 4 December 2020; Published: 6 December 2020 Abstract: Low and stable contact resistance of metal electrode mAterials is mAinly demanded for reliable and long lifetime electrical engineering. A novel test rig is developed in order to realize the high-throughput measurement of the contact resistance with the adjustable mechanical load force and load current. The contact potential drop is extracted accurately based on the proposed periodical current chopping (PCC) method in addition to the sliding window average filtering algorithm. The instrument is calibrated by standard resistors of 1 mW, 10 mW, and 100 mW with the accuracy of 0.01% and the associated measurement uncertainty is evaluated systematically. Furthermore, the contact resistance between standard indenter and rivet specimen is measured by the commercial DMM-based instruments and our designed test rig for comparison. The variations in relative expanded uncertainty of the measured contact resistance as a function of various mechanical load force and load current are presented. Keywords: electrode mAterial; high-throughput characterization; contact resistance; measurement; uncertainty estimation 1. Introduction Metal electrode mAterials are widely used in the electrical and electronic engineering for conducting and/or switching current, such as connectors [1], electromechanical devices [2], thin-film devices [3], microelectromechanical system [4], and switchgear [5], etc. The roughness of the mAterial surfaces causes only small peaks or asperities within the apparent surface to be in contact.
    [Show full text]
  • Finder Relays, General Technical Information
    General technical information Reference standards and values Guidelines for automatic flow solder Unless expressly indicated otherwise, the products shown in this catalogue are designed and manufactured according to the requirements of the processes following European and International Standards: In general, an automatic flow solder process consists of the following - EN 61810-1, EN 61810-2, EN 61810-7 for electromechanical stages: elementary relays - EN 50205 for relays with forcibly guided contacts Relay mounting: Ensure that the relay terminals are straight and enter the - EN 61812-1 for timers PC board perpendicular to the PC board. For each relay, the catalogue - EN 60669-1 and EN 60669-2-2 for electromechanical step relays illustrates the necessary PC board hole pattern (copper side view). Because - EN 60669-1 and EN 60669-2-1 for light-dependent relays, of the weight of the relay, a plated through hole printed circuit board is electronic step relays, light dimmers, staircase switches, recommended to ensure a secure fixation. movement detectors and monitoring relays. Other important standards, often used as reference for specific Flux application: This is a particularly delicate process. If the relay is not applications, are: sealed, flux may penetrate the relay due to capillary forces, changing its - EN 60335-1 and EN 60730-1 for domestic appliances performance and functionality. - EN 50178 for industrial electronic equipments Whether using foam or spray fluxing methods, ensure that flux is applied sparingly and evenly and does not flood through to the component side According to EN 61810-1, all technical data is specified under standard of the PC board.
    [Show full text]
  • Electrical Properties of Silicon Nanowires Schottky Barriers Prepared by MACE at Different Etching Time
    Electrical Properties of Silicon Nanowires Schottky Barriers Prepared by MACE at Different Etching Time Ahlem Rouis ( [email protected] ) Universite de Monastir Faculte des Sciences de Monastir https://orcid.org/0000-0002-9480-061X Neila Hizem Universite de Monastir Faculte des Sciences de Monastir Mohamed Hassen Institut Supérieur des Sciences Appliquées et de Technologie de Sousse: Institut Superieur des Sciences Appliquees et de Technologie de Sousse Adel kalboussi Universite de Monastir Faculte des Sciences de Monastir Original Research Keywords: Electrical Properties of Silicon, Etching Time, symmetrical current-voltage, capacitance-voltage Posted Date: February 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-185736/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Electrical properties of silicon nanowires Schottky barriers prepared by MACE at different etching time Ahlem Rouis 1, *, Neila Hizem1, Mohamed Hassen2, and Adel kalboussi1. 1Laboratory of Microelectronics and Instrumentation (LR13ES12), Faculty of Science of Monastir, Avenue of Environment, University of Monastir, 5019 Monastir, Tunisia. 2Higher Institute of Applied Sciences and Technology of Sousse, Taffala City (Ibn Khaldoun), 4003 Sousse, Tunisia. * Address correspondence to E-mail: [email protected] ABSTRACT This article focused on the electrical characterization of silicon nanowires Schottky barriers following structural analysis of nanowires grown on p-type silicon by Metal (Ag) Assisted Chemical Etching (MACE) method distinguished by their different etching time (5min, 10min, 25min). The SiNWs are well aligned and distributed almost uniformly over the surface of a silicon wafer. In order to enable electrical measurement on the silicon nanowires device, Schottky barriers were performed by depositing Al on the vertically aligned SiNWs arrays.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0178825 A1 GLOSSER Et Al
    US 20170178825A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0178825 A1 GLOSSER et al. (43) Pub. Date: Jun. 22, 2017 (54) UNIVERSAL CONTACT INPUT Publication Classification SUPPORTNG PROGRAMMABLE WETTING (51) Int. Cl. CURRENT HIH IMO (2006.01) GOIR 31/327 (2006.01) (71) Applicant: GE Intelligent Platforms, Inc., H02. I3/00 (2006.01) Charlottesville, VA (US) HIH I/60 (2006.01) (52) U.S. Cl. (72) Inventors: Richard Joseph GLOSSER, Salem, CPC .......... H0IH I/0015 (2013.01); H0IH I/605 VA (US); Venkatesh J. Hyderabad (IN) (2013.01); G0IR 31/327 (2013.01); H02J 13/00 (2013.01) (21) Appl. No.: 15/327,189 (57) ABSTRACT A system and method according to various embodiments can (22) PCT Fed: Jul. 22, 2014 include a universal contact input status detection circuit. A Voltage source wets a contact with a wetting Voltage. A (86) PCT No.: PCT/US2O14/0476OO current mirror circuit is connected across an input of the contact to provide a constant wetting current over a wide S 371 (c)(1), input Voltage range. The input voltage can be varied over a (2) Date: Jan. 18, 2017 range wide enough to include both AC voltages and DC Voltages. The current mirror circuit maintains the constant wetting current during varying wetting Voltage inputs across Related U.S. Application Data the input of the contact. A wetting Voltage sensor senses the (63) Continuation-in-part of application No. PCT/ wetting voltage provided to the contact so that the status of US2014/047223, filed on Jul. 18, 2014. the contact can be determined.
    [Show full text]
  • Applying Precision Switches
    MICRO SWITCH General Technical Bulletin No. 14 APPLYING PRECISION SWITCHES General Technical Bulletin #14 - Applying Precision Switches TABLE OF CONTENTS INTRODUCTION......................................................................................................................................................................1 BRIEF HISTORY OF THE PRECISION SWITCH ..............................................................................................................1 I. THE MECHANICAL CHARACTERISTICS OF A PRECISION SWITCH...................................................................5 A. MECHANICAL ACTION AND TERMINOLOGY..........................................................................................................................5 B. THE RELATION BETWEEN PLUNGER FORCE AND PLUNGER POSITION....................................................................................6 C. THE RELATION BETWEEN CONTACT FORCE AND PLUNGER POSITION....................................................................................8 D. CONTACT BOUNCE AND TRANSIT TIME................................................................................................................................9 E. POLES, THROWS AND BREAKS............................................................................................................................................10 II. THE ELECTRICAL CHARACTERISTICS OF A PRECISION SWITCH................................................................11 A. THE RESISTANCE OF AN OPEN SWITCH...............................................................................................................................11
    [Show full text]
  • Electrical Contact Bounce and the Control Dynamics of Snap-Action Switch£S
    ELECTRICAL CONTACT BOUNCE AND THE CONTROL DYNAMICS OF SNAP-ACTION SWITCH£S By JOHN WILLIAM McBRIDE ~B.Sc). A thesis submitted to the C.N.A.A for the degree of Doctor of Philosophy, and in partial f~lfilment of the requirements for that degree. Sponsoring Establishment: Plymouth Polytechnic, Plymouth, Devon. Collaborating Establishment: Arrow-Hart lEurope) Ltd, Plymouth, Devon. May 1986. ( \ , I i ·J I 0 .; -: . I DECLARATION I declare that this thesis is the result of my investigations only, and is no[ submitted in candidature for the award of any other degree. During the research programme I was nut registered for the award of any oth~r C.N.A.A or University Degree. ADVANCED STUDIES During the researc~ programme I undertooK a ~ourse of advanced studies. These included the use of the scanning electron microscope, and surface analysis techniques. I also attended several one day seminars, and presented a paper at the 31st Holm conference on e~ectrical contacts. ELECTRICAL CONTACT BOUNCE AND THE CONTROL DYNAMICS OF SNAP-ACTION SWITCHES By, J.W. McBride ABSTRACT Experimental and theoretical studies are made of a typical snap-action rocker switch, to establish the wear mechanisms in the pivoting contact. The rocker switch, used extensive~ in consumer goods, operates in the medium duty current range, (1 - 30 Amps). Highspeed photographic studies have shown that the main cause of wear is arcing, occurri~ during separation and bounce at the pivot contacts. To reduce the bounce a computer-based mathematical model of the system dynamics is developed and opcimised; this results in recommended design changes.
    [Show full text]
  • A Vertical Silicon-Graphene-Germanium Transistor
    ARTICLE https://doi.org/10.1038/s41467-019-12814-1 OPEN A vertical silicon-graphene-germanium transistor Chi Liu1,3, Wei Ma 1,2,3, Maolin Chen1,2, Wencai Ren 1,2 & Dongming Sun 1,2* Graphene-base transistors have been proposed for high-frequency applications because of the negligible base transit time induced by the atomic thickness of graphene. However, generally used tunnel emitters suffer from high emitter potential-barrier-height which limits the tran- sistor performance towards terahertz operation. To overcome this issue, a graphene-base heterojunction transistor has been proposed theoretically where the graphene base is 1234567890():,; sandwiched by silicon layers. Here we demonstrate a vertical silicon-graphene-germanium transistor where a Schottky emitter constructed by single-crystal silicon and single-layer graphene is achieved. Such Schottky emitter shows a current of 692 A cm−2 and a capacitance of 41 nF cm−2, and thus the alpha cut-off frequency of the transistor is expected to increase from about 1 MHz by using the previous tunnel emitters to above 1 GHz by using the current Schottky emitter. With further engineering, the semiconductor-graphene- semiconductor transistor is expected to be one of the most promising devices for ultra-high frequency operation. 1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China. 2 School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang 110016, China. 3These authors contributed equally: Chi Liu, Wei Ma. *email: [email protected] NATURE COMMUNICATIONS | (2019) 10:4873 | https://doi.org/10.1038/s41467-019-12814-1 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12814-1 n 1947, the first transistor, named a bipolar junction transistor electron microscope (SEM) image in Fig.
    [Show full text]
  • Schottky Barrier Height Dependence on the Metal Work Function for P-Type Si Schottky Diodes
    Schottky Barrier Height Dependence on the Metal Work Function for p-type Si Schottky Diodes G¨uven C¸ ankayaa and Nazım Uc¸arb a Gaziosmanpas¸a University, Faculty of Sciences and Arts, Physics Department, Tokat, Turkey b S¨uleyman Demirel University, Faculty of Sciences and Arts, Physics Department, Isparta, Turkey Reprint requests to Prof. N. U.; E-mail: [email protected] Z. Naturforsch. 59a, 795 – 798 (2004); received July 5, 2004 We investigated Schottky barrier diodes of 9 metals (Mn, Cd, Al, Bi, Pb, Sn, Sb, Fe, and Ni) hav- ing different metal work functions to p-type Si using current-voltage characteristics. Most Schottky contacts show good characteristics with an ideality factor range from 1.057 to 1.831. Based on our measurements for p-type Si, the barrier heights and metal work functions show a linear relationship of current-voltage characteristics at room temperature with a slope (S = φb/φm) of 0.162, even though the Fermi level is partially pinned. From this linear dependency, the density of interface states was determined to be about 4.5 · 1013 1/eV per cm2, and the average pinning position of the Fermi level as 0.661 eV below the conduction band. Key words: Schottky Diodes; Barrier Height; Series Resistance; Work Function; Miedema Electronegativity. 1. Introduction ear dependence should exist between the φb and the φm. Corresponding to this, SB heights of various el- The investigation of rectifying metal-semiconductor emental metals, including Au, Ti, Pt, Ni, Cr, have contacts (Schottky diodes) is of current interest for been reported [14 – 16].
    [Show full text]
  • Ni Silicide Schottky Barrier Tunnel FET for Low Power Device Applications
    Tokyo Institute of Technology Master’s Thesis – March 2011 Ni Silicide Schottky barrier tunnel FET for Low power device applications (低消費電力動作に向けたニッケルシリサイドバリアトンネルFET) Yan Wu Department of Electronics and Applied Physics Interdisciplinary Graduate School of Science and Engineering MASTER OF SCIENCE IN PHYSICAL ENGINEERING 09M53470 Supervisor: Professor Akira Nishiyama and Hiroshi Iwai Abstract To solve this problem that the supply voltage and the threshold voltage should be scaled but induction of the leakage would increase current at the zero gate voltage. The Subthreshold slope (SS) cannot be scaled down below 60mV/decade at Room temperature in principle and this fact hinders the applied voltage scaling. The tunnel FET is one of the promising candidates to decreases SS. Schottky barrier Tunneling FET (SBTT), which uses schottky tunnel junction, has many advantages to ordinary PN junction Tunnel FETs: low parasitic resistance, better short channel effect immunity and high controllability of output characteristics by the silicide material selection. The tunnel FET with NiSi/Si schottky barrier at the source/channel interface was fabricated and the characteristics were analyzed in terms of the drive current mechanism at low and high voltage. For that purpose, temperature dependence measurements of the transistor characteristics were mainly performed. Contents Abstract I Introduction I.1 Background of This Study I.2 Ultimate CMOS downsizing I.3 subthreshold leakage increasing I.4 tunneling FET I.5 Objective of this study II Metal-Semiconductor
    [Show full text]
  • Low-Resistance Electrical Contact to Carbon Nanotubes with Graphitic
    12 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 1, JANUARY 2012 Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer Yang Chai, Arash Hazeghi, Kuniharu Takei, Hong-Yu Chen, Student Member, IEEE, Philip C. H. Chan, Fellow, IEEE, Ali Javey, and H.-S. Philip Wong, Fellow, IEEE Abstract—Carbon nanotubes (CNTs) are promising candidates s-CNT and metal electrode [4]–[6]. However, experimental for transistors and interconnects for nanoelectronic circuits. Al- results have shown that the contact resistance is still large for though CNTs intrinsically have excellent electrical conductivity, the CNTs with metallic band structure [2], where the SB should the large contact resistance at the interface between CNT and metal hinders its practical application. Here, we show that electri- not exist at the interface between metallic CNT and metal. cal contact to the CNT is substantially improved using a graphitic This indicates that there is additional contact barrier or series interfacial layer catalyzed by a Ni layer. The p-type semiconduct- resistance for metallic CNT/metal. Recent experimental results ing CNT with graphitic contact exhibits high ON-state conduc- on both semiconducting and metallic CNT devices revealed that tance at room temperature and a steep subthreshold swing in a surface chemistry is very important for forming good electrical back-gate configuration. We also show contact improvement to the semiconducting CNTs with different capping metals. To study the contact between CNT and metal [7], [8]. The metal wetting role of the graphitic interfacial layer in the contact stack, the cap- to the tubular structure of the CNT is imperfect, where the ping metal and Ni catalyst were selectively removed and replaced metal atoms are not fully covered on the CNT surface.
    [Show full text]