UNIVERSITY of CALIFORNIA RIVERSIDE Systematic Research on Minute Litter Bugs Dipsocoromorpha with Emphasis on Schizopteridae

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA RIVERSIDE Systematic Research on Minute Litter Bugs Dipsocoromorpha with Emphasis on Schizopteridae UNIVERSITY OF CALIFORNIA RIVERSIDE Systematic Research on Minute Litter Bugs Dipsocoromorpha With Emphasis on Schizopteridae (Hemiptera: Heteroptera) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Alexander Knyshov December 2018 Dissertation Committee: Dr. Christiane Weirauch, Chairperson Dr. John Heraty Dr. Timothy Paine Dr. Mark Springer Copyright by Alexander Knyshov 2018 The Dissertation of Alexander Knyshov is approved: Committee Chairperson University of California, Riverside Acknowledgments I would to thank the following individuals and institutions who have kindly loaned or donated the material for my research: Ruth Salas and Toby Schuh (AMNH), Mick Webb (BMNH), Vasily Grebennikov (CNC), Pavel Štys (CUNI), James Boone, Rebekah Baquiran, and Margaret Thayer (FMNH), Susan Halbert (FSCA), Jim Lewis (INBio), Giar-Ann Kung (LACM), Peter Schwendinger and John Hollier (MHNG), Edward Riley (TAMU), Steve Heydon (UCD), Tom Henry (USNM), Serguei V. Triapitsyn and Doug Yanega (UCRC), Edward Riley (TAMU), Fedor Konstantinov (ZISP), Michael Ivie (MTEC), Christopher Grinter (CAS), Norm Penny and Brian Fisher (CAS), Simon van Noort (SAM), Daniela Takiya (UFRJ), and Thailand Inventory Group for Entomological Research (TIGER) Project. Robin Delapena (FMNH) and Walter Winn (FSCA) helped with sorting lots of bulk samples and recovering many of the specimens used in this study. I am grateful to Serguei Triapitsyn and Vladimir Berezovskiy (UCR) for training me and helping with permanent slide-mounting of specimens and István Mikó (Penn State) for advice on confocal microscopy. I thank the Heteropteran Systematics Lab undergraduates Bridget Gonzales, Walena Logan, Brian Vanderveer, Christy Hoong, Ishani Richardson, Joanna Mai, Michelle Ly, Kyle Whorrall for their help with specimen processing, including sorting and databasing. Members of the Weirauch lab, including Rochelle Hoey-Chamberlain, Stephanie Leon, Michael Forthman, Junxia Zhang, Eric Gordon, Paul Masonick, Madison Hernandez, Carlos Rosas, Samantha Smith, Stephanie Castillo, are acknowledged for help throughout my PhD and comments and suggestions on the manuscript drafts. Additionally, members iv of the Heraty lab are thanked for reviewing some of my manuscripts. I am very grateful to Rochelle Hoey-Chamberlain and Eric Gordon for a lot of help with specimen processing and various research ideas. I would also like to thank my dissertation committee members, Dr. John Heraty, Dr. Timothy Paine, and Dr. Mark Springer, for their guidance and help. Especially, I would like to thank Dr. Christiane Weirauch for all the help and support she provided to me during my time at UCR. I am thankful that she has given me an opportunity to extend my PhD research beyond what was originally proposed and experiment with new research ideas. The following funding sources are acknowledged: the US National Science Foundation grant “ARTS: Litter Bugs: revisionary and phylogenetic research on the least studied true bug infraorder (Insecta: Hemiptera: Dipsocoromorpha)” project (DEB-1257702), awarded to Christiane Weirauch; the UCR seed grant “Unlocking the Vault of SoCal Biota” awarded to Christiane Weirauch, Amy Litt, and John Heraty; a Dean’s Distinguished Fellowship, a Dr. Mir S. Mulla and Lelia Mulla Endowed Scholarship, and a UCR Dissertation Research Grant awarded to me. The text of this dissertation, in part or in full, is a reprint of the material as it appears in Knyshov et al. (2016) and Knyshov et al. (2018). The co-author Christiane Weirauch listed in those publications directed and supervised the research which forms the basis for this dissertation. v ABSTRACT OF THE DISSERTATION Systematic Research on Minute Litter Bugs Dipsocoromorpha With Emphasis on Schizopteridae (Hemiptera: Heteroptera) by Alexander Knyshov Doctor of Philosophy, Graduate Program in Entomology University of California, Riverside, December 2018 Dr. Christiane Weirauch, Chairperson Dipsocoromorpha, or the minute litter bugs, are a poorly studied and minuscule group of true bugs (Hemiptera: Heteroptera) with uncertain phylogenetic position, often bizarre morphology, and substantial undescribed biodiversity. A combination of taxonomic revisions, comparative morphological studies, and phylogenetic analyses based on both morphological and molecular data is employed to advance our knowledge of the group. The first chapter taxonomically revises the New World genus Chinannus and describes 26 new species. The second chapter develops and tests a cost-efficient DNA sequencing method for archival specimens. The third chapter uses and refines this method to conduct a comprehensive phylogenetic analysis of a very diverse group of dipsocoromorphans, the Corixidea genus group. The fourth chapter taxonomically revises the genus Voragocoris that belongs to the Corixidea genus group, building on the phylogeny inferred in chapter three, and describing seven new species. The fifth chapter conducts a vi comparative study of abdominal morphology in Dipsocoromorpha, and both standardizes the terminology and proposes primary homology hypotheses, that could be used for a phylogenetic reconstruction. The sixth, and last, chapter presents a comprehensive phylogenetic analysis of Dipsocoromorpha based on both morphological and molecular data. vii Table of contents Introduction ..............................................................................................................1 References ....................................................................................................9 Chapter 1: Systematics of the genus Chinannus Wygodzinsky Abstract ......................................................................................................13 Introduction ................................................................................................14 Material and Methods ................................................................................21 Results and Discussion ..............................................................................30 References ................................................................................................117 Tables and Figures ...................................................................................122 Chapter 2: Sequence capture using PCR-generated baits: a method for cost-efficient and data-rich phylogenies Abstract ....................................................................................................149 Introduction ..............................................................................................150 Material and Methods ..............................................................................155 Results and Discussion ............................................................................163 References ................................................................................................171 Tables and Figures ...................................................................................176 Supporting information ............................................................................180 Chapter 3: Phylogenetic analysis of the Corixidea Reuter genus group Abstract ....................................................................................................203 Introduction ..............................................................................................204 viii Material and Methods ..............................................................................208 Results ......................................................................................................214 Discussion ................................................................................................219 References ................................................................................................223 Tables and Figures ...................................................................................227 Supporting information ............................................................................234 Chapter 4: Taxonomic revision of the genus Voragocoris Weirauch Abstract ....................................................................................................241 Introduction ..............................................................................................241 Material and Methods ..............................................................................243 Results and Discussion ............................................................................245 References ................................................................................................262 Tables and Figures ...................................................................................264 Chapter 5: Comparative morphology of male genitalic structures across Dipsocoromorpha Abstract ....................................................................................................276 Introduction ..............................................................................................277 Material and Methods ..............................................................................280 Results ......................................................................................................284 Discussion ................................................................................................322 Conclusions ..............................................................................................330
Recommended publications
  • Taxonomic Revision of Peloridinannus Wygodzinsky 1951
    73 (3): 457 – 475 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. From “insect soup” to biodiversity discovery: taxonomic revision of Peloridinannus Wygodzinsky, 1951 (Hemiptera: Schizopteridae), with description of six new species Christiane Weirauch * & Sarah Frankenberg Department of Entomology, University of California, Riverside, 900 University Avenue, 92521 Riverside, CA, USA; Christiane Weirauch [[email protected]]; Sarah Frankenberg [[email protected]] — * Correspond ing author Accepted 05.x.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Christian Schmidt. Abstract With only about 320 described species, Dipsocoromorpha is currently one of the smallest and least studied infraorders of Heteroptera (He- miptera). Specimens are small (often 1 – 2 mm), live in cryptic habitats, are collected using specialized techniques, and curated material in natural history collections is scarce. Despite estimates of vast numbers of yet to be described species, species discovery and documentation has slowed compared to peak taxonomic activity in the mid-20th century. We show, using the genus Peloridinannus Wygodzinsky, 1951 (Hemiptera: Schizopteridae) as an example, that curating specimens from bulk samples already housed in natural history collections is an effective way of advancing our understanding of the biodiversity of this charismatic group of true bugs. Peloridinannus Wygodzinsky was described as a monotypic genus, known only from two female specimens from Costa Rica. Based on examination of 59 specimens from Costa Rica, Panama, Ecuador, and Peru, six new species of Peloridinannus are described, Peloridinannus curly sp.n., Peloridinannus larry sp.n., Peloridinannus laxicosta sp.n., Peloridinannus moe sp.n., Peloridinannus sinefenestra sp.n., and Peloridinannus stenomargaritatus sp.n.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Cost-Efficient High Throughput Capture of Museum Arthropod Specimen DNA Using
    bioRxiv preprint doi: https://doi.org/10.1101/333799; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Cost-efficient high throughput capture of museum arthropod specimen DNA using 2 PCR-generated baits 3 4 Running title: Capture of museum specimens using PCR baits 5 6 Alexander Knyshov, University of California Riverside, Entomology, Riverside, CA, USA, 7 corresponding author email and ORCID: [email protected], orcid.org/0000-0002-2141-9447 8 9 Eric R.L. Gordon1, University of California Riverside, Entomology, Riverside, CA, USA, 10 11 Christiane Weirauch, University of California Riverside, Entomology, Riverside, CA, USA 12 1 Current affiliation: University of Connecticut, Ecology and Evolutionary Biology, Storrs, CT, USA 1 bioRxiv preprint doi: https://doi.org/10.1101/333799; this version posted May 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 13 Abstract: 14 1. Gathering genetic data for rare species is one of the biggest remaining obstacles in 15 modern phylogenetics, particularly for megadiverse groups such as arthropods. Next 16 generation sequencing techniques allow for sequencing of short DNA fragments 17 contained in preserved specimens >20 years old, but approaches such as whole genome 18 sequencing are often too expensive for projects including many taxa. Several methods of 19 reduced representation sequencing have been proposed that lower the cost of sequencing 20 per specimen, but many remain costly because they involve synthesizing nucleotide 21 probes and target hundreds of loci.
    [Show full text]
  • Laboulbeniales on Semiaquatic Hemiptera. V. Triceromyces Richard K
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 11 | Issue 3 Article 2 1986 Laboulbeniales on semiaquatic Hemiptera. V. Triceromyces Richard K. Benjamin Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Benjamin, Richard K. (1986) "Laboulbeniales on semiaquatic Hemiptera. V. Triceromyces," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 11: Iss. 3, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol11/iss3/2 ALISO 11(3), 1986, pp. 245-278 LABOULBENIALES ON SEMIAQUATIC HEMIPTERA. V. TRICEROMYCES: WITH A DESCRIPTION OF MONOECIOUS-DIOECIOUS DIMORPHISM IN THE GENUS RICHARD K. BENJAMIN Rancho Santa Ana Botanic Garden Claremont, California 91711 ABSTRACf Six species of Triceromyces (Laboulbeniales), including the type, T. balazucii (on Hebridae), parasitic on semiaquatic Hemiptera, were studied at the light-microscopic level. Descriptions are provided for all of the taxa, and features of developmental morphology are described, compared, and illustrated with photographs and line drawings. Four species are described as new: T. hebri (on Hebridae), T. hydrometrae (on Hydrometridae), and T. bi/ormis and T. bullatus (on MesoveJiidae). The species growing on Hebridae and Hydrometridae are monoecious. The two species on Mesoveliidae develop monoecious and dioecious morphs, which occur together on the same host individual. This phenom­ enon is recognized and described for the first time in the Laboulbeniales. Two species, Autophagomyces poissonii and Dioicomyces mesoveliae, previously described from a species ofMesoveliidae, are shown to represent the monoecious and dioecious forms of a species of Triceromyces and are transferred to this genus as T.
    [Show full text]
  • New Faunistic Records of Hebridae (Hemiptera: Heteroptera) from the Mediterranean and the Near and Middle East
    ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 95(2): 11–18, 2010 New faunistic records of Hebridae (Hemiptera: Heteroptera) from the Mediterranean and the Near and Middle East PETR KMENT1 & ELENA V. K ANYUKOVA2 1 Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: [email protected] 2 Zoological Museum, Far Eastern National University, Okeanskii pr. 37, 690000, Vladivostok, Russia; e-mail: [email protected] KMENT P. & KANYUKOVA E. V. 2010: New faunistic records of Hebridae (Hemiptera: Heteroptera) from the Mediterranean and the Near and Middle East. Acta Musei Moraviae, Scientiae biologicae (Brno) 95(2): 11–18. – The following new or confirmed records of West and Central Palaearctic Hebridae are given: Hebrus kiritshenkoi Kanyukova, 1997 from Afghanistan, Hebrus montanus Kolenati, 1857 from Greece, Jordan, Lebanon, and Morocco, Hebrus pilipes Kanyukova, 1997 from Afghanistan, and Hebrus oxianus Kanyukova, 1997 from Afghanistan and Iran. The records from Afghanistan are the first representatives of the family Hebridae from this country. Keywords. Heteroptera, Hebridae, Hebrus, faunistics, Afghanistan, Azerbaijan, Greece, Iran, Jordan, Lebanon, Morocco, Uzbekistan, Palaearctic Region Introduction The velvet water bugs or sphagnum bugs, family Hebridae, make up one of the basal groups of the infraorder Gerromorpha (DAMGAARD 2008). These small bugs (1.3–3.7 mm) are predatory on small arthropods. Primarily terrestrial, the bugs inhabit moist microhabitats on the banks of bodies of water (humid litter, moss), and marginal aquatic habitats (sphagnum bogs, sedge marshes), while some tropical representatives live on the surface of water covered with floating plants, sometimes entering the water; the Oriental genus Nieserius Zettel, 1999 is obligatorily subaquatic.
    [Show full text]
  • An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
    Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract .
    [Show full text]
  • Evolution of Gene Regulation Among Drosophila Species
    8th Annual ARTHROPOD GENOMICS SYMPOSIUM (AGS) ABSTRACTS | INVITED SPEAKERS EVOLUTION OF GENE REGULATION AMONG DROSOPHILA SPECIES Patricia Wittkopp, University of Michigan Genetic dissection of phenotypic differences within and between species has shown that genetic changes affecting the regulation of gene expression are an important source of phenotypic diversity. We have seen this in our own work investigating the genetic basis of pigmentation differences between closely related Drosophila species. To better understand the genetic mechanisms responsible for the evolution of gene expression, we have been investigating the evolution of a specific gene yellow( ) as well as the evolution of gene expression on a genomic scale. Work on both of these topics, with an emphasis on methods adaptable to non-model systems, will be presented. METAMORPHOSIS AND EVOLUTION OF ARTHROPOD GENOMICS Judith H. Willis, University of Georgia I began work on arthropod genomics 50 years ago. At first, I was only interested in the genetic underpinnings of metamorphic transitions, but I have ended up with an increasing orientation toward arthropod evolution. During those 50 years the field itself has evolved (gaining a name in the process) and metamorphosed (witness this meeting). My talk will address both the biology and the history. I began by testing whether each metamorphic stage was underwritten by a unique set of genes by using cuticular proteins (CPs) as molecular markers. Results, starting with tube gels and progressing to the isolation and characterization of two CP genes and their promoters, demolished that hypothesis. A shift from a giant silkworm to Anopheles gambiae that devotes ~2% of its protein coding genes to structural CPs was accompanied by a larger scale analysis of their activity, including mRNA expression and recovery of authentic CPs from cuticle determined by LC-MS/MS analyses.
    [Show full text]
  • The Dipsocoromorpha (Heteroptera) of Switzerland
    The Dipsocoromorpha (Heteroptera) of Switzerland Autor(en): Hollier, John / Heckmann, Ralf / Strauss, Gerhard Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 87 (2014) Heft 1-2 PDF erstellt am: 09.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403083 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIETE ENTOMOLOGIQUE SUISSE 87: 95-101,2014 The Dipsocoromorpha (Heteroptera) of Switzerland John Hollier1, Ralf Heckmann2 & Gerhard Strauss3 1 Muséum d'histoire naturelle, C.P. 6434, CH-1211, Genève 6, Suisse, [email protected] 2 Schillerstr.
    [Show full text]
  • Evolution of the Insects
    CY501-C08[261-330].qxd 2/15/05 11:10 PM Page 261 quark11 27B:CY501:Chapters:Chapter-08: 8 TheThe Paraneopteran Orders Paraneopteran The evolutionary history of the Paraneoptera – the bark lice, fold their wings rooflike at rest over the abdomen, but thrips true lice, thrips,Orders and hemipterans – is a history beautifully and Heteroptera fold them flat over the abdomen, which reflected in structure and function of their mouthparts. There probably relates to the structure of axillary sclerites and other is a general trend from the most generalized “picking” minute structures at the base of the wing (i.e., Yoshizawa and mouthparts of Psocoptera with standard insect mandibles, Saigusa, 2001). to the probing and puncturing mouthparts of thrips and Relationships among paraneopteran orders have been anopluran lice, and the distinctive piercing-sucking rostrum discussed by Seeger (1975, 1979), Kristensen (1975, 1991), or beak of the Hemiptera. Their mouthparts also reflect Hennig (1981), Wheeler et al. (2001), and most recently by diverse feeding habits (Figures 8.1, 8.2, Table 8.1). Basal Yoshizawa and Saigusa (2001). These studies generally agree paraneopterans – psocopterans and some basal thrips – are on the monophyly of the order Hemiptera and most of its microbial surface feeders. Thysanoptera and Hemiptera suborders and a close relationship of the true lice (order independently evolved a diet of plant fluids, but ancestral Phthiraptera) with the most basal group, the “bark lice” (Pso- heteropterans were, like basal living families, predatory coptera), which comprise the Psocodea. One major issue is insects that suction hemolymph and liquified tissues out of the position of thrips (order Thysanoptera), which either their prey.
    [Show full text]
  • Types of True Bugs (Insecta, Hemiptera, Heteroptera) Deposited in the Museo De La Plata, Argentina
    Zootaxa 3977 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3977.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:19EF7607-0D12-4DB0-B269-373A97C3D6ED ZOOTAXA 3977 Types of true bugs (Insecta, Hemiptera, Heteroptera) deposited in the Museo de La Plata, Argentina MARÍA DEL CARMEN COSCARÓN, CARINA BASSET & NANCY LOPEZ División Entomología, Museo de La Plata, Paseo del Bosque s/n, B1900DNG La Plata, Argentina. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by D. Rider: 19 May. 2015; published: 25 Jun. 2015 MARÍA DEL CARMEN COSCARÓN, CARINA BASSET & NANCY LOPEZ Types of true bugs (Insecta, Hemiptera, Heteroptera) deposited in the Museo de La Plata, Argentina (Zootaxa 3977) 101 pp.; 30 cm. 25 Jun. 2015 ISBN 978-1-77557-733-1 (paperback) ISBN 978-1-77557-734-8 (Online edition) FIRST PUBLISHED IN 2015 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2015 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3977 (1) © 2015 Magnolia Press COSCARÓN ET AL.
    [Show full text]
  • Hemiptera of Canada 277 Doi: 10.3897/Zookeys.819.26574 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 819: 277–290 (2019) Hemiptera of Canada 277 doi: 10.3897/zookeys.819.26574 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Hemiptera of Canada Robert G. Foottit1, H. Eric L. Maw1, Joel H. Kits1, Geoffrey G. E. Scudder2 1 Agriculture and Agri-Food Canada, Ottawa Research and Development Centre and Canadian National Collection of Insects, Arachnids and Nematodes, K. W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada 2 Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada Corresponding author: Robert G. Foottit ([email protected]) Academic editor: D. Langor | Received 10 May 2018 | Accepted 10 July 2018 | Published 24 January 2019 http://zoobank.org/64A417ED-7BB4-4683-ADAA-191FACA22F24 Citation: Foottit RG, Maw HEL, Kits JH, Scudder GGE (2019) Hemiptera of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada – A Biodiversity Assessment. Part 1: The Terrestrial Arthropods. ZooKeys 819: 277–290. https://doi.org/10.3897/zookeys.819.26574 Abstract The Canadian Hemiptera (Sternorrhyncha, Auchenorrhyncha, and Heteroptera) fauna is reviewed, which currently comprises 4011 species, including 405 non-native species. DNA barcodes available for Canadian specimens are represented by 3275 BINs. The analysis was based on the most recent checklist of Hemiptera in Canada (Maw et al. 2000) and subsequent collection records, literature records and compilation of DNA barcode data. It is estimated that almost 600 additional species remain to be dis- covered among Canadian Hemiptera. Keywords Barcode Index Number (BIN), biodiversity assessment, Biota of Canada, DNA barcodes, Hemiptera, true bugs The order Hemiptera, the true bugs, is a relatively large order.
    [Show full text]