La Vierge 1 La Vierge (Vir = Virgo) Nom Distance

Total Page:16

File Type:pdf, Size:1020Kb

La Vierge 1 La Vierge (Vir = Virgo) Nom Distance La Vierge 1 La Vierge (Vir = Virgo) Nom distance magnitude type remarques (al) spectral ααα ou Spica ou l’épi ou Azimech 270 0,98 à 1,3 B2III Ts= 20 000K, var. à éclipse La Vierge 2 βββ ou Alaraph ou Zavijava 31 3,8 F8IV γγγ ou Arich ou Porrima 38 2,74 et 3 F0IV et Binaire à 4,6" (diminue) F0 δδδ ou Minelauva ou Auva 200 3,39 M0II εεε ou Vindémiatrix 100 2,85 K0III ζζζ ou Heze 72 3,38 A2IV ηηη ou Zaniah 204 4 A0V ιιι ou Syrma 76 4,2 F5III µµµ ou Rijl al Auwa 72 3,9 F5III ννν 233 4,2 M0III τττ 136 4,3 A2IV θθθ 125 4,4 et 4,8 A2 Binaire à 7,2 ‘’ 70 72 5,0 G2V possède 1 planète extrasolaire b: m=7,44MJup. p=117j.d=0,48ua HD106252 122 7,36 G0 possède 1 planète extrasolaire b :m=6,8MJup. p=1500j.d=2,61ua HD114783 72 7,57 K0 possède 1 planète extrasolaire b: m=0,99MJup. p=501j.d=1,2ua HD 130322 99 8,05 K0V possède 1 planète extrasolaire b: m=1,1MJup. p=11j. d=0;088ua HD 102195 93 8,05 K0V possède 1 planète extrasolaire b: m=0,48MJup. p=4j. d=0;049ua Objet Distance (al) magnitude remarques M49(NGC4472) 48,2 millions 9,3 galaxie E4 (3' X2'), découverte par: Messier en 1771, diamètre réel: 50 000al, masse : 5 fois la Galaxie M58 (NGC4579) 66,8 millions 10,6 galaxie SBb (5'X4'), découverte par: Messier en 1779, diamètre réel: 50000al, 160 milliards de masses solaires M59 (NGC4621) 60 millions 10,8 galaxie E3 (2'7X2'8) , découverte par: J.G.Koehler en 1779, vitesse d'éloignement: 350km/s, diamètre réel: 24 000al,masse : 250 milliards de masses solaires. M60 (NGC4649) 60 millions 9,8 galaxie E1 (2'X2') ,découverte par: J.G.Koehler en 1779,vitesse d'éloignement: 350km/s, diamètre réel: 25 000al, masse : 5 X la Galaxie. M61(NGC4303) 60 millions 10,2 galaxie Sc (5'6X5'3), découverte par: Abbé Oriani en 1779, diamètre réel: 60 000al, M84 (NGC4374) 51,2 millions 10,3 galaxie S0(2'X2'),diamètre réel: 25 000al, découverte en 1781 par Charles Messier. Début de la "chaîne de Markarian" (voir la carte) M86(NGC4406) 60 millions 10,1 galaxie Eed (1,5'X1,2'), découverte par: J.G.Koehler en 1779, vitesse de rapprochement: 450km/s, diamètre réel: 25 000al. M87(NGC4486) 60 millions 9,6 galaxie EOp (2'X2'), découverte par: Messier en mars 1781, diamètre réel: 24 000al propriétés: puissante source radio (3C274) provenant d'un immense jet de matière. Elle renfermerait un trou noir massif. La Vierge 3 M89 (NGC4552) 60 millions 10,6 galaxieSO (1'3X1'3), découverte par: Messier en 1781, masse : 250 milliards de masses solaires. M90 (NGC4569) 71,4 millions 10,2 galaxie Sb (7'5X2'2)découverte par : Messier en 1781, masse : 80milliards de masses solaires M104 (NGC4594) 45 millions 9,3 galaxie "Sombrero"Sa/Sb (6'X2'5), découverte par: Méchain en mai 1781, vitesse d'éloignement: 1150km/s, diamètre réel: 130 000al, masse : 250milliards de m. sol. NGC4608 11 galaxie SB0(3,3’ X2,9’) NGC4216 70 millions 11,0 galaxie SBb (8,3’ X2,2’) NGC4365 63,6 millions 10,5 galaxie E3 (6,2' X 4,6') NGC4435 60 millions 11,8 galaxie E4/SB0 (3’X2’) NGC4438 63,6 millions 10,9 galaxie S0/Sa (9,3'X4') NGC4461 59 millions 12 ou 11,2 galaxie SB0/Sa (3,7’X1,5’) NGC4478 63,6 millions 12,1 galaxie E2(2,4'X2,1') NGC4526 71,4 millions 10,6 galaxie E7/So (7,2' X2,3') NGC4564 11,1 galaxie E6 (3,2' X1,8') NGC4567 52milions 10,8 les jumelles : galaxie SA(3,1’X2,2’) et NGC4568 52milions 11,3 galaxie SA(3,1’X2,2’) NGC4596 10,4 galaxie SBa (4’X3,4’) NGC4636 50 millions 9,5 galaxieE (5,9'x4,6') un trou noir central. NGC4643 10,8 galaxie SB (3,1'X2,5') elle ressemble à Saturne NGC4638 11,3 galaxie E-S0 (2,8'X2,8') NGC4660 60 millions 11,9 galaxie E5 (3'X2') NGC4665 =NGC4624 10,5 galaxie (3,5'X3,5') NGC4697 9,2 galaxieE (6,2'X4,5') NGC4699 39,1 millions 10,5 galaxie Sb (3'X2') NGC4753 9,9 galaxie (8,6'X2') NGC4754 55millions 11,3 galaxie SB(r)0 ( 4.5 x 2.4') NGC4762 55millions 10,3 galaxie SO (5,1'X2,6') NGC5363 17 millions 11,2 galaxieSa (2'X1') NGC5566 49,2 millions 11,4 galaxie Sba (6'X1') NGC5634 4900 11 amas globulaire (d=1,4') NGC5746 95 millions 10,3 galaxie Sb (6,9'X1,2') NGC5846 10 galaxie E (4,0'X3,7') NGC5838 10,9 galaxie E-S0 (3,7'X1,6') 3C273, Cambridge en 3milliards 13 Quasar (d=1"), vitesse d'éloignement: 50 millions de 1959, km/s, présence d'un jet de matière. La Vierge 4 A partir de Vindémiatrix ( εεε), au T406mm Dans le même champ : au 24mm (78X), NGC 4762 une galaxie bien vue par la tranche sous un arc de 3 étoiles; et NGC 4754 bien vue de face alignée avec 2 étoiles. Non loin de là, dans le même champ 3 galaxies M 60 la galaxie plus brillante et ronde NGC 4638 au-dessus, assez faible, M 59 plus à gauche, un peu plus loin, NGC 4660 au dessus difficile très petite. Elle se trouve placée au milieu entre 2 groupes d'étoiles. Il faut la vision décalée pour bien l'apercevoir. M 58 plus brillante et ronde proche d'une étoile Près de 4 étoiles en forme de petit bélier NGC 4567 et NGC4568 ronde et faible (je n'ai pas séparé les 2 jumelles) NGC 4564 faible et vue par la tranche M89 et M90: ces 2 galaxies ne sont pas dans le même champ du chercheur Au T200mm, dans le champ du 26mm (77X), on voit un alignement d'étoiles et M87 se trouve dans cet alignement. NGC4478 se trouve à gauche de M87 Un bel alignement de galaxies : M84, M86, NGC4435 et NGC4438 : la Chaîne de Markarian On voit très nettement 3 galaxies pratiquement alignées, la 3ème étant double. M84 puis M86 puis côte à côte NGC4435 et NGC4438 NGC4461 en suivant encore l'alignement ,on la voit assez brillante Il y a encore NGC4473 puis NGC4477 qui sont dans la Chevelure de Bérénice. Plus loin à gauche, NGC4216. Elle montre sa tranche illuminée par un noyau brillant. Repartir de Vindemiatrix et se diriger vers rho ( ρ) Vierge Tout près : NGC 4608 et dans le même champ un peu plus loin , NGC 4596 , il faut bien regarder pour les voir au T200 plus visible au T406 La Vierge 5 Repartir de Vindemiatrix et se diriger vers une petite couronne d'étoiles NGC4526 . Facile à trouver, elle est coincée entre 2 étoiles qui appartiennent à une couronne d'étoiles brillantes près d' ε-Vierge. Belle image au 26mm. M49 est toute proche. M49 . Il faut la rechercher entre 2 étoiles, visibles dans le chercheur. La galaxie est bien visible au 26 mmVoir la description au-dessus. NGC4365 est assez difficile à voir au T200 car c'est une galaxie vue par dessus. Il faut être sûr d'être au bon endroit pour l'apercevoir. Située non loin de NGC4526, il faut partir de l'étoile brillante à gauche de cette galaxie puis au 26mm trouver 2 couples d'étoiles doubles et poursuivre de la même distance. Elle est sous une étoile. A partir de 109 Vierge NGC 5746 faible, sortir 109 du champ NGC 5846 bien visible et ronde NGC 5838, vue près d'une étoile brillante A partir de mu (µ) NGC5634 Elle se voit très bien, près d’une étoile. La Vierge 6 A partir de zèta ( ζζζ) NGC5363 est proche d'une étoile assez brillante. NGC5566 , dans les environs de τ -Vierge, proche d'un étoile double. Il faut la sortir du champ pour bien voir la galaxie en vision décalée au T200 A partir de l'Epi ( ααα) M104 : L a galaxie Sombrero. Magnifique, sa forme caractéristique est bien reconnaissable. NGC4699 Repérée facilement, elle semble d'abord un point brillant mais avec plus d'attention on voit bien que c'est une galaxie. La Vierge 7 A partir de Porrima ( γγγ) NGC4636 bien observée. NGC4665 bien évidente en vision décalée près d'une étoile NGC4643 petite mais brillante au 26mm. NGC4753 bien vue NGC4697 bien vue. M61 Elle aussi est située entre 2 étoiles. La recherche est facile. La galaxie est bien visible. .
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Superflares and Giant Planets
    Superflares and Giant Planets From time to time, a few sunlike stars produce gargantuan outbursts. Large planets in tight orbits might account for these eruptions Eric P. Rubenstein nvision a pale blue planet, not un- bushes to burst into flames. Nor will the lar flares, which typically last a fraction Elike the Earth, orbiting a yellow star surface of the planet feel the blast of ul- of an hour and release their energy in a in some distant corner of the Galaxy. traviolet light and x rays, which will be combination of charged particles, ul- This exercise need not challenge the absorbed high in the atmosphere. But traviolet light and x rays. Thankfully, imagination. After all, astronomers the more energetic component of these this radiation does not reach danger- have now uncovered some 50 “extra- x rays and the charged particles that fol- ous levels at the surface of the Earth: solar” planets (albeit giant ones). Now low them are going to create havoc The terrestrial magnetic field easily de- suppose for a moment something less when they strike air molecules and trig- flects the charged particles, the upper likely: that this planet teems with life ger the production of nitrogen oxides, atmosphere screens out the x rays, and and is, perhaps, populated by intelli- which rapidly destroy ozone. the stratospheric ozone layer absorbs gent beings, ones who enjoy looking So in the space of a few days the pro- most of the ultraviolet light. So solar up at the sky from time to time. tective blanket of ozone around this flares, even the largest ones, normally During the day, these creatures planet will largely disintegrate, allow- pass uneventfully.
    [Show full text]
  • Estimation of the XUV Radiation Onto Close Planets and Their Evaporation⋆
    A&A 532, A6 (2011) Astronomy DOI: 10.1051/0004-6361/201116594 & c ESO 2011 Astrophysics Estimation of the XUV radiation onto close planets and their evaporation J. Sanz-Forcada1, G. Micela2,I.Ribas3,A.M.T.Pollock4, C. Eiroa5, A. Velasco1,6,E.Solano1,6, and D. García-Álvarez7,8 1 Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento, 1, 90134, Palermo, Italy 3 Institut de Ciènces de l’Espai (CSIC-IEEC), Campus UAB, Fac. de Ciències, Torre C5-parell-2a planta, 08193 Bellaterra, Spain 4 XMM-Newton SOC, European Space Agency, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain 5 Dpto. de Física Teórica, C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 6 Spanish Virtual Observatory, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Madrid, Spain 7 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain 8 Grantecan CALP, 38712 Breña Baja, La Palma, Spain Received 27 January 2011 / Accepted 1 May 2011 ABSTRACT Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmo- sphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra.
    [Show full text]
  • Determining the True Mass of Radial-Velocity Exoplanets with Gaia F
    Determining the true mass of radial-velocity exoplanets with Gaia F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, A. Vidal-Madjar To cite this version: F. Kiefer, G. Hébrard, A. Lecavelier Des Etangs, E. Martioli, S. Dalal, et al.. Determining the true mass of radial-velocity exoplanets with Gaia: Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets. Astronomy and Astrophysics - A&A, EDP Sciences, 2021, 645, pp.A7. 10.1051/0004-6361/202039168. hal-03085694 HAL Id: hal-03085694 https://hal.archives-ouvertes.fr/hal-03085694 Submitted on 21 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 645, A7 (2021) Astronomy https://doi.org/10.1051/0004-6361/202039168 & © F. Kiefer et al. 2020 Astrophysics Determining the true mass of radial-velocity exoplanets with Gaia Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets? F. Kiefer1,2, G. Hébrard1,3, A. Lecavelier des Etangs1, E. Martioli1,4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne
    [Show full text]
  • Constraints on Secondary Eclipse Probabilities of Long-Period Exoplanets from Orbital Elements
    Pathways Towards Habitable Planets ASP Conference Series, Vol. 430, 2010 Vincent Coud´edu Foresto, Dawn M. Gelino, and Ignasi Ribas, eds. Constraints on Secondary Eclipse Probabilities of Long-Period Exoplanets from Orbital Elements K. von Braun and S. R. Kane NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, California, USA Abstract. Long-period transiting exoplanets provide an opportunity to study the mass-radius relation and internal structure of extrasolar planets. Their stud- ies grant insights into planetary evolution akin to the solar system planets, which, in contrast to hot Jupiters, are not constantly exposed to the intense radiation of their parent stars. Observations of secondary eclipses allow investigations of exoplanet temperatures and large-scale exo-atmospheric properties. In this short paper, we elaborate on, and calculate, probabilities of secondary eclipses for given orbital parameters, both in the presence and absence of detected pri- mary transits, and tabulate these values for the forty planets with the highest primary transit probabilities. 1. Introduction Secondary eclipses of exoplanets provide unique insight into their astrophysical properties such as surface temperatures, atmospheric properties, and efficiency of energy redistribution. In Kane & von Braun (2008, 2009), we demonstrate that the probability of detecting transits or eclipses among known radial veloc- ity (RV) planets is sensitively dependent on the values of orbital eccentricity e and argument of periastron ω, with some combinations of e and ω making tran- sit/eclipse searches among long-period planets viable. Though it is feasible to detect planetary eclipses from space (e.g., Laughlin et al. 2009) and even from the ground (e.g., Sing & L´opez-Morales 2009), the difference in signal-to-noise ratio between transits and eclipses makes detections of the former much more straightforward.
    [Show full text]
  • Tabetha Boyajian's CV
    Dr. Tabetha Boyajian Yale University, Department of Astronomy, 52 Hillhouse Ave., New Haven, CT 06520 USA [email protected] • +1 (404) 849-4848 • http://www.astro.yale.edu/tabetha PROFESSIONAL Yale University, Department of Astronomy, New Haven, Connecticut, USA EXPERIENCE Postdoctoral Fellow 2012 – present • Supervisor: Dr. Debra Fischer Center for high Angular Resolution Astronomy (CHARA), Georgia State University Hubble Fellow 2009 – 2012 • Supervisor: Dr. Harold McAlister EDUCATION Georgia State University, Department of Physics and Astronomy, Atlanta, Georgia, USA Doctor of Philosophy (Ph.D.) in Astronomy 2005 – 2009 • Adviser: Dr. Harold McAlister Master of Science (M.S.) in Physics 2003 – 2005 • Adviser: Dr. Douglas Gies College of Charleston, Charleston, South Carolina, USA Bachelor of Science (B.S.) in Physics with concentration in astronomy 1998 – 2003 • Graduated with Departmental Honors PROFESSIONAL Secretary, International Astronomical Union, Division G 2015 – 2018 SERVICE Steering Committee, International Astronomical Union, Division G 2015 – 2018 Review panel member NASA Kepler Guest Observer program, NASA K2 Guest Observer program, NSF-AAG program Referee The Astronomical Journal, Astronomy & Astrophysics, PASA Telescope time allocation committee member CHARA, OPTICON (external) AREAS OF Fundamental properties of stars: diameters, temperatures, exoplanet detection and characterization, SPECIALIZATION Optical/IR interferometry, stellar spectroscopy (radial velocities, abundances, activity), absolute AND INTEREST
    [Show full text]
  • The Detectability of Radio Emission from Exoplanets
    MNRAS 000,1{14 (2018) Preprint 1 May 2018 Compiled using MNRAS LATEX style file v3.0 The detectability of radio emission from exoplanets C. R. Lynch,1;2? Tara Murphy1;2 E. Lenc,1;2 D. L. Kaplan3 1 Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 Department of Physics, University of Wisconsin{Milwaukee, Milwaukee, WI 53201, USA Accepted 2018 April 27. Received 2018 April 25; in original form 2018 March 13 ABSTRACT Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with 3σ values ranging from 4.0 { 45.0 mJy.
    [Show full text]
  • A New Neptune-Mass Planet Orbiting HD 219828
    A&A 467, 721–727 (2007) Astronomy DOI: 10.1051/0004-6361:20066845 & c ESO 2007 Astrophysics A new Neptune-mass planet orbiting HD 219828 C. Melo1,N.C.Santos2,3,4,W.Gieren5, G. Pietrzynski5,M.T.Ruiz6,S.G.Sousa2,7,8, F. Bouchy9,C.Lovis3, M. Mayor3,F.Pepe3,D.Queloz3, R. da Silva3,andS.Udry3 1 European Southern Observatory, Casilla 19001, Santiago 19, Chile e-mail: [email protected] 2 Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal 3 Observatoire de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 4 Centro de Geofisica de Évora, Rua Romão Ramalho 59, 7002-554 Évora, Portugal 5 Universidad de Concepcion, Departamento de Fisica, Casilla 160-C, Concepcion, Chile 6 Departamento de Astronomia, Universidad de Chile, Casilla Postal 36D, Santiago, Chile 7 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 8 Departamento de Matemática Aplicada, Faculdade de Ciências da Universidade do Porto, Portugal 9 Institut d’Astrophysique de Paris, 98bis Bd. Arago, 75014 Paris, France Received 30 November 2006 / Accepted 28 January 2007 ABSTRACT Two years ago a new benchmark for the planetary survey was set with the discoveries of three extrasolar planets with masses be- low 20 M⊕. In particular, the serendipitous discovery of the 14 M⊕ planet around µ Ara found with HARPS with a semi-amplitude of only 4 m s−1 put in evidence the tremendous potential of HARPS for the search of this class of very low-mass planets.
    [Show full text]