The Wolfram Physics Project: the First Two Weeks—Stephen Wolfram Writings ≡

Total Page:16

File Type:pdf, Size:1020Kb

The Wolfram Physics Project: the First Two Weeks—Stephen Wolfram Writings ≡ 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings ≡ RECENT | CATEGORIES | The Wolfram Physics Project: The First Two Weeks April 29, 2020 Project Announcement: Finally We May Have a Path to the Fundamental Theory of Physics… and It’s Beautiful Website: Wolfram Physics Project First, Thank You! We launched the Wolfram Physics Project two weeks ago, on April 14. And, in a word, wow! People might think that interest in fundamental science has waned. But the thousands of messages we’ve received tell a very different story. People really care! They’re excited. They’re enjoying understanding what we’ve figured out. They’re appreciating the elegance of it. They want to support the project. They want to get involved. It’s tremendously encouraging—and motivating. I wanted this project to be something for the world—and something lots of people could participate in. And it’s working. Our livestreams—even very technical ones—have been exceptionally popular. We’ve had lots of physicists, mathematicians, computer scientists and others asking questions, making suggestions and offering help. We’ve had lots of students and others who tell us how eager they are to get into doing research on the project. And we’ve had lots of people who just want to tell us they appreciate what we’re doing. So, thank you! https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 1/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings Real-Time Science Science is usually done behind closed doors. But not this project. This project is an open project where we’re sharing—in as real time as we can—what we’re doing and the tools we’re using. In the last two weeks, we’ve done more than 25 hours of livestreams about the project. We’ve given introductions to the project—both lecture style and Q&A. We’ve done detailed technical sessions. And we’ve started livestreaming our actual working research sessions. And in a couple of those sessions we’ve made the beginnings of some real discoveries—live and in public. https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 2/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings It’s pretty cool to see thousands of people joining us to experience real-time science. (Our peak so far was nearly 8000 simultaneous viewers, and a fairly technical 2-hour session ended up being watched for a total of more than three-quarters of a million minutes.) And we’re starting to see serious “public collaboration” happening, in real time. People are making technical suggestions, sending us links to relevant papers, even sending us pieces of Wolfram Language code to run—all in real time. One of the great—and unexpected—things about the project is how well what we’ve discovered seems to dovetail with existing initiatives (like string theory, holographic principles, spin networks, higher categories, twistor theory, etc.) We’re keen to understand more about this, so one of the things we’ll be doing is having livestreamed discussions with experts in these various areas. The Summer School Approaches It’s only been two weeks since our project was launched—and there’ve already been some interesting things written about it that have helped sharpen my philosophical understanding. There hasn’t yet been time for serious scientific work to have been completed around the project… but we know people are on this path. https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 3/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings We also know that there are lots of people who want to get to the point where they can make serious contributions to the project. And to help with that, we’ve got an educational program coming up: we’ve added a Fundamental Physics track to our annual Wolfram Summer School. Our Summer School—which has been running since 2003—is a 3-week program, focused on every participant doing a unique, original project. For the Fundamental Physics track, we’re going to have a “week 0” (June 22–27) that will be lectures and workshops about the Physics Project, followed by a 3-week project-based program (June 28–July 17). https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 4/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings This year’s Summer School will (for the first time) be online (though synchronous), so it’s going to be easier for students from around the world to attend. Many of the students for the Fundamental Physics track will be graduate students or postdocs, but we also expect to have students who are more junior, as well as professors and professionals. Since announcing the program last week, we’ve already received many good applications… but we’re going to try to expand the program to accommodate everyone who makes sense. (So if you’re thinking of applying, please just apply… though do it as soon as you can!) I’m very excited about what’s going to be achieved at the Summer School. I never expected our whole project to develop as well—or as quickly—as it has. But at this point I think we’ve developed an approach and a methodology that are going to make possible rapid progress in many directions. And I’m fully expecting that there’ll be projects at the Summer School that lead, for example, to academic papers that rapidly become classics. This is one of those rare times when there’s a lot of exceptionally juicy low-hanging fruit— and I’m looking forward to helping outstanding students find and pick that scientific fruit at our Summer School. New Science in the First Two Weeks It’s not too surprising that much of our time in the first two weeks after launching the project has been spent on “interfacing with the world”—explaining what we’re doing, trying to respond to thousands of messages, and setting up internal and external systems that can make future interactions easier. But we’ve been very keen to go on working on the science, and some of that has been happening too. We’ve so far done five livestreamed working sessions, three on spin and charge, one on the interplay with distributed computing, and one on combinators and physics. Of course, this is just what we’re directly working on ourselves. We’ve also already helped several people get started on projects that use their expertise—in physics, mathematics or computer science—and it’s wonderful to see the beginning of this kind of “scaling up”. But let me talk a bit about things I think I’ve learned in the past two weeks. Some of this comes from the working sessions we’ve had; some is in response to questions at our Q&As https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 5/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings and some is just the result of my slowly growing understanding—particularly helped by my efforts in explaining the project to people. What Is Angular Momentum? OK, so here’s something concrete that came out of our working session last Thursday: I think we understand what angular momentum is. Here’s part of where we figured that out: We already figured out a few months ago what linear momentum is. If you want to know the amount of linear momentum in a particular direction at a particular place in the hypergraph, you just have to see how much “activity” at that place in the hypergraph is being transferred in that “direction”. https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 6/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings Directions are defined by geodesics that give the shortest path between one point and another. Momentum in a particular direction then corresponds to the extent to which an update at one point leads to updates at nearby points along that direction. (More formally, the statement is that momentum is given by the flux of causal edges through timelike hypersurfaces.) OK, so how about angular momentum? Well, it took us a total of nearly 6 hours, over three sessions, but here’s what we figured out. (And kudos to Jonathan Gorard for having had a crucial idea.) So, first, what’s the usual concept of angular momentum in physics? It’s all about turning. It’s all about momentum that doesn’t add up to go in any particular direction but just circulates around. Here’s the picture we used on the livestream: Imagine this is a fluid, like water. The fluid isn’t flowing in a particular direction. Instead, it’s just circulating around, creating a vortex. And this vortex has angular momentum. But what might the analog of this be in a hypergraph? To figure this out, we have to understand what rotation really is. It took us a little while to untangle this, but in the end it’s very simple. In any number of dimensions, a rotation is something that takes two vectors rooted at a particular point, and transforms one into the other. On the livestream, we used the simple example: https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 7/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings And in the act of transforming one of these vectors into the other we’re essentially sweeping out a plane.
Recommended publications
  • Jet Development in Leading Log QCD.Pdf
    17 CALT-68-740 DoE RESEARCH AND DEVELOPMENT REPORT Jet Development in Leading Log QCD * by STEPHEN WOLFRAM California Institute of Technology, Pasadena. California 91125 ABSTRACT A simple picture of jet development in QCD is described. Various appli- cations are treated, including transverse spreading of jets, hadroproduced y* pT distributions, lepton energy spectra from heavy quark decays, soft parton multiplicities and hadron cluster formation. *Work supported in part by the U.S. Department of Energy under Contract No. DE-AC-03-79ER0068 and by a Feynman Fellowship. 18 According to QCD, high-energy e+- e annihilation into hadrons is initiated by the production from the decaying virtual photon of a quark and an antiquark, ,- +- each with invariant masses up to the c.m. energy vs in the original e e collision. The q and q then travel outwards radiating gluons which serve to spread their energy and color into a jet of finite angle. After a time ~ 1/IS, the rate of gluon emissions presumably decreases roughly inversely with time, except for the logarithmic rise associated with the effective coupling con­ 2 stant, (a (t) ~ l/log(t/A ), where It is the invariant mass of the radiating s . quark). Finally, when emissions have degraded the energies of the partons produced until their invariant masses fall below some critical ~ (probably c a few times h), the system of quarks and gluons begins to condense into the observed hadrons. The probability for a gluon to be emitted at times of 0(--)1 is small IS and may be est~mated from the leading terms of a perturbation series in a (s).
    [Show full text]
  • PARTON and HADRON PRODUCTION in E+E- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125
    549 * PARTON AND HADRON PRODUCTION IN e+e- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125 Ab stract: The production of showers of partons in e+e- annihilation final states is described according to QCD , and the formation of hadrons is dis­ cussed. Resume : On y decrit la production d'averses d� partons dans la theorie QCD qui forment l'etat final de !'annihilation e+ e , ainsi que leur transform­ ation en hadrons. *Work supported in part by the U.S. Department of Energy under contract no. DE-AC-03-79ER0068. SSt1 Introduction In these notes , I discuss some attemp ts e ri the cl!evellope1!1t of - to d s c be hadron final states in e e annihilation events ll>Sing. QCD. few featm11res A (barely visible at available+ energies} of this deve l"'P"1'ent amenab lle· are lt<J a precise and formal analysis in QCD by means of pe·rturbatirnc• the<J ry. lfor the mos t part, however, existing are quite inadle<!i""' lte! theoretical mett:l�ods one must therefore simply try to identify dl-iimam;t physical p.l:ten<0melilla tt:he to be expected from QCD, and make estll!att:es of dne:i.r effects , vi.th the hop·e that results so obtained will provide a good appro�::illliatimn to eventllLal'c ex­ act calculations . In so far as such estllma�es r necessa�y� pre�ise �r..uan- a e titative tests of QCD are precluded . On the ott:her handl , if QC!Ji is ass11l!med correct, then existing experimental data to inve•stigate its be­ may \JJ:SE•«f havior in regions not yet explored by theoreticalbe llJleaums .
    [Show full text]
  • The Problem of Distributed Consensus: a Survey Stephen Wolfram*
    The Problem of Distributed Consensus: A Survey Stephen Wolfram* A survey is given of approaches to the problem of distributed consensus, focusing particularly on methods based on cellular automata and related systems. A variety of new results are given, as well as a history of the field and an extensive bibliography. Distributed consensus is of current relevance in a new generation of blockchain-related systems. In preparation for a conference entitled “Distributed Consensus with Cellular Automata and Related Systems” that we’re organizing with NKN (= “New Kind of Network”) I decided to explore the problem of distributed consensus using methods from A New Kind of Science (yes, NKN “rhymes” with NKS) as well as from the Wolfram Physics Project. A Simple Example Consider a collection of “nodes”, each one of two possible colors. We want to determine the majority or “consensus” color of the nodes, i.e. which color is the more common among the nodes. A version of this document with immediately executable code is available at writings.stephenwolfram.com/2021/05/the-problem-of-distributed-consensus Originally published May 17, 2021 *Email: [email protected] 2 | Stephen Wolfram One obvious method to find this “majority” color is just sequentially to visit each node, and tally up all the colors. But it’s potentially much more efficient if we can use a distributed algorithm, where we’re running computations in parallel across the various nodes. One possible algorithm works as follows. First connect each node to some number of neighbors. For now, we’ll just pick the neighbors according to the spatial layout of the nodes: The algorithm works in a sequence of steps, at each step updating the color of each node to be whatever the “majority color” of its neighbors is.
    [Show full text]
  • Purchase a Nicer, Printable PDF of This Issue. Or Nicest of All, Subscribe To
    Mel says, “This is swell! But it’s not ideal—it’s a free, grainy PDF.” Attain your ideals! Purchase a nicer, printable PDF of this issue. Or nicest of all, subscribe to the paper version of the Annals of Improbable Research (six issues per year, delivered to your doorstep!). To purchase pretty PDFs, or to subscribe to splendid paper, go to http://www.improbable.com/magazine/ ANNALS OF Special Issue THE 2009 IG® NOBEL PRIZES Panda poo spinoff, Tequila-based diamonds, 11> Chernobyl-inspired bra/mask… NOVEMBER|DECEMBER 2009 (volume 15, number 6) $6.50 US|$9.50 CAN 027447088921 The journal of record for inflated research and personalities Annals of © 2009 Annals of Improbable Research Improbable Research ISSN 1079-5146 print / 1935-6862 online AIR, P.O. Box 380853, Cambridge, MA 02238, USA “Improbable Research” and “Ig” and the tumbled thinker logo are all reg. U.S. Pat. & Tm. Off. 617-491-4437 FAX: 617-661-0927 www.improbable.com [email protected] EDITORIAL: [email protected] The journal of record for inflated research and personalities Co-founders Commutative Editor VP, Human Resources Circulation (Counter-clockwise) Marc Abrahams Stanley Eigen Robin Abrahams James Mahoney Alexander Kohn Northeastern U. Research Researchers Webmaster Editor Associative Editor Kristine Danowski, Julia Lunetta Marc Abrahams Mark Dionne Martin Gardiner, Tom Gill, [email protected] Mary Kroner, Wendy Mattson, General Factotum (web) [email protected] Dissociative Editor Katherine Meusey, Srinivasan Jesse Eppers Rose Fox Rajagopalan, Tom Roberts, Admin Tom Ulrich Technical Eminence Grise Lisa Birk Psychology Editor Dave Feldman Robin Abrahams Design and Art European Bureau Geri Sullivan Art Director emerita Kees Moeliker, Bureau Chief Contributing Editors PROmote Communications Peaco Todd Rotterdam Otto Didact, Stephen Drew, Ernest Lois Malone Webmaster emerita [email protected] Ersatz, Emil Filterbag, Karen Rich & Famous Graphics Steve Farrar, Edinburgh Desk Chief Hopkin, Alice Kaswell, Nick Kim, Amy Gorin Erwin J.O.
    [Show full text]
  • Cellular Automation
    John von Neumann Cellular automation A cellular automaton is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays.[2] A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia.
    [Show full text]
  • A New Kind of Science
    Wolfram|Alpha, A New Kind of Science A New Kind of Science Wolfram|Alpha, A New Kind of Science by Bruce Walters April 18, 2011 Research Paper for Spring 2012 INFSY 556 Data Warehousing Professor Rhoda Joseph, Ph.D. Penn State University at Harrisburg Wolfram|Alpha, A New Kind of Science Page 2 of 8 Abstract The core mission of Wolfram|Alpha is “to take expert-level knowledge, and create a system that can apply it automatically whenever and wherever it’s needed” says Stephen Wolfram, the technologies inventor (Wolfram, 2009-02). This paper examines Wolfram|Alpha in its present form. Introduction As the internet became available to the world mass population, British computer scientist Tim Berners-Lee provided “hypertext” as a means for its general consumption, and coined the phrase World Wide Web. The World Wide Web is often referred to simply as the Web, and Web 1.0 transformed how we communicate. Now, with Web 2.0 firmly entrenched in our being and going with us wherever we go, can 3.0 be far behind? Web 3.0, the semantic web, is a web that endeavors to understand meaning rather than syntactically precise commands (Andersen, 2010). Enter Wolfram|Alpha. Wolfram Alpha, officially launched in May 2009, is a rapidly evolving "computational search engine,” but rather than searching pre‐existing documents, it actually computes the answer, every time (Andersen, 2010). Wolfram|Alpha relies on a knowledgebase of data in order to perform these computations, which despite efforts to date, is still only a fraction of world’s knowledge. Scientist, author, and inventor Stephen Wolfram refers to the world’s knowledge this way: “It’s a sad but true fact that most data that’s generated or collected, even with considerable effort, never gets any kind of serious analysis” (Wolfram, 2009-02).
    [Show full text]
  • Downloadable PDF of the 77500-Word Manuscript
    From left: W. Daniel Hillis, Neil Gershenfeld, Frank Wilczek, David Chalmers, Robert Axelrod, Tom Griffiths, Caroline Jones, Peter Galison, Alison Gopnik, John Brockman, George Dyson, Freeman Dyson, Seth Lloyd, Rod Brooks, Stephen Wolfram, Ian McEwan. In absentia: Andy Clark, George Church, Daniel Kahneman, Alex "Sandy" Pentland (Click to expand photo) INTRODUCTION by Venki Ramakrishnan The field of machine learning and AI is changing at such a rapid pace that we cannot foresee what new technical breakthroughs lie ahead, where the technology will lead us or the ways in which it will completely transform society. So it is appropriate to take a regular look at the landscape to see where we are, what lies ahead, where we should be going and, just as importantly, what we should be avoiding as a society. We want to bring a mix of people with deep expertise in the technology as well as broad 1 thinkers from a variety of disciplines to make regular critical assessments of the state and future of AI. —Venki Ramakrishnan, President of the Royal Society and Nobel Laureate in Chemistry, 2009, is Group Leader & Former Deputy Director, MRC Laboratory of Molecular Biology; Author, Gene Machine: The Race to Decipher the Secrets of the Ribosome. [ED. NOTE: In recent months, Edge has published the fifteen individual talks and discussions from its two-and-a-half-day Possible Minds Conference held in Morris, CT, an update from the field following on from the publication of the group-authored book Possible Minds: Twenty-Five Ways of Looking at AI. As a special event for the long Thanksgiving weekend, we are pleased to publish the complete conference—10 hours plus of audio and video, as well as this downloadable PDF of the 77,500-word manuscript.
    [Show full text]
  • WOLFRAM EDUCATION SOLUTIONS MATHEMATICA® TECHNOLOGIES for TEACHING and RESEARCH About Wolfram Research
    WOLFRAM EDUCATION SOLUTIONS MATHEMATICA® TECHNOLOGIES FOR TEACHING AND RESEARCH About Wolfram Research For over two decades, Wolfram Research has been dedicated to developing tools that inspire exploration and innovation. As we work toward our goal to make the world’s data computable, we have expanded our portfolio to include a variety of products and technologies that, when combined, provide a true campuswide solution. At the center is Mathematica—our ever-advancing core product that has become the ultimate application for computation, visualization, and development. With millions of dedicated users throughout the technical and educational communities, Mathematica is used for everything from teaching simple concepts in the classroom to doing serious research using some of the world’s largest clusters. Wolfram’s commitment to education spans from elementary education to research universities. Through our free educational resources, STEM teacher workshops, and on-campus technical talks, we interact with educators whose feedback we rely on to develop tools that support their changing needs. Just as Mathematica revolutionized technical computing 20 years ago, our ongoing development of Mathematica technology and continued dedication to education are transforming the composition of tomorrow’s classroom. With more added all the time, Wolfram educational resources bolster pedagogy and support technology for classrooms and campuses everywhere. Favorites among educators include: Wolfram|Alpha®, the Wolfram Demonstrations Project™, MathWorld™,
    [Show full text]
  • The Story About Stephen Wolfram
    The Physicist Turned a Successful Entrepreneur THE STORY ABOUT STEPHEN WOLFRAM by Gennaro Cuofano FourWeekMBA.com Wolfram Alpha: The Physicist Turned a Successful Entrepreneur - The Four-Week MBA Wolfram Alpha: The Physicist Turned a Successful Entrepreneur Why Wolfram Alpha? Among my passions, I love to check financial data about companies I like. Recently I was looking for a quick way to get reliable financial information for comparative analyses. At the same time, I was looking for shortcuts to perform that analysis. I was researching for myself. I thought why waste so much time on scraping financial reports? While surfing the web, I was looking for a solution and a term popped to my eyes “computational engine.” Wolfram Alpha! That search opened me a universe I wasn’t aware of. Yet that universe wasn’t only about a fantastic tool I learned to use in several ways. I found out the most amazing entrepreneurial story. That is how I jumped in and researched as much as I could about this topic! Why is this story so remarkable? Imagine a kid that as many others, is struggling at arithmetic. Imagine that same kid at 12 years old building a physics dictionary and by the age of 14 drafting three books about particle physics. A few years later at 23, that kid, now a man gets awarded as a prodigious physicist. We could stop this story here, and it would be already one of the most incredible stories you’ll ever hear. Yet this is only the beginning. In fact, what if I told you, that same person turned into a successful entrepreneur, which built several companies and a whole new science from scratch! (Let’s save some details for later) That isn’t only the story of Wolfram Alpha, a tool that I learned to use and cherish.
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • Complex Systems Theory
    Complex Systems Theory 1988 Some approaches to the study ofc omplex systems are outlined. They are encompassed by an emerging field of science concerned with the general analysis of complexity. Throughout the natural and artificial world one observes phenomena of great com­ plexity. Yet research in physics and to some extent biology and other fields has shown that the basic components of many systems are quite simple. It is now a crucial problem for many areas of science to elucidate the mathematical mechanisms by which large numbers of such simple components, acting together, can produce behaviour of the great complexity observed. One hopes that it will be possible to formulate universal laws that describe such complexity. The second law of thermodynamics is an example of a general principle that governs the overall behaviour of many systems. It implies that initial order is pro­ gressively degraded as a system evolves, so that in the end a state of maximal disorder and maximal entropy is reached. Many natural systems exhibit such behaviour. But there are also many systems that exhibit quite opposite behaviour, transforming ini­ tial simplicity or disorder into great complexity. Many physical phenomena, among them dendritic crystal growth and fluid turbulence are of this kind. Biology provides the most extreme examples of such self-organization. The approach that I have taken over the last couple of years is to study mathemat­ ical models that are as simple as possible in formulation, yet which appear to capture the essential features of complexity generation. My hope is that laws found to govern these particular systems will be sufficiently general to be applicable to a wide range of actual natural systems.
    [Show full text]
  • An Investigation of Complex Systems in 16 Dimensions
    Columbus State University CSU ePress Theses and Dissertations Student Publications 2014 An Investigation of Complex Systems in 16 Dimensions Jordon M. Huffman Columbus State University, [email protected] Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations Part of the Computer Sciences Commons Recommended Citation Huffman, Jordon M., "An Investigation of Complex Systems in 16 Dimensions" (2014). Theses and Dissertations. 140. https://csuepress.columbusstate.edu/theses_dissertations/140 This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress. An Examination of Complex Systems in 16 Dimensions by Jordon Huffman A Thesis Submitted in Partial Fulfillment of Requirements of the CSU Honors Program for Honors in the degree of Bachelor of Science in Computer Science TSYS School of Computer Science Columbus State University Thesis Advisor Date 1&£r^> Dr. Rodrigo Obando Committee Member Date (±JZ^ h Y Dr. ChajJes Turnitsa Honors Committee Member Date HhihH r. Rylan Steele Honors Program Directorfcl^jggfe?^^^ ^ Date /yO^Y Dr. Cindy Ticknor —■—..■ l.J.liH.IIHI.UIIUUUHl^lilllJMUJ.IIIHllIl.llH^ Table of Contents Abstract. Introduction 4 Cellular Automata. Investigation 9 Conclusion 13 Future 16 References. .18 An Examination of Complex Systems in 16 Dimensions Description: With the research of Dr. Rodrigo Obando, I have created an application to observe cellular automata rules spaces. The elementary rule space with two hundred and fifty-six rules proves easy enough to study, but the next rule space of 4,294,967,296 rules is much more of a challenge.
    [Show full text]