Solving Multiclass Learning Problems Via Error-Correcting Output Codes

Total Page:16

File Type:pdf, Size:1020Kb

Solving Multiclass Learning Problems Via Error-Correcting Output Codes Journal of Articial Intelligence Research Submitted published Solving Multiclass Learning Problems via ErrorCorrecting Output Co des Thomas G Dietterich tgdcsorstedu Department of Computer Science Dearborn Hal l Oregon State University Corval lis OR USA Ghulum Bakiri ebisaccuobbh Department of Computer Science University of Bahrain Isa Town Bahrain Abstract Multiclass learning problems involve nding a denition for an unknown function f x whose range is a discrete set containing k values ie k classes The denition is acquired by studying collections of training examples of the form hx f x i Existing ap i i proaches to multiclass learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C and CART application of binary concept learning algorithms to learn individual binary functions for each of the k classes and application of binary concept learning algorithms with distributed output representations This pap er compares these three approaches to a new technique in which errorcorrecting co des are employed as a distributed output representation We show that these output representa tions improve the generalization p erformance of b oth C and backpropagation on a wide range of multiclass learning tasks We also demonstrate that this approach is robust with resp ect to changes in the size of the training sample the assignment of distributed represen tations to particular classes and the application of overtting avoidance techniques such as decisiontree pruning Finally we show thatlike the other metho dsthe errorcorrecting co de technique can provide reliable class probability estimates Taken together these re sults demonstrate that errorcorrecting output co des provide a generalpurp ose metho d for improving the p erformance of inductive learning programs on multiclass problems Intro duction The task of learning from examples is to nd an approximate denition for an unknown function f x given training examples of the form hx f x i For cases in which f takes i i only the values f gbinary functionsthere are many algorithms available For example the decisiontree metho ds such as C Quinlan and CART Breiman Friedman Olshen Stone can construct trees whose leaves are lab eled with binary values Most articial neural network algorithms such as the p erceptron algorithm Rosenblatt and the error backpropagation BP algorithm Rumelhart Hinton Williams are b est suited to learning binary functions Theoretical studies of learning have fo cused almost entirely on learning binary functions Valiant Natara jan In many realworld learning tasks however the unknown function f often takes values from a discrete set of classes fc c g For example in medical diagnosis the function k might map a description of a patient to one of k p ossible diseases In digit recognition eg c AI Access Foundation and Morgan Kaufmann Publishers All rights reserved Dietterich Bakiri LeCun Boser Denker Henderson Howard Hubbard Jackel the function maps each handprinted digit to one of k classes Phoneme recognition systems eg Waib el Hanazawa Hinton Shikano Lang typically classify a sp eech segment into one of to phonemes Decisiontree algorithms can b e easily generalized to handle these multiclass learning tasks Each leaf of the decision tree can b e lab eled with one of the k classes and internal no des can b e selected to discriminate among these classes We will call this the direct multiclass approach Connectionist algorithms are more dicult to apply to multiclass problems The stan dard approach is to learn k individual binary functions f f one for each class To k assign a new case x to one of these classes each of the f is evaluated on x and x is i assigned the class j of the function f that returns the highest activation Nilsson j We will call this the oneperclass approach since one binary function is learned for each class An alternative approach explored by some researchers is to employ a distributed output code This approach was pioneered by Sejnowski and Rosenb erg in their widely known NETtalk system Each class is assigned a unique binary string of length n we will refer to these strings as co dewords Then n binary functions are learned one for each bit p osition in these binary strings During training for an example from class i the desired outputs of these n binary functions are sp ecied by the co deword for class i With articial neural networks these n functions can b e implemented by the n output units of a single network New values of x are classied by evaluating each of the n binary functions to generate an nbit string s This string is then compared to each of the k co dewords and x is assigned to the class whose co deword is closest according to some distance measure to the generated string s As an example consider Table which shows a sixbit distributed co de for a tenclass digitrecognition problem Notice that each row is distinct so that each class has a unique co deword As in most applications of distributed output co des the bit p ositions columns have b een chosen to b e meaningful Table gives the meanings for the six columns During learning one binary function will b e learned for each column Notice that each column is also distinct and that each binary function to b e learned is a disjunction of the original classes For example f x if f x is or v l To classify a new handprinted digit x the six functions f f f f f and f v l hl dl cc ol or are evaluated to obtain a sixbit string such as Then the distance of this string to each of the ten co dewords is computed The nearest co deword according to Hamming distance which counts the numb er of bits that dier is which corresp onds to class Hence this predicts that f x This pro cess of mapping the output string to the nearest co deword is identical to the de co ding step for errorcorrecting co des Bose RayChaudhuri Ho cquenghem This suggests that there might b e some advantage to employing errorcorrecting co des as a distributed representation Indeed the idea of employing errorcorrecting distributed representations can b e traced to early research in machine learning Duda Machanik Singleton ErrorCorrecting Output Codes Table A distributed co de for the digit recognition task Co de Word Class vl hl dl cc ol or Table Meanings of the six columns for the co de in Table Column p osition Abbreviation Meaning vl contains vertical line hl contains horizontal line dl contains diagonal line cc contains closed curve ol contains curve op en to left or contains curve op en to right Table A bit errorcorrecting output co de for a tenclass problem Co de Word Class f f f f f f f f f f f f f f f Dietterich Bakiri Table shows a bit errorcorrecting co de for the digitrecognition task Each class is represented by a co de word drawn from an errorcorrecting co de As with the distributed enco ding of Table a separate b o olean function is learned for each bit p osition of the error correcting co de To classify a new example x each of the learned functions f x f x is evaluated to pro duce a bit string This is then mapp ed to the nearest of the ten co dewords This co de can correct up to three errors out of the bits This errorcorrecting co de approach suggests that we view machine learning as a kind of communications problem in which the identity of the correct output class for a new example is b eing transmitted over a channel The channel consists of the input features the training examples and the learning algorithm Because of errors intro duced by the nite training sample p o or choice of input features and aws in the learning pro cess the class information is corrupted By enco ding the class in an errorcorrecting co de and transmitting each bit separately ie via a separate run of the learning algorithm the system may b e able to recover from the errors This p ersp ective further suggests that the onep erclass and meaningful distributed output approaches will b e inferior b ecause their output representations do not constitute robust errorcorrecting co des A measure of the quality of an errorcorrecting co de is the minimum Hamming distance b etween any pair of co de words If the minimum Hamming d distance is d then the co de can correct at least b c single bit errors This is b ecause each single bit error moves us one unit away from the true co deword in Hamming distance If d we make only b c errors the nearest co deword will still b e the correct co deword The co de of Table has minimum Hamming distance seven and hence it can correct errors in any three bit p ositions The Hamming distance b etween any two co dewords in the one p erclass co de is two so the onep erclass enco ding of the k output classes cannot correct any errors The minimum Hamming distance b etween pairs of co dewords in a meaningful dis tributed representation tends to b e very low For example in Table the Hamming distance b etween the co dewords for classes and is only one In these kinds of co des new columns are often intro duced to discriminate b etween only two classes Those two classes will therefore dier only in one bit p osition so the Hamming distance b etween their output representations will b e one This is also true of the distributed representation develop ed by Sejnowski
Recommended publications
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Binary Integer Programming and Its Use for Envelope Determination
    Binary Integer Programming and its Use for Envelope Determination By Vladimir Y. Lunin1,2, Alexandre Urzhumtsev3,† & Alexander Bockmayr2 1 Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 140292 Russia 2 LORIA, UMR 7503, Faculté des Sciences, Université Henri Poincaré, Nancy I, 54506 Vandoeuvre-les-Nancy, France; [email protected] 3 LCM3B, UMR 7036 CNRS, Faculté des Sciences, Université Henri Poincaré, Nancy I, 54506 Vandoeuvre-les-Nancy, France; [email protected] † to whom correspondence must be sent Abstract The density values are linked to the observed magnitudes and unknown phases by a system of non-linear equations. When the object of search is a binary envelope rather than a continuous function of the electron density distribution, these equations can be replaced by a system of linear inequalities with respect to binary unknowns and powerful tools of integer linear programming may be applied to solve the phase problem. This novel approach was tested with calculated and experimental data for a known protein structure. 1. Introduction Binary Integer Programming (BIP in what follows) is an approach to solve a system of linear inequalities in binary unknowns (0 or 1 in what follows). Integer programming has been studied in mathematics, computer science, and operations research for more than 40 years (see for example Johnson et al., 2000 and Bockmayr & Kasper, 1998, for a review). It has been successfully applied to solve a huge number of large-scale combinatorial problems. The general form of an integer linear programming problem is max { cTx | Ax ≤ b, x ∈ Zn } (1.1) with a real matrix A of a dimension m by n, and vectors c ∈ Rn, b ∈ Rm, cTx being the scalar product of the vectors c and x.
    [Show full text]
  • Making a Faster Curry with Extensional Types
    Making a Faster Curry with Extensional Types Paul Downen Simon Peyton Jones Zachary Sullivan Microsoft Research Zena M. Ariola Cambridge, UK University of Oregon [email protected] Eugene, Oregon, USA [email protected] [email protected] [email protected] Abstract 1 Introduction Curried functions apparently take one argument at a time, Consider these two function definitions: which is slow. So optimizing compilers for higher-order lan- guages invariably have some mechanism for working around f1 = λx: let z = h x x in λy:e y z currying by passing several arguments at once, as many as f = λx:λy: let z = h x x in e y z the function can handle, which is known as its arity. But 2 such mechanisms are often ad-hoc, and do not work at all in higher-order functions. We show how extensional, call- It is highly desirable for an optimizing compiler to η ex- by-name functions have the correct behavior for directly pand f1 into f2. The function f1 takes only a single argu- expressing the arity of curried functions. And these exten- ment before returning a heap-allocated function closure; sional functions can stand side-by-side with functions native then that closure must subsequently be called by passing the to practical programming languages, which do not use call- second argument. In contrast, f2 can take both arguments by-name evaluation. Integrating call-by-name with other at once, without constructing an intermediate closure, and evaluation strategies in the same intermediate language ex- this can make a huge difference to run-time performance in presses the arity of a function in its type and gives a princi- practice [Marlow and Peyton Jones 2004].
    [Show full text]
  • Self-Similarity in the Foundations
    Self-similarity in the Foundations Paul K. Gorbow Thesis submitted for the degree of Ph.D. in Logic, defended on June 14, 2018. Supervisors: Ali Enayat (primary) Peter LeFanu Lumsdaine (secondary) Zachiri McKenzie (secondary) University of Gothenburg Department of Philosophy, Linguistics, and Theory of Science Box 200, 405 30 GOTEBORG,¨ Sweden arXiv:1806.11310v1 [math.LO] 29 Jun 2018 2 Contents 1 Introduction 5 1.1 Introductiontoageneralaudience . ..... 5 1.2 Introduction for logicians . .. 7 2 Tour of the theories considered 11 2.1 PowerKripke-Plateksettheory . .... 11 2.2 Stratifiedsettheory ................................ .. 13 2.3 Categorical semantics and algebraic set theory . ....... 17 3 Motivation 19 3.1 Motivation behind research on embeddings between models of set theory. 19 3.2 Motivation behind stratified algebraic set theory . ...... 20 4 Logic, set theory and non-standard models 23 4.1 Basiclogicandmodeltheory ............................ 23 4.2 Ordertheoryandcategorytheory. ...... 26 4.3 PowerKripke-Plateksettheory . .... 28 4.4 First-order logic and partial satisfaction relations internal to KPP ........ 32 4.5 Zermelo-Fraenkel set theory and G¨odel-Bernays class theory............ 36 4.6 Non-standardmodelsofsettheory . ..... 38 5 Embeddings between models of set theory 47 5.1 Iterated ultrapowers with special self-embeddings . ......... 47 5.2 Embeddingsbetweenmodelsofsettheory . ..... 57 5.3 Characterizations.................................. .. 66 6 Stratified set theory and categorical semantics 73 6.1 Stratifiedsettheoryandclasstheory . ...... 73 6.2 Categoricalsemantics ............................... .. 77 7 Stratified algebraic set theory 85 7.1 Stratifiedcategoriesofclasses . ..... 85 7.2 Interpretation of the Set-theories in the Cat-theories ................ 90 7.3 ThesubtoposofstronglyCantorianobjects . ....... 99 8 Where to go from here? 103 8.1 Category theoretic approach to embeddings between models of settheory .
    [Show full text]
  • Current Version, Ch01-03
    Digital Logic and Computer Organization Neal Nelson c May 2013 Contents 1 Numbers and Gates 5 1.1 Numbers and Primitive Data Types . .5 1.2 Representing Numbers . .6 1.2.1 Decimal and Binary Systems . .6 1.2.2 Binary Counting . .7 1.2.3 Binary Conversions . .9 1.2.4 Hexadecimal . 11 1.3 Representing Negative Numbers . 13 1.3.1 Ten's Complement . 14 1.3.2 Two's Complement Binary Representation . 18 1.3.3 Negation in Two's Complement . 20 1.3.4 Two's Complement to Decimal Conversion . 21 1.3.5 Decimal to Two's Complement Conversion . 22 1.4 Gates and Circuits . 22 1.4.1 Logic Expressions . 23 1.4.2 Circuit Expressions . 24 1.5 Exercises . 26 2 Logic Functions 29 2.1 Functions . 29 2.2 Logic Functions . 30 2.2.1 Primitive Gate Functions . 31 2.2.2 Evaluating Logic Expressions and Circuits . 31 2.2.3 Logic Tables for Expressions and Circuits . 32 2.2.4 Expressions as Functions . 34 2.3 Equivalence of Boolean Expressions . 36 2.4 Logic Functional Completeness . 36 2.5 Boolean Algebra . 37 2.6 Tables, Expressions, and Circuits . 37 1 2.6.1 Disjunctive Normal Form . 38 2.6.2 Logic Expressions from Tables . 39 2.7 Exercises . 41 3 Dataflow Logic 43 3.1 Data Types . 44 3.1.1 Unsigned Int . 45 3.1.2 Signed Int . 45 3.1.3 Char and String . 45 3.2 Data Buses . 46 3.3 Bitwise Functions . 48 3.4 Integer Functions .
    [Show full text]
  • Universal Functions Paul B
    Universal Functions Paul B. Larson1 Arnold W. Miller Juris Stepr¯ans William A.R. Weiss Contents 1. Introduction 2 1.1. Cardinal characteristics 4 2. Borel universal functions 5 3. Universal functions and Martin's Axiom 9 4. Universal functions of special kinds 12 5. Abstract universal functions 18 5.1. Property R 28 6. Higher dimensional universal functions 30 7. Model-theoretic universality 43 8. Appendix 50 References 52 Abstract2 A function of two variables F (x; y) is universal if for every function G(x; y) there exists functions h(x) and k(y) such that G(x; y) = F (h(x); k(y)) for all x; y. Sierpi´nskishowed that assuming the Continuum Hypothesis there exists a Borel function F (x; y) which is universal. Assuming Mar- tin's Axiom there is a universal function of Baire class 2. A universal function cannot be of Baire class 1. Here we show that it is consistent that for each α with 2 ≤ α < !1 there is a universal function of class α but none of class β < α. We show that it is consistent with ZFC that there is no universal function (Borel or not) on the reals, and we show that it is consistent that there is a universal function but no Borel universal function. We also prove some results concerning higher-arity 1Research supported in part by NSF Grants DMS-0801009 and DMS-1201494. Much of the writing of the paper was done while all four authors attended the thematic program on Forcing and its Applications at the Fields Institute in Fall 2012.
    [Show full text]
  • Multiclass Classification Using Support Vector Machines
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2018 Multiclass Classification Using Support ectorV Machines Duleep Prasanna W. Rathgamage Don Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Artificial Intelligence and Robotics Commons, Other Applied Mathematics Commons, and the Other Statistics and Probability Commons Recommended Citation Rathgamage Don, Duleep Prasanna W., "Multiclass Classification Using Support ectorV Machines" (2018). Electronic Theses and Dissertations. 1845. https://digitalcommons.georgiasouthern.edu/etd/1845 This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. MULTICLASS CLASSIFICATION USING SUPPORT VECTOR MACHINES by DULEEP RATHGAMAGE DON (Under the Direction of Ionut Iacob) ABSTRACT In this thesis we discuss different SVM methods for multiclass classification and introduce the Divide and Conquer Support Vector Machine (DCSVM) algorithm which relies on data sparsity in high dimensional space and performs a smart partitioning of the whole train- ing data set into disjoint subsets that are easily separable. A single prediction performed between two partitions eliminates one or more classes in a single partition, leaving only a reduced number of candidate classes for subsequent steps. The algorithm continues recur- sively, reducing the number of classes at each step, until a final binary decision is made between the last two classes left in the process.
    [Show full text]
  • A Dynamical Approach Towards Collatz Conjecture
    A DYNAMICAL APPROACH TOWARDS COLLATZ CONJECTURE PABLO CASTAÑEDA Abstract. The present work focuses on the study of the renowned Collatz conjecture, also known as the 3x + 1 problem. The distinguished analysis approach lies on the dynamics of an iterative map in binary form. A new estimation of the enlargement of iterated numbers is given. Within the associated iterative map, characteristic periods for periodic orbits are identified. 1. Introduction The Collatz conjecture is a long standing open conjecture in number theory. Among many other names it is often known as the conjecture for the 3x + 1 problem, which concerns to an arithmetic procedure over integers. This conjecture is based on the Collatz function given by ( 3x + 1; if x ≡ 1 (mod 2) (1) C(x) = : x=2; if x ≡ 0 (mod 2) Notice that the Collatz problem concerns to the dynamical behavior of the above map for any positive integer x. Conjecture 1 (Collatz conjecture). Starting from any positive integer x, iterations of the function C(x) will eventually reach the number 1. Thus, iterations enter in a cycle, taking successive values f1; 4; 2g. The problem has been addressed from several viewpoints along nearly a Century (see e.g. [9] for an overview), which come from approaches of number theory, dynamical systems, ergodic theory, mathematical logic, and theory of computation as well as stochastic strategies. This paper consists of a numerical and dynamical hybrid analysis. The 3x + 1 problem have been considered as a discrete map C : Z ! Z. The map here proposed maps an interval in the real numbers into itself, yet the given map is discontinuous almost everywhere.
    [Show full text]
  • Functions, Relations, Partial Order Relations Definition: the Cartesian Product of Two Sets a and B (Also Called the Product
    Functions, Relations, Partial Order Relations Definition: The Cartesian product of two sets A and B (also called the product set, set direct product, or cross product) is defined to be the set of all pairs (a,b) where a ∈ A and b ∈ B . It is denoted A X B. Example : A ={1, 2), B= { a, b} A X B = { (1, a), (1, b), (2, a), (2, b)} Solve the following: X = {a, c} and Y = {a, b, e, f}. Write down the elements of: (a) X × Y (b) Y × X (c) X 2 (= X × X) (d) What could you say about two sets A and B if A × B = B × A? Definition: A function is a subset of the Cartesian product.A relation is any subset of a Cartesian product. For instance, a subset of , called a "binary relation from to ," is a collection of ordered pairs with first components from and second components from , and, in particular, a subset of is called a "relation on ." For a binary relation , one often writes to mean that is in . If (a, b) ∈ R × R , we write x R y and say that x is in relation with y. Exercise 2: A chess board’s 8 rows are labeled 1 to 8, and its 8 columns a to h. Each square of the board is described by the ordered pair (column letter, row number). (a) A knight is positioned at (d, 3). Write down its possible positions after a single move of the knight. Answer: (b) If R = {1, 2, ..., 8}, C = {a, b, ..., h}, and P = {coordinates of all squares on the chess board}, use set notation to express P in terms of R and C.
    [Show full text]
  • Fast Linear Discriminant Analysis Using Binary Bases
    UC Santa Cruz UC Santa Cruz Previously Published Works Title Fast linear discriminant analysis using binary bases Permalink https://escholarship.org/uc/item/2tc2c68g Journal Pattern Recognition Letters, 28(16) ISSN 0167-8655 Authors Tang, Feng Tao, Hai Publication Date 2007-12-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Fast Linear Discriminant Analysis using Binary Bases Feng Tang and Hai Tao Department of Computer Engineering University of California Santa Cruz, CA, USA [email protected] Abstract Linear Discriminant Analysis (LDA) is a widely used technique for pattern classi- ¯cation. It seeks the linear projection of the data to a low dimensional subspace where the data features can be modelled with maximal discriminative power. The main computation in LDA is the dot product between LDA base vector and the data point which involves costly element-wise floating point multiplication. In this paper, we present a fast linear discriminant analysis method called binary LDA (B-LDA), which possesses the desirable property that the subspace projection operation can be computed very e±ciently. We investigate the LDA guided non-orthogonal binary subspace method to ¯nd the binary LDA bases, each of which is a linear combina- tion of a small number of Haar-like box functions. We also show that B-LDA base vectors are nearly orthogonal to each other. As a result, in the non-orthogonal vec- tor decomposition process, the computationally intensive pseudo-inverse projection operator can be approximated by the direct dot product without causing signi¯cant distance distortion. This direct dot product projection can be computed as a linear combination of the dot products with a small number of Haar-like box functions which can be e±ciently evaluated using the integral image.
    [Show full text]
  • International Journal of Pure and Applied Mathematics ————————————————————————– Volume 21 No
    International Journal of Pure and Applied Mathematics ————————————————————————– Volume 21 No. 1 2005, 127-134 FUNCTION LANGUAGE IN DIGITAL LOGICS Kenneth K. Nwabueze Department of Mathematics University of Brunei Gadong, BE 1410, BRUNEI e-mail: [email protected] Abstract: The concept of function is an example of a topic which has con- nections in almost all areas of computer science, especially in digital logics. In designing digital logics, there may be situations in which the designer may need the system to be able to “undo” certain processes. If that is a requirement, what the designer does, in simple mathematical terms, is to restrict the domain of operation in order to allow the process to be a function which is one-to-one. The purpose of this short note is to discuss some simple logical operations and terms associated with computer science in the context of functions. This will provide beginning students of computer science a thorough understanding and some examples of the concept of functions. AMS Subject Classification: 03D05, 03E20 Key Words: functions, digital logics, logical operation, cryptography, number conversions 1. Introduction Like any other machine, a computer hardware is normally switched on in order for electrons to flow through and activate it. This is just all that a computer hardware requires in order to start functioning. A computer is like a little child that needs to be told specifically what to do, and computer programs are the tools that tell the computer precisely what to do after being switched on. Computers understand only one language, namely the machine code.
    [Show full text]
  • Quantum Algorithms Via Linear Algebra: a Primer / Richard J
    QUANTUM ALGORITHMS VIA LINEAR ALGEBRA A Primer Richard J. Lipton Kenneth W. Regan The MIT Press Cambridge, Massachusetts London, England c 2014 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email special [email protected]. This book was set in Times Roman and Mathtime Pro 2 by the authors, and was printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Lipton, Richard J., 1946– Quantum algorithms via linear algebra: a primer / Richard J. Lipton and Kenneth W. Regan. p. cm. Includes bibliographical references and index. ISBN 978-0-262-02839-4 (hardcover : alk. paper) 1. Quantum computers. 2. Computer algorithms. 3. Algebra, Linear. I. Regan, Kenneth W., 1959– II. Title QA76.889.L57 2014 005.1–dc23 2014016946 10987654321 We dedicate this book to all those who helped create and nourish the beautiful area of quantum algorithms, and to our families who helped create and nourish us. RJL and KWR Contents Preface xi Acknowledgements xiii 1 Introduction 1 1.1 The Model 2 1.2 The Space and the States 3 1.3 The Operations 5 1.4 Where Is the Input? 6 1.5 What Exactly Is the Output? 7 1.6 Summary and Notes 8 2 Numbers and Strings 9 2.1 Asymptotic Notation
    [Show full text]