Functions, Relations, Partial Order Relations Definition: the Cartesian Product of Two Sets a and B (Also Called the Product

Total Page:16

File Type:pdf, Size:1020Kb

Functions, Relations, Partial Order Relations Definition: the Cartesian Product of Two Sets a and B (Also Called the Product Functions, Relations, Partial Order Relations Definition: The Cartesian product of two sets A and B (also called the product set, set direct product, or cross product) is defined to be the set of all pairs (a,b) where a ∈ A and b ∈ B . It is denoted A X B. Example : A ={1, 2), B= { a, b} A X B = { (1, a), (1, b), (2, a), (2, b)} Solve the following: X = {a, c} and Y = {a, b, e, f}. Write down the elements of: (a) X × Y (b) Y × X (c) X 2 (= X × X) (d) What could you say about two sets A and B if A × B = B × A? Definition: A function is a subset of the Cartesian product.A relation is any subset of a Cartesian product. For instance, a subset of , called a "binary relation from to ," is a collection of ordered pairs with first components from and second components from , and, in particular, a subset of is called a "relation on ." For a binary relation , one often writes to mean that is in . If (a, b) ∈ R × R , we write x R y and say that x is in relation with y. Exercise 2: A chess board’s 8 rows are labeled 1 to 8, and its 8 columns a to h. Each square of the board is described by the ordered pair (column letter, row number). (a) A knight is positioned at (d, 3). Write down its possible positions after a single move of the knight. Answer: (b) If R = {1, 2, ..., 8}, C = {a, b, ..., h}, and P = {coordinates of all squares on the chess board}, use set notation to express P in terms of R and C. Answer: (c) A rook is positioned at (g, 2). If T = {2} and G = {g}, express its possible positions after one move of the rook in terms of R, C, T and G. Look up: “domain of relation and range of a relation” and define the domain and range of the relation described in 2- Definition Binary function: If a relation is defined for X to X, then the relation R is called binary. In case X = Y, we call R a _______________ on X. Let R2 be the relation on X = {1, 2, 3, 4} defined by (x, y) ∈ R2 if x ≤ y, for x, y ∈X. then R2 = { (1,1),(1,2), (1,3),(1,4),(2,3),(2,4),(2,2),(3,3),(4,4),(3,4)} D(R2)= R(R2) = Diagraph: The diagraph of a relation is a graphical representation of the relation. 1. First, draw dots or vertices to represent the elements of X. 2. Next, if the ordered pair (x, y) ∈ R, draw an arrow, called a directed edge from x to y. 3. An element of the form (x, x) is in relation with itself and corresponds to a directed edge from x to x called a loop. Draw the diagraph for the relation R2. The relation R3 on X = {a, b, c, d} defined as R= {(a, a), (b, c), (c, b), (d, d) }. Draw its digraph. Properties of Relations: • Reflexive: A relation R on a set X is called reflexive if (x, x)∈ R for every x ∈ X. • The digraph of a reflexive relation has a loop on every vertex. • Symmetric: A relation R on a set X is called symmetric if : for all x, y ∈ X, if (x, y) ∈ R then (y,x) ∈ R • The digraph of a symmetric relation has the property that whenever there is a directed edge from any vertex v to a vertex w, then there is a directed edge from w to v. • Antisymmetric: A relation R on a set X is called antisymmetric if for all x, y ∈ X , if (x, y) ∈ R and x ≠ y then (y, x) ∉ R. The digraph of an antisymmetric relation has the property that between any two vertices there is at most one directed edge. • Transitive: A relation R on a set X is called transitive if: for all x, y, z ∈ X, if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R . • The digraph of a transitive relation has the property that whenever there are directed edges from x to y and from y to z, there is also a directed edge from x to z. Exercise: Find if R2 is reflexive, symmetric, antisymmetric and transitive. Same question for R3. Let X = {1, 2, 3} and we define the relation R on X such that: (x, y) ∈ R if x = y. Find if this relation is reflexive, symmetric, antisymmetric and transitive. .
Recommended publications
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Relations-Handoutnonotes.Pdf
    Introduction Relations Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Definition A binary relation from a set A to a set B is a subset R ⊆ A × B = {(a, b) | a ∈ A, b ∈ B} Spring 2006 Note the difference between a relation and a function: in a relation, each a ∈ A can map to multiple elements in B. Thus, Computer Science & Engineering 235 relations are generalizations of functions. Introduction to Discrete Mathematics Sections 7.1, 7.3–7.5 of Rosen If an ordered pair (a, b) ∈ R then we say that a is related to b. We [email protected] may also use the notation aRb and aRb6 . Relations Relations Graphical View To represent a relation, you can enumerate every element in R. A B Example a1 b1 a Let A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3} let R be a 2 relation from A to B as follows: a3 b2 R = {(a1, b1), (a1, b2), (a1, b3), (a2, b1), a4 (a3, b1), (a3, b2), (a3, b3), (a5, b1)} b3 a5 You can also represent this relation graphically. Figure: Graphical Representation of a Relation Relations Reflexivity On a Set Definition Definition A relation on the set A is a relation from A to A. I.e. a subset of A × A. There are several properties of relations that we will look at. If the ordered pairs (a, a) appear in a relation on a set A for every a ∈ A Example then it is called reflexive.
    [Show full text]
  • Binary Integer Programming and Its Use for Envelope Determination
    Binary Integer Programming and its Use for Envelope Determination By Vladimir Y. Lunin1,2, Alexandre Urzhumtsev3,† & Alexander Bockmayr2 1 Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 140292 Russia 2 LORIA, UMR 7503, Faculté des Sciences, Université Henri Poincaré, Nancy I, 54506 Vandoeuvre-les-Nancy, France; [email protected] 3 LCM3B, UMR 7036 CNRS, Faculté des Sciences, Université Henri Poincaré, Nancy I, 54506 Vandoeuvre-les-Nancy, France; [email protected] † to whom correspondence must be sent Abstract The density values are linked to the observed magnitudes and unknown phases by a system of non-linear equations. When the object of search is a binary envelope rather than a continuous function of the electron density distribution, these equations can be replaced by a system of linear inequalities with respect to binary unknowns and powerful tools of integer linear programming may be applied to solve the phase problem. This novel approach was tested with calculated and experimental data for a known protein structure. 1. Introduction Binary Integer Programming (BIP in what follows) is an approach to solve a system of linear inequalities in binary unknowns (0 or 1 in what follows). Integer programming has been studied in mathematics, computer science, and operations research for more than 40 years (see for example Johnson et al., 2000 and Bockmayr & Kasper, 1998, for a review). It has been successfully applied to solve a huge number of large-scale combinatorial problems. The general form of an integer linear programming problem is max { cTx | Ax ≤ b, x ∈ Zn } (1.1) with a real matrix A of a dimension m by n, and vectors c ∈ Rn, b ∈ Rm, cTx being the scalar product of the vectors c and x.
    [Show full text]
  • On the Satisfiability Problem for Fragments of the Two-Variable Logic
    ON THE SATISFIABILITY PROBLEM FOR FRAGMENTS OF TWO-VARIABLE LOGIC WITH ONE TRANSITIVE RELATION WIESLAW SZWAST∗ AND LIDIA TENDERA Abstract. We study the satisfiability problem for two-variable first- order logic over structures with one transitive relation. We show that the problem is decidable in 2-NExpTime for the fragment consisting of formulas where existential quantifiers are guarded by transitive atoms. As this fragment enjoys neither the finite model property nor the tree model property, to show decidability we introduce a novel model con- struction technique based on the infinite Ramsey theorem. We also point out why the technique is not sufficient to obtain decid- ability for the full two-variable logic with one transitive relation, hence contrary to our previous claim, [FO2 with one transitive relation is de- cidable, STACS 2013: 317-328], the status of the latter problem remains open. 1. Introduction The two-variable fragment of first-order logic, FO2, is the restriction of classical first-order logic over relational signatures to formulas with at most two variables. It is well-known that FO2 enjoys the finite model prop- erty [23], and its satisfiability (hence also finite satisfiability) problem is NExpTime-complete [7]. One drawback of FO2 is that it can neither express transitivity of a bi- nary relation nor say that a binary relation is a partial (or linear) order, or an equivalence relation. These natural properties are important for prac- arXiv:1804.09447v3 [cs.LO] 9 Apr 2019 tical applications, thus attempts have been made to investigate FO2 over restricted classes of structures in which some distinguished binary symbols are required to be interpreted as transitive relations, orders, equivalences, etc.
    [Show full text]
  • Factorisations of Some Partially Ordered Sets and Small Categories
    Factorisations of some partially ordered sets and small categories Tobias Schlemmer Received: date / Accepted: date Abstract Orbits of automorphism groups of partially ordered sets are not necessarily con- gruence classes, i.e. images of an order homomorphism. Based on so-called orbit categories a framework of factorisations and unfoldings is developed that preserves the antisymmetry of the order Relation. Finally some suggestions are given, how the orbit categories can be represented by simple directed and annotated graphs and annotated binary relations. These relations are reflexive, and, in many cases, they can be chosen to be antisymmetric. From these constructions arise different suggestions for fundamental systems of partially ordered sets and reconstruction data which are illustrated by examples from mathematical music theory. Keywords ordered set · factorisation · po-group · small category Mathematics Subject Classification (2010) 06F15 · 18B35 · 00A65 1 Introduction In general, the orbits of automorphism groups of partially ordered sets cannot be considered as equivalence classes of a convenient congruence relation of the corresponding partial or- ders. If the orbits are not convex with respect to the order relation, the factor relation of the partial order is not necessarily a partial order. However, when we consider a partial order as a directed graph, the direction of the arrows is preserved during the factorisation in many cases, while the factor graph of a simple graph is not necessarily simple. Even if the factor relation can be used to anchor unfolding information [1], this structure is usually not visible as a relation. According to the common mathematical usage a fundamental system is a structure that generates another (larger structure) according to some given rules.
    [Show full text]
  • Symmetric Relations and Cardinality-Bounded Multisets in Database Systems
    Symmetric Relations and Cardinality-Bounded Multisets in Database Systems Kenneth A. Ross Julia Stoyanovich Columbia University¤ [email protected], [email protected] Abstract 1 Introduction A relation R is symmetric in its ¯rst two attributes if R(x ; x ; : : : ; x ) holds if and only if R(x ; x ; : : : ; x ) In a binary symmetric relationship, A is re- 1 2 n 2 1 n holds. We call R(x ; x ; : : : ; x ) the symmetric com- lated to B if and only if B is related to A. 2 1 n plement of R(x ; x ; : : : ; x ). Symmetric relations Symmetric relationships between k participat- 1 2 n come up naturally in several contexts when the real- ing entities can be represented as multisets world relationship being modeled is itself symmetric. of cardinality k. Cardinality-bounded mul- tisets are natural in several real-world appli- Example 1.1 In a law-enforcement database record- cations. Conventional representations in re- ing meetings between pairs of individuals under inves- lational databases su®er from several consis- tigation, the \meets" relationship is symmetric. 2 tency and performance problems. We argue that the database system itself should pro- Example 1.2 Consider a database of web pages. The vide native support for cardinality-bounded relationship \X is linked to Y " (by either a forward or multisets. We provide techniques to be im- backward link) between pairs of web pages is symmet- plemented by the database engine that avoid ric. This relationship is neither reflexive nor antire- the drawbacks, and allow a schema designer to flexive, i.e., \X is linked to X" is neither universally simply declare a table to be symmetric in cer- true nor universally false.
    [Show full text]
  • On Effective Representations of Well Quasi-Orderings Simon Halfon
    On Effective Representations of Well Quasi-Orderings Simon Halfon To cite this version: Simon Halfon. On Effective Representations of Well Quasi-Orderings. Other [cs.OH]. Université Paris-Saclay, 2018. English. NNT : 2018SACLN021. tel-01945232 HAL Id: tel-01945232 https://tel.archives-ouvertes.fr/tel-01945232 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On Eective Representations of Well asi-Orderings ese` de doctorat de l’Universite´ Paris-Saclay prepar´ ee´ a` l’Ecole´ Normale Superieure´ de Cachan au sein du Laboratoire Specication´ & Verication´ Present´ ee´ et soutenue a` Cachan, le 29 juin 2018, par Simon Halfon Composition du jury : Dietrich Kuske Rapporteur Professeur, Technische Universitat¨ Ilmenau Peter Habermehl Rapporteur Maˆıtre de Conferences,´ Universite´ Paris-Diderot Mirna Dzamonja Examinatrice Professeure, University of East Anglia Gilles Geeraerts Examinateur Associate Professor, Universite´ Libre de Bruxelles Sylvain Conchon President´ du Jury Professeur, Universite´ Paris-Sud Philippe Schnoebelen Directeur de these` Directeur de Recherche, CNRS Sylvain Schmitz Co-encadrant de these` Maˆıtre de Conferences,´ ENS Paris-Saclay ` ese de doctorat ED STIC, NNT 2018SACLN021 Acknowledgements I would like to thank the reviewers of this thesis for their careful proofreading and pre- cious comment.
    [Show full text]
  • Lecture 7 1 Overview 2 Sequences and Cartesian Products
    COMPSCI 230: Discrete Mathematics for Computer Science February 4, 2019 Lecture 7 Lecturer: Debmalya Panigrahi Scribe: Erin Taylor 1 Overview In this lecture, we introduce sequences and Cartesian products. We also define relations and study their properties. 2 Sequences and Cartesian Products Recall that two fundamental properties of sets are the following: 1. A set does not contain multiple copies of the same element. 2. The order of elements in a set does not matter. For example, if S = f1, 4, 3g then S is also equal to f4, 1, 3g and f1, 1, 3, 4, 3g. If we remove these two properties from a set, the result is known as a sequence. Definition 1. A sequence is an ordered collection of elements where an element may repeat multiple times. An example of a sequence with three elements is (1, 4, 3). This sequence, unlike the statement above for sets, is not equal to (4, 1, 3), nor is it equal to (1, 1, 3, 4, 3). Often the following shorthand notation is used to define a sequence: 1 s = 8i 2 N i 2i Here the sequence (s1, s2, ... ) is formed by plugging i = 1, 2, ... into the expression to find s1, s2, and so on. This sequence is (1/2, 1/4, 1/8, ... ). We now define a new set operator; the result of this operator is a set whose elements are two-element sequences. Definition 2. The Cartesian product of sets A and B, denoted by A × B, is a set defined as follows: A × B = f(a, b) : a 2 A, b 2 Bg.
    [Show full text]
  • Cartesian Powers
    Cartesian Powers sequences subsets functions exponential growth +, -, x, … Analogies between number and set operations Numbers Sets Addition Disjoint union Subtraction Complement Multiplication Cartesian product Exponents ? Cartesian Powers of a Set Cartesian product of a set with itself is a Cartesian power A2 = A x A Cartesian square An ≝ A x A x … x A n’th Cartesian power n X |An| = | A x A x … x A | = |A| x |A| x … x |A| = |A|n Practical and theoretical applications Applications California License Plates California Till 1904 no registration 1905-1912 various registration formats one-time $2 fee 1913 ≤6 digits 106 = 1 million If all OK Sam? 1956 263 x 103 ≈ 17.6 m 1969 263 x 104 ≈ 176 m Binary Strings {0,1}n = { length-n binary strings } n-bit strings 0 1 1 n Set Strings Size {0,1} 0 {0,1}0 Λ 1 00 01 1 {0,1}1 0, 1 2 {0,1}2 2 {0,1}2 00, 01, 10, 11 4 000, 001, 011, 010, 10 11 3 {0,1}3 8 100, 110, 101, 111 001 011 … … … … 010 {0,1}3 n {0,1}n 0…0, …, 1…1 2n 000 111 101 | {0,1}n | =|{0,1}|n = 2n 100 110 Subsets The power set of S, denoted ℙ(S), is the collection of all subsets of S ℙ( {a,b} ) = { {}, {a}, {b}, {a,b} } ℙ({a,b}) and {0,1}2 ℙ({a,b}) a b {0,1}2 Subsets Binary strings {} 00 |ℙ(S)| = ? of S of length |S| ❌ ❌ {b} ❌ ✅ 01 {a} ✅ ❌ 10 |S| 1-1 correspondence between ℙ(S) and {0,1} {a,b} ✅ ✅ 11 |ℙ(S)| = | {0,1}|S| | = 2|S| The size of the power set is the power of the set size Functions A function from A to B maps every element a ∈ A to an element f(a) ∈ B Define a function f: specify f(a) for every a ∈ A f from {1,2,3} to {p, u} specify
    [Show full text]
  • Math 475 Homework #3 March 1, 2010 Section 4.6
    Student: Yu Cheng (Jade) Math 475 Homework #3 March 1, 2010 Section 4.6 Exercise 36-a Let ͒ be a set of ͢ elements. How many different relations on ͒ are there? Answer: On set ͒ with ͢ elements, we have the following facts. ) Number of two different element pairs ƳͦƷ Number of relations on two different elements ) ʚ͕, ͖ʛ ∈ ͌, ʚ͖, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ͦƐƳvƷͮ) ͦƐ)! ġ ͮ) ʚ ʛ v 2ͦƐƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ ͮ) Ɣ 2) . b. How many of these relations are reflexive? Answer: We still have ) number of relations on element pairs to choose from, but we have to 2 Ɛ ƳͦƷ ƍ ͢ include the reflexive one, ʚ͕, ͕ʛ ∈ ͌. There are ͢ relations of this kind. Therefore there are ͦƐ)! ġ ġ ʚ ʛ 2ƳͦƐƳvƷͮ)Ʒͯ) Ɣ 2ͦƐƳvƷ Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ . c. How many of these relations are symmetric? Answer: To select only the symmetric relations on set ͒ with ͢ elements, we have the following facts. ) Number of symmetric relation pairs between two elements ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ƳvƷͮ) )! )ʚ)ͯͥʛ )ʚ)ͮͥʛ ġ ͮ) ͮ) 2ƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2 ͦ Ɣ 2 ͦ . d.
    [Show full text]
  • Extending Partial Isomorphisms of Finite Graphs
    S´eminaire de Master 2`emeann´ee Sous la direction de Thomas Blossier C´edricMilliet — 1er d´ecembre 2004 Extending partial isomorphisms of finite graphs Abstract : This paper aims at proving a theorem given in [4] by Hrushovski concerning finite graphs, and gives a generalization (with- out any proof) of this theorem for a finite structure in a finite relational language. Hrushovski’s therorem is the following : any finite graph G embeds in a finite supergraph H so that any local isomorphism of G extends to an automorphism of H. 1 Introduction In this paper, we call finite graph (G, R) any finite structure G with one binary symmetric reflexive relation R (that is ∀x ∈ G xRx and ∀x, y xRy =⇒ yRx). We call vertex of such a graph any point of G, and edge, any couple (x, y) such that xRy. Geometrically, a finite graph (G, R) is simply a finite set of points, some of them being linked by edges (see picture 1 ). A subgraph (F, R0) of (G, R) is any subset F of G along with the binary relation R0 induced by R on F . H H H J H J H J H J Hqqq HJ Hqqq HJ ¨ ¨ q q ¨ q q q q q Picture 1 — A graph (G, R) and a subgraph (F, R0) of (G, R). We call isomorphism between two graphs (G, R) and (G0,R0) any bijection that preserves the binary relations, that is, any bijection σ that sends an edge on an edge along with σ−1. If (G, R) = (G0,R0), then such a σ is called an automorphism of (G, R).
    [Show full text]
  • PROBLEM SET THREE: RELATIONS and FUNCTIONS Problem 1
    PROBLEM SET THREE: RELATIONS AND FUNCTIONS Problem 1 a. Prove that the composition of two bijections is a bijection. b. Prove that the inverse of a bijection is a bijection. c. Let U be a set and R the binary relation on ℘(U) such that, for any two subsets of U, A and B, ARB iff there is a bijection from A to B. Prove that R is an equivalence relation. Problem 2 Let A be a fixed set. In this question “relation” means “binary relation on A.” Prove that: a. The intersection of two transitive relations is a transitive relation. b. The intersection of two symmetric relations is a symmetric relation, c. The intersection of two reflexive relations is a reflexive relation. d. The intersection of two equivalence relations is an equivalence relation. Problem 3 Background. For any binary relation R on a set A, the symmetric interior of R, written Sym(R), is defined to be the relation R ∩ R−1. For example, if R is the relation that holds between a pair of people when the first respects the other, then Sym(R) is the relation of mutual respect. Another example: if R is the entailment relation on propositions (the meanings expressed by utterances of declarative sentences), then the symmetric interior is truth- conditional equivalence. Prove that the symmetric interior of a preorder is an equivalence relation. Problem 4 Background. If v is a preorder, then Sym(v) is called the equivalence rela- tion induced by v and written ≡v, or just ≡ if it’s clear from the context which preorder is under discussion.
    [Show full text]