NSS File System Administration Guide for Linux Is Available on the OES Documentation Website

Total Page:16

File Type:pdf, Size:1020Kb

NSS File System Administration Guide for Linux Is Available on the OES Documentation Website Open Enterprise Server 2015 SP1 Novell Storage ServicesTM File System Administration Guide for Linux June 2016 Legal Notices For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government rights, patent policy, and FIPS compliance, see https://www.novell.com/company/legal/. Copyright © 2016 Novell, Inc., a Micro Focus company. All Rights Reserved. Contents About This Guide 19 1 Overview of NSS 23 1.1 Introduction to NSS . 23 1.2 Benefits of NSS . 23 1.3 Understanding NSS . 24 1.3.1 Storage Pools . 24 1.3.2 NSS Volumes. 25 1.4 NSS Features and Capabilities . 25 1.4.1 Use Less Memory and Gain More Speed . 26 1.4.2 Improve Storage Availability. 26 1.4.3 Prevent Unauthorized Access . 26 1.4.4 Protect Data from Corruption or Loss . 27 1.4.5 Maximize Available Space . 27 1.4.6 Delayed Block Allocation . 28 1.5 Comparison of NSS to Other File Systems . 28 1.6 What’s Next . 28 2 What’s New or Changed in NSS 31 2.1 What’s New or Changed in NSS (OES 2015 SP1-Update 32-Patch) . 31 2.2 What’s New or Changed in NSS (OES 2015 SP1-Update 30-Patch) . 31 2.3 What’s New or Changed in NSS (OES 2015 SP1-Update 26-Patch) . 31 2.4 What’s New or Changed in NSS (May 2017 Patch). 31 2.5 What’s New or Changed in NSS (September 2016 Patch) . 32 2.6 What’s New or Changed in NSS (OES 2015 SP1) . 32 2.7 What’s New or Changed in NSS (OES 2015) . 34 3 NSS Active Directory Support 39 3.1 New Additions or Modifications to the Existing NSS Utilities . 39 3.2 OES File Access Rights Management (NFARM) . 41 3.2.1 NFARM Support Matrix . 41 3.2.2 Prerequisites for Installing NFARM . 42 3.2.3 Installing and Accessing NFARM. 42 3.2.4 Managing the Trustee Rights in the NSS File System. 42 3.2.5 Information. 45 3.2.6 User Quota . 46 3.2.7 File System Rights. 46 3.2.8 Salvage and Purge . 46 3.3 OES User Rights Management (NURM) . 47 3.3.1 Prerequisites . 47 3.3.2 Accessing OES User Rights Map Utility (NURM) . 47 3.3.3 Mapping Users. 48 3.3.4 Mapping Rights . 51 3.3.5 Viewing Rights . 51 3.3.6 Troubleshooting NURM . 51 Contents 3 4 Installing and Configuring Novell Storage Services 53 4.1 Requirements for Installing NSS . 53 4.1.1 Device Requirements . 53 4.1.2 Requirements for NSS. 53 4.1.3 Requirements for Storage-Related iManager Plug-Ins . 54 4.2 Installing and Configuring NSS . 54 4.2.1 Selecting the NSS Pattern During Install . 54 4.2.2 Installing NSS on an Existing OES 2015 SP1 Server . 57 4.2.3 Enabling or Disabling NSS . 58 4.3 Upgrading the Media Format for Hard Link Support . 58 4.4 Enabling Users for Linux Utilities and Services . 58 4.5 Updating NSS on OES 2015 SP1 . 59 4.5.1 Parameter Settings . 59 4.5.2 Reboot Server or Restart jstcpd, adminusd, and volmnd . 59 4.5.3 Storage-Related Plug-Ins . 60 4.6 Upgrading from OES 2 to OES 2015 SP1 . 60 4.6.1 Parameter Settings . 60 4.6.2 Read Ahead Blocks Setting . .60 5 Upgrading the NSS Media Format 63 5.1 Guidelines for Upgrading the Media Format of NSS Volumes . 63 5.1.1 Cross-Platform Support for the NSS Media Upgrade . 63 5.1.2 Which NSS Volumes to Upgrade. 64 5.1.3 Before Upgrading the Media Format . 64 5.1.4 After Upgrading the Media Format . 65 5.1.5 If You Do Not Upgrade the Media Format . 65 5.2 Enabling Hard Links After the Media Upgrade . 65 5.3 NSS Media Upgrade . 66 5.3.1 AD Media . 66 5.3.2 Trustee Index Media . 68 5.4 Automatic Pool Media Upgrade . ..
Recommended publications
  • CS 5600 Computer Systems
    CS 5600 Computer Systems Lecture 10: File Systems What are We Doing Today? • Last week we talked extensively about hard drives and SSDs – How they work – Performance characterisEcs • This week is all about managing storage – Disks/SSDs offer a blank slate of empty blocks – How do we store files on these devices, and keep track of them? – How do we maintain high performance? – How do we maintain consistency in the face of random crashes? 2 • ParEEons and MounEng • Basics (FAT) • inodes and Blocks (ext) • Block Groups (ext2) • Journaling (ext3) • Extents and B-Trees (ext4) • Log-based File Systems 3 Building the Root File System • One of the first tasks of an OS during bootup is to build the root file system 1. Locate all bootable media – Internal and external hard disks – SSDs – Floppy disks, CDs, DVDs, USB scks 2. Locate all the parEEons on each media – Read MBR(s), extended parEEon tables, etc. 3. Mount one or more parEEons – Makes the file system(s) available for access 4 The Master Boot Record Address Size Descripon Hex Dec. (Bytes) Includes the starEng 0x000 0 Bootstrap code area 446 LBA and length of 0x1BE 446 ParEEon Entry #1 16 the parEEon 0x1CE 462 ParEEon Entry #2 16 0x1DE 478 ParEEon Entry #3 16 0x1EE 494 ParEEon Entry #4 16 0x1FE 510 Magic Number 2 Total: 512 ParEEon 1 ParEEon 2 ParEEon 3 ParEEon 4 MBR (ext3) (swap) (NTFS) (FAT32) Disk 1 ParEEon 1 MBR (NTFS) 5 Disk 2 Extended ParEEons • In some cases, you may want >4 parEEons • Modern OSes support extended parEEons Logical Logical ParEEon 1 ParEEon 2 Ext.
    [Show full text]
  • W4118: Linux File Systems
    W4118: Linux file systems Instructor: Junfeng Yang References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc File systems in Linux Linux Second Extended File System (Ext2) . What is the EXT2 on-disk layout? . What is the EXT2 directory structure? Linux Third Extended File System (Ext3) . What is the file system consistency problem? . How to solve the consistency problem using journaling? Virtual File System (VFS) . What is VFS? . What are the key data structures of Linux VFS? 1 Ext2 “Standard” Linux File System . Was the most commonly used before ext3 came out Uses FFS like layout . Each FS is composed of identical block groups . Allocation is designed to improve locality inodes contain pointers (32 bits) to blocks . Direct, Indirect, Double Indirect, Triple Indirect . Maximum file size: 4.1TB (4K Blocks) . Maximum file system size: 16TB (4K Blocks) On-disk structures defined in include/linux/ext2_fs.h 2 Ext2 Disk Layout Files in the same directory are stored in the same block group Files in different directories are spread among the block groups Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 3 Block Addressing in Ext2 Twelve “direct” blocks Data Data BlockData Inode Block Block BLKSIZE/4 Indirect Data Data Blocks BlockData Block Data (BLKSIZE/4)2 Indirect Block Data BlockData Blocks Block Double Block Indirect Indirect Blocks Data Data Data (BLKSIZE/4)3 BlockData Data Indirect Block BlockData Block Block Triple Double Blocks Block Indirect Indirect Data Indirect Data BlockData Blocks Block Block Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc.
    [Show full text]
  • Ext3 = Ext2 + Journaling
    FS Sistem datoteka-skup metoda i struktura podataka koje operativni sistem koristi za čuvanje podataka Struktura sistema datoteka: - 1. zaglavlje→neophodni podaci za funkcionisanje sistema datoteka - 2. strukture za organizaciju podataka na medijumu→meta podaci - 3. podaci→datoteke i direktorijumi Strukture podataka neophodne za realizaciju sistema datoteka: - PCB(Partition Control Block) - BCB(Boot control Block) - Kontrolne strukture za alokaciju datoteka(i-node tabela kod Linux-a) - Direktorijumske strukture koje sadrže kontrolne blokove datoteka - FCB(File Control Block) ext3 Slide 1 of 51 VIRTUELNI SISTEM DATOTEKA(VFS) Linux podržava rad sa velikim brojem sistema datoteka(ext2,ext3, XFS,FAT, NTFS...) VFS-objektno orjentisani način realizacije sistema datoteka koji omogućava korisniku da na isti način pristupa svim sistemima datoteka Način obraćanja korisnika sistemu datoteka - korisnik->API - VFS->sistem datoteka ext3 Slide 2 of 51 Linux FS Linux posmatra svaki sistem datoteka kao nezavisnu hijerarhijsku strukturu objekata(datoteka i direktorijuma) na čijem se vrhu nalazi root(/) direktorijum Objekti Linux sistema datoteka: Super block - zaglavlje(superblock) - i-node tabela I-Node Table - blokovi sa podacima - direktorijumski blokovi - blokovi indirektnih pokazivača Data Area i-node-opisuje objekte, oko 128B na disku Kompromis između veličine i-node tabele i brzine rada sistema datoteka - prvih 10-12 pokazivača na blokove sa podacima - za alokaciju većih datoteka koristi se single indirection block - za još veće datoteke
    [Show full text]
  • Measuring Parameters of the Ext4 File System
    File System Forensics : Measuring Parameters of the ext4 File System Madhu Ramanathan Venkatesh Karthik Srinivasan Department of Computer Sciences, UW Madison Department of Computer Sciences, UW Madison [email protected] [email protected] Abstract An extent is a group of physically contiguous blocks. Allocating Operating systems are rather complex software systems. The File extents instead of indirect blocks reduces the size of the block map, System component of Operating Systems is defined by a set of pa- thus, aiding the quick retrieval of logical disk block numbers and rameters that impact both the correct functioning as well as the per- also minimizes external fragmentation. An extent is represented in formance of the File System. In order to completely understand and an inode by 96 bits with 48 bits to represent the physical block modify the behavior of the File System, correct measurement of number and 15 bits to represent length. This allows one extent to have a length of 215 blocks. An inode can have at most 4 extents. those parameters and a thorough analysis of the results is manda- 15 tory. In this project, we measure the various key parameters and If the file is fragmented, every extent typically has less than 2 a few interesting properties of the Fourth Extended File System blocks. If the file needs more than four extents, either due to frag- (ext4). The ext4 has become the de facto File System of Linux ker- mentation or due to growth, an extent HTree rooted at the inode is nels 2.6.28 and above and has become the default file system of created.
    [Show full text]
  • Migrating from Netware to OES 2 Linux
    Best Practice Guide www.novell.com Migrating from NetWare to OES 2 prepared for Novell OES 2 User Community Published: November, 2007 Disclaimer Novell, Inc. makes no representations or warranties with respect to the contents or use of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Trademarks Novell is a registered trademark of Novell, Inc. in the United States and other countries. * All third-party trademarks are property of their respective owner. Copyright 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Novell, Inc. Novell, Inc. 404 Wyman Suite 500 Waltham Massachusetts 02451 USA Prepared By Novell Services and User Community Migrating from NetWare to OES 2—Best Practice Guide November, 2007 Novell OES 2 User Community The latest version of this document, along with other OES 2 Linux Best Practice Guides, can be found with the NetWare to Linux Migration Resources at: http://www.novell.com/products/openenterpriseserver/netwaretolinux/view/all/-9/tle/all Contents Acknowledgments.................................................................................. iv Getting Started...................................................................................... 1 Why OES 2?..............................................................................................1 Which Services Are Right for OES 2? ................................................................4
    [Show full text]
  • ERDA User Guide
    User Guide 22. July 2021 1 / 116 Table of Contents Introduction..........................................................................................................................................3 Requirements and Terms of Use...........................................................................................................3 How to Access UCPH ERDA...............................................................................................................3 Sign-up.............................................................................................................................................4 Login................................................................................................................................................7 Overview..........................................................................................................................................7 Home................................................................................................................................................8 Files..................................................................................................................................................9 File Sharing and Data Exchange....................................................................................................15 Share Links...............................................................................................................................15 Workgroup Shared Folders.......................................................................................................19
    [Show full text]
  • The Third Extended File System with Copy-On-Write
    Limiting Liability in a Federally Compliant File System Zachary N. J. Peterson The Johns Hopkins University Hopkins Storage Systems Lab, Department of Computer Science Regulatory Requirements z Data Maintenance Acts & Regulations – HIPAA, GISRA, SOX, GLB – 4,000+ State and Federal Laws and Regulations with regards to storage z Audit Trail – creating a “chain of trust” – Files are versioned over time – Authenticated block sharing (copy-on-write) between versions. z Disk Encryption – Privacy and Confidentiality – Non-repudiation Hopkins Storage Systems Lab, Department of Computer Science Secure Deletion in a Regulatory Environment z Desire to limit liability when audited – Records that go out of audit scope do so forever – When a disk is subpoenaed old or irrelevant data are inaccessible z Existing Techniques – Secure overwrite [Gutmann] – File key disposal in disk encrypted systems [Boneh & Lipton] z Existing solutions don’t work well in block- versioning file systems Hopkins Storage Systems Lab, Department of Computer Science Technical Problems z Secure overwriting of noncontiguous data blocks is slow and inefficient – When versions share blocks, data to be overwritten may be noncontiguous z Cannot dispose file keys in a versioning file system – Blocks encrypted with a particular key need to be available in future versions z User space tools are inadequate – Can’t delete metadata – Can’t be interposed between file operations – Truncate may leak data – Difficult to be synchronous Hopkins Storage Systems Lab, Department of Computer Science
    [Show full text]
  • A Novel Term Weighing Scheme Towards Efficient Crawl Of
    International Journal of Computer Engineering and Applications, Volume X, Special Issue, ICRTCST -2016 www.ijcea.com, ISSN 2321-3469 FEATURES AND DIFFERENCES OF LINUX EXT, EXT2, EXT3 AND EXT4 FILE SYSTEMS Sanku Sinha 1, Sadique Nayeem 2 1, 2 Department of Computer Science and Engineering, R.V.S. College of Engineering and Technology, Jamshedpur ABSTRACT: File System is a way used by operating systems to store and organize files so that the files can be accessed efficiently. File system is a component of operating system and it interacts with the abstraction of the underlying hardware known as Block Layer. An open source environment like Linux has over 50 different file systems since its existence. Though, in recent years, the speed of CPUs have been increased and the Hard drive technology have tremendous growth, the file systems have also been evolved so that operating system can provide better performance to the user. To measure the performance of the file systems there are different benchmarks used by different developers. In this work, a study of Linux file system evolution has been carried out. As there are several file systems for different Linux Distributions and different Linux kernel versions, some popular versions of extended file systems like ext, ext2, ext3 and ext4 has been considered. The features and differences on the inode structures of these file systems have been discussed. Keywords: Ext, ext2, ext3, ext4, inode, Linux [1] INTRODUCTION Operating System of a particular system is chosen by a user on the basis of applications to be used or better system performance. For better system performance, the performance of the file system is a key part.
    [Show full text]
  • Ntfs, Fat, Fat32, Ext2, Ext3, Ext4)
    6 VIII August 2018 International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 6.887 Volume 6 Issue VIII, August 2018- Available at www.ijraset.com Comparative study of File systems (NTFS, FAT, FAT32, EXT2, EXT3, EXT4) Akash Bundele1, Prof. Dr. S. E. Yedey2 PG Department of Computer Science & Technology, Hanuman Vyayam Prasarak Mandal, Amravati, Maharashta Abstract: Over the years, hard drives and the systems used to store data on them have constantly evolved. There are Windows file systems and Linux file system. And have several advantages and disadvantages. File systems have traditionally been a major area of research and development. This is evident from the existence of over 50 file systems of varying popularity in the current version of the Linux kernel. Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-32, and NTFS (NT File System). This paper looks at various file systems (FAT NTFS EXT2 EXT3 EXT4) and performing comparative study. I. INTRODUCTION In today’s world everything revolves around data. Data is critical for day-to-day operation of any system. Data management is taken care of by file systems which reliably store data on disks. Users typically have varied requirements ranging from scalability, availability, fault-tolerance, performance guarantees in business environment to small memory footprints, security, and reliability in desktop environments. This has driven the file system community to develop a variety of systems that cater to different user requirements. Since they were developed over twenty years ago, the role of personal computers in our lives has drastically increased.
    [Show full text]
  • Analyzing Metadata Performance in Distributed File Systems
    Inaugural-Dissertation zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakultat¨ der Ruprecht-Karls-Universitat¨ Heidelberg vorgelegt von Diplom-Informatiker Christoph Biardzki aus Thorn Tag der mundlichen¨ Prufung:¨ 19.1.2009 Analyzing Metadata Performance in Distributed File Systems Gutachter: Prof. Dr. Thomas Ludwig Abstract Distributed file systems are important building blocks in modern computing environments. The challenge of increasing I/O bandwidth to files has been largely resolved by the use of parallel file systems and sufficient hardware. However, determining the best means by which to manage large amounts of metadata, which contains information about files and directories stored in a distributed file system, has proved a more difficult challenge. The objective of this thesis is to analyze the role of metadata and present past and current implementations and access semantics. Understanding the development of the current file system interfaces and functionality is a key to understanding their performance limitations. Based on this analysis, a distributed metadata benchmark termed DMetabench is presented. DMetabench significantly improves on existing benchmarks and allows stress on meta- data operations in a distributed file system in a parallelized manner. Both intra-node and inter-node parallelity, current trends in computer architecture, can be explicitly tested with DMetabench. This is due to the fact that a distributed file system can have different seman- tics inside a client node rather than semantics between multiple nodes. As measurements in larger distributed environments may exhibit performance artifacts difficult to explain by reference to average numbers, DMetabench uses a time-logging tech- nique to record time-related changes in the performance of metadata operations and also protocols additional details of the runtime environment for post-benchmark analysis.
    [Show full text]
  • University of Warwick Institutional Repository
    MENS T A T A G I MOLEM U N IS IV S E EN RS IC ITAS WARW Monitoring, Analysis and Optimisation of I/O in Parallel Applications by Steven Alexander Wright A thesis submitted to The University of Warwick in partial fulfilment of the requirements for admission to the degree of Doctor of Philosophy Department of Computer Science The University of Warwick July 2014 Abstract High performance computing (HPC) is changing the way science is performed in the 21st Century; experiments that once took enormous amounts of time, were dangerous and often produced inaccurate results can now be performed and refined in a fraction of the time in a simulation environment. Current gen- eration supercomputers are running in excess of 1016 floating point operations per second, and the push towards exascale will see this increase by two orders of magnitude. To achieve this level of performance it is thought that applica- tions may have to scale to potentially billions of simultaneous threads, pushing hardware to its limits and severely impacting failure rates. To reduce the cost of these failures, many applications use checkpointing to periodically save their state to persistent storage, such that, in the event of a failure, computation can be restarted without significant data loss. As computational power has grown by approximately 2 every 18 24 months, ⇥ − persistent storage has lagged behind; checkpointing is fast becoming a bottleneck to performance. Several software and hardware solutions have been presented to solve the current I/O problem being experienced in the HPC community and this thesis examines some of these.
    [Show full text]
  • OMERO Documentation Release 5.2.5
    OMERO Documentation Release 5.2.5 The Open Microscopy Environment July 29, 2016 CONTENTS I About the OMERO Platform 2 1 Introduction 3 2 OMERO clients 4 2.1 OMERO clients overview .............................................. 4 2.2 Command Line Interface as an OMERO client ................................... 6 3 Additional resources 24 3.1 Community support ................................................. 24 3.2 What’s new for OMERO 5.2 for users ........................................ 25 3.3 OMERO version history ............................................... 25 4 Quickstart server access 42 4.1 OMERO demo server ................................................ 42 4.2 OMERO virtual appliance .............................................. 45 II System Administrator Documentation 60 5 Server Background 61 5.1 What’s new for OMERO 5.2 for sysadmins ..................................... 61 5.2 Server overview ................................................... 61 5.3 System requirements ................................................. 62 5.4 Version requirements ................................................. 64 5.5 Example production server set-ups .......................................... 76 5.6 Known limitations .................................................. 78 5.7 Groups and permissions system ........................................... 80 6 Server Installation and Maintenance 85 6.1 Server installation on UNIX (and UNIX-like platforms) .............................. 85 6.2 Server installation on Windows ..........................................
    [Show full text]