Linear Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Linear Algebra BASIC LINEAR ALGEBRA AN EXERCISE APPROACH Gabriel Nagy Kansas State University c Gabriel Nagy CHAPTER 1 Vector spaces and linear maps In this chapter we introduce the basic algebraic notions of vector spaces and linear maps. 1. Vector spaces Suppose k is a field. (Although the theory works for arbitrary fields, we will eventually focus only on the choices k = R, C.) Definition. A k-vector space is an abelian group (V, +), equipped with an external operation1 k × V 3 (λ, v) 7−→ λv ∈ V, called scalar multiplication, with the following properties: • λ · (v + w) = (λ · v) + (λ · w), for all λ ∈ k, v, w ∈ V . • (λ + µ) · v = (λv) + (µv), for all λ, µ ∈ k, v ∈ V . • (λ · µ)v = λ · (µ · v), for all λ, µ ∈ k, v ∈ V . • 1 · v = v, for all v ∈ V . The elements of a vector space are sometimes called vectors. Examples. The field k itself is a k-vector space, with its own multiplication as scalar multiplication. A trivial group (with one element) is always a k-vector space (with the only possible scalar multiplication). 1 Suppose V is a k-vector space. Prove that 0 · v = 0, for all v ∈ V. (The zero in the left-hand side is the field k. The zero in the right-hand side is the neutral element in the abelian group V .) Use the above fact to conclude that for any v ∈ V , the vector −v (the inverse of v in the abelian group V ) can also be described by −v = (−1) · v. 2 Fix a field k, a non-empty set I, and a family (Vi)i∈I of k-vector spaces. Q Consider the product i∈I Vk, equipped with the operations: • (vi)i∈I + (wi)i∈I = (vi + wi)i∈I ; • λ · (vi)i∈I = (λvi)i∈I . 1 When convenient, the symbol · may be omitted. 1 2 1. VECTOR SPACES AND LINEAR MAPS Q Prove that i∈I Vk is a k-vector space. This structure is called the k-vector space direct product of the family (Vi)i∈I . Definition. Suppose V is a k-vector space. A subset X ⊂ V is called a k-linear subspace, if • Whenever x, y ∈ X, we have x + y ∈ X. • Whenever x, y ∈ Xand λ ∈ k, we have λx ∈ X. 3 If X is a k-linear subspace of the k-vector space V , then X itself is a k-vector space, when equipped with the operations “inherited” from V . Prove than any linear subspace of V contains the zero vector 0 ∈ V 4 Let (Vi)i∈I be a family of k-vector spaces (indexed by a non-empty set I). For Q an element v = (vi)i∈I ∈ i∈I Vi let us define the set bvc = {i ∈ I : vi 6= 0}. Prove that the set Y {v ∈ Vi : bvc is finite } i∈I Q is a linear subspace of Vi. This space is called the k-vector space direct sum i∈I L of the family (Vi)i∈I , and is denoted by i∈I Vi. Definition. Suppose we have a family (Vi)i∈I of vector spaces. For a fixed L index j ∈ I, define the map εj : Vj → i∈I Vi as follows. For a vector v ∈ Vj we construct εj(v) = (wi)i∈I , where v if i = j w = i 0 if i 6= j. L We call the maps εj : Vj → i∈I Vi, j ∈ I, the standard inclusions. The maps Y πj : Vi 3 (vi)i∈I 7−→ vj ∈ Vj i∈I are called the coordinate maps. 5 Let (Vi)i∈I be a family of vector spaces. Prove that the standard inclusions εi, i ∈ I. are injective. In fact prove that πi ◦ εi = IdV . Prove that any element L i v ∈ i∈I Vi is given as X v = (εi ◦ πi)(v). i∈bvc P In other words, if v = (vi)i∈I , then v = i∈bvc εi(vi). 6 Suppose (Xj)j∈J is a family of k-linear subspaces of V . Prove that the inter- T section j∈J Xj is again a k-linear subspace of V . 1. VECTOR SPACES 3 Definition. Let V be a k-vector space, and let M ⊂ V be an arbitrary subset of V . Consider the family F = {X : X k-linear subspace of V , and X ⊃ M}. The set \ Spank(M) = X, X∈F which is a linear subspace of V by the preceding exercise, is called the k-linear span of M in V . Convention. Spank(∅) = {0}. Example. The linear span of a singleton is described as Spank({v}) = kv(= {λv : λ ∈ k}). 7 Prove that if M and N are subsets of a k-vector space V , with M ⊂ N, then we also have the inclusion Spank(M) ⊂ Spank(N). Give an example where M ( N, but their spans coincide. 8 Let V be a k-vector space, and M be a subset of V . For an element v ∈ V , prove that the following are equivalent: (i) v ∈ Spank(M); (ii) there exists an integer n ≥ 1, elements x1, . , xn ∈ M, and scalars 2 λ1, . , λn ∈ k such that v = λ1x1 + ··· + λnxn. Hint: First prove that the set of elements satisfying property (ii) is a linear subspace. Second, prove that the linear span of M contains all elements satisfying (ii). Notation. Suppose V is a vector space, and A1,...,An are subsets of V . We define A1 + ··· + A2 = {a1 + ··· + an : ak ∈ Ak, k = 1, . , n}. 9 Let V be a k-vector space. Suppose A1,...,An are k-homogeneous, in the sense that for every k = 1, . , n we have the equality: Ak = {λx : λ ∈ k, x ∈ Ak}. Prove the equality Span(A1 ∪ · · · ∪ An) = Span(A1) + ··· + Span(An). 10 Let V be a k-vector space, and (Xj)j∈J be a family of linear subspaces of V . For an element v ∈ V , prove that the following are equivalent: S (i) v ∈ Spank j∈J Xj); S (ii) there exists an integer n ≥ 1 and x1, . , xn ∈ j∈J Xj, such that v = x1 + ··· + xn. 2 From now on we will use the usual convention which gives the scalar multiplication prece- dence over addition. 4 1. VECTOR SPACES AND LINEAR MAPS Comment. If X1,...,Xn are linear subspaces of the vector space V , then using the notation preceding Exercise ??, and the above result, we get Span(X1 ∪ · · · ∪ Xn) = X1 + ··· + Xn. 11 In general, a union of linear subspaces is not a linear subspace. Give an 2 example of two linear subspaces X1,X2 ⊂ R , such that X1 ∪ X2 is not a linear subspace. 12 Prove that the union of a directed family of linear subspaces is a linear subspace. That is, if (Xj)j∈J is a family of k-linear subspaces of the k-vector space V , with the property • For any j, k ∈ J there exists some ` ∈ J such that Xj ⊂ X` ⊃ Xk, S then j∈J Xj is again a k-linear subspace of V . Hint: Use the preceding exercise. Definition. Suppose V is a k-vector space. A set M ⊂ V is said to be k- linearly independent, if (compare with Exercise ??) for every strict subset P ( M, one has the strict inclusion Spank(P ) ( Spank(M). 13 Let M be a subset in the k-vector space V . Prove that the following are equivalent: (i) M is linearly independent. (ii) If n ≥ 1 is an integer, if x1, . , xn ∈ M are different elements, and if λ1, . , λn ∈ k satisfy λ1x1 + ··· + λnxn = 0, then λ1 = ··· = λn = 0. Hint: To prove (i) ⇒ (ii) show that if one has a relation as in (ii), then one of the x’s can be eliminated, without changing the linear Span. 14 Prove that a linearly independent set M cannot contain the zero element. Prove that a subset of a linearly independent set is again linearly independent. 15 Prove that the union of a directed family of linearly independent sets is again a linearly independent set. That is, if (Xj)j∈J is a family of k-linearly independent subsets of the k-vector space V , with the property • For any j, k ∈ J there exists some ` ∈ J such that Xj ⊂ X` ⊃ Xk, S then j∈J Xj is again a k-linearly independent subset of V . 16 Suppose V is a vector space, and x1, x2,... is a sequence (finite or infinite) of different non-zero vectors in V . Prove that the following are equivalent: (i) The set M = {x1, x2,... } is linearly independent. (ii) The sequence of susbspaces Wk = Span({x1, . , xk}) is strictly increasing, in the sense that we have strict inclusions W1 ( W2 ( .... 1. VECTOR SPACES 5 Hint: The implication (i) ⇒ (ii) is clear from the definition. Conversely, if M were not linearly independent, there exist scalars λ1, . , λn ∈ k such that λ1x1 + ··· + λnxn = 0, and at least one of the λ’s non-zero. If we take k = max{j : 1 ≤ j ≤ n and λj 6= 0}, then we get xk ∈ Span{x1, . , xk−1, which proves that Wk = Wk−1. Definition. Let V be a k-vector space. A subset B ⊂ V is called a k-linear basis for V , if: • Spank(B) = V ; • B is k-linearly independent. 17 Prove the following: Theorem 1.1.1. Let V be a k-vector space, and let P ⊂ M ⊂ V be subsets, with P linearly independent, and Spank(M) = V . Then there exists a linear basis B such that P ⊂ B ⊂ M. Sketch of proof: Consider the set B = {B ⊂ V : B linearly independent, and P ⊂ B ⊂ M}, equipped with the inclusion as the order relation.
Recommended publications
  • On the Bicoset of a Bivector Space
    International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties.
    [Show full text]
  • Equivalence of A-Approximate Continuity for Self-Adjoint
    Equivalence of A-Approximate Continuity for Self-Adjoint Expansive Linear Maps a,1 b, ,2 Sz. Gy. R´ev´esz , A. San Antol´ın ∗ aA. R´enyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, 1364 Hungary bDepartamento de Matem´aticas, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain Abstract Let A : Rd Rd, d 1, be an expansive linear map. The notion of A-approximate −→ ≥ continuity was recently used to give a characterization of scaling functions in a multiresolution analysis (MRA). The definition of A-approximate continuity at a point x – or, equivalently, the definition of the family of sets having x as point of A-density – depend on the expansive linear map A. The aim of the present paper is to characterize those self-adjoint expansive linear maps A , A : Rd Rd for which 1 2 → the respective concepts of Aµ-approximate continuity (µ = 1, 2) coincide. These we apply to analyze the equivalence among dilation matrices for a construction of systems of MRA. In particular, we give a full description for the equivalence class of the dyadic dilation matrix among all self-adjoint expansive maps. If the so-called “four exponentials conjecture” of algebraic number theory holds true, then a similar full description follows even for general self-adjoint expansive linear maps, too. arXiv:math/0703349v2 [math.CA] 7 Sep 2007 Key words: A-approximate continuity, multiresolution analysis, point of A-density, self-adjoint expansive linear map. 1 Supported in part in the framework of the Hungarian-Spanish Scientific and Technological Governmental Cooperation, Project # E-38/04.
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • HILBERT SPACE GEOMETRY Definition: a Vector Space Over Is a Set V (Whose Elements Are Called Vectors) Together with a Binary Operation
    HILBERT SPACE GEOMETRY Definition: A vector space over is a set V (whose elements are called vectors) together with a binary operation +:V×V→V, which is called vector addition, and an external binary operation ⋅: ×V→V, which is called scalar multiplication, such that (i) (V,+) is a commutative group (whose neutral element is called zero vector) and (ii) for all λ,µ∈ , x,y∈V: λ(µx)=(λµ)x, 1 x=x, λ(x+y)=(λx)+(λy), (λ+µ)x=(λx)+(µx), where the image of (x,y)∈V×V under + is written as x+y and the image of (λ,x)∈ ×V under ⋅ is written as λx or as λ⋅x. Exercise: Show that the set 2 together with vector addition and scalar multiplication defined by x y x + y 1 + 1 = 1 1 + x 2 y2 x 2 y2 x λx and λ 1 = 1 , λ x 2 x 2 respectively, is a vector space. 1 Remark: Usually we do not distinguish strictly between a vector space (V,+,⋅) and the set of its vectors V. For example, in the next definition V will first denote the vector space and then the set of its vectors. Definition: If V is a vector space and M⊆V, then the set of all linear combinations of elements of M is called linear hull or linear span of M. It is denoted by span(M). By convention, span(∅)={0}. Proposition: If V is a vector space, then the linear hull of any subset M of V (together with the restriction of the vector addition to M×M and the restriction of the scalar multiplication to ×M) is also a vector space.
    [Show full text]
  • LECTURES on PURE SPINORS and MOMENT MAPS Contents 1
    LECTURES ON PURE SPINORS AND MOMENT MAPS E. MEINRENKEN Contents 1. Introduction 1 2. Volume forms on conjugacy classes 1 3. Clifford algebras and spinors 3 4. Linear Dirac geometry 8 5. The Cartan-Dirac structure 11 6. Dirac structures 13 7. Group-valued moment maps 16 References 20 1. Introduction This article is an expanded version of notes for my lectures at the summer school on `Poisson geometry in mathematics and physics' at Keio University, Yokohama, June 5{9 2006. The plan of these lectures was to give an elementary introduction to the theory of Dirac structures, with applications to Lie group valued moment maps. Special emphasis was given to the pure spinor approach to Dirac structures, developed in Alekseev-Xu [7] and Gualtieri [20]. (See [11, 12, 16] for the more standard approach.) The connection to moment maps was made in the work of Bursztyn-Crainic [10]. Parts of these lecture notes are based on a forthcoming joint paper [1] with Anton Alekseev and Henrique Bursztyn. I would like to thank the organizers of the school, Yoshi Maeda and Guiseppe Dito, for the opportunity to deliver these lectures, and for a greatly enjoyable meeting. I also thank Yvette Kosmann-Schwarzbach and the referee for a number of helpful comments. 2. Volume forms on conjugacy classes We will begin with the following FACT, which at first sight may seem quite unrelated to the theme of these lectures: FACT. Let G be a simply connected semi-simple real Lie group. Then every conjugacy class in G carries a canonical invariant volume form.
    [Show full text]
  • NOTES on DIFFERENTIAL FORMS. PART 3: TENSORS 1. What Is A
    NOTES ON DIFFERENTIAL FORMS. PART 3: TENSORS 1. What is a tensor? 1 n Let V be a finite-dimensional vector space. It could be R , it could be the tangent space to a manifold at a point, or it could just be an abstract vector space. A k-tensor is a map T : V × · · · × V ! R 2 (where there are k factors of V ) that is linear in each factor. That is, for fixed ~v2; : : : ;~vk, T (~v1;~v2; : : : ;~vk−1;~vk) is a linear function of ~v1, and for fixed ~v1;~v3; : : : ;~vk, T (~v1; : : : ;~vk) is a k ∗ linear function of ~v2, and so on. The space of k-tensors on V is denoted T (V ). Examples: n • If V = R , then the inner product P (~v; ~w) = ~v · ~w is a 2-tensor. For fixed ~v it's linear in ~w, and for fixed ~w it's linear in ~v. n • If V = R , D(~v1; : : : ;~vn) = det ~v1 ··· ~vn is an n-tensor. n • If V = R , T hree(~v) = \the 3rd entry of ~v" is a 1-tensor. • A 0-tensor is just a number. It requires no inputs at all to generate an output. Note that the definition of tensor says nothing about how things behave when you rotate vectors or permute their order. The inner product P stays the same when you swap the two vectors, but the determinant D changes sign when you swap two vectors. Both are tensors. For a 1-tensor like T hree, permuting the order of entries doesn't even make sense! ~ ~ Let fb1;:::; bng be a basis for V .
    [Show full text]
  • Arxiv:0704.2561V2 [Math.QA] 27 Apr 2007 Nttto O Xeln Okn Odtos H Eoda Second the Conditions
    DUAL FEYNMAN TRANSFORM FOR MODULAR OPERADS J. CHUANG AND A. LAZAREV Abstract. We introduce and study the notion of a dual Feynman transform of a modular operad. This generalizes and gives a conceptual explanation of Kontsevich’s dual construction producing graph cohomology classes from a contractible differential graded Frobenius alge- bra. The dual Feynman transform of a modular operad is indeed linear dual to the Feynman transform introduced by Getzler and Kapranov when evaluated on vacuum graphs. In marked contrast to the Feynman transform, the dual notion admits an extremely simple presentation via generators and relations; this leads to an explicit and easy description of its algebras. We discuss a further generalization of the dual Feynman transform whose algebras are not neces- sarily contractible. This naturally gives rise to a two-colored graph complex analogous to the Boardman-Vogt topological tree complex. Contents Introduction 1 Notation and conventions 2 1. Main construction 4 2. Twisted modular operads and their algebras 8 3. Algebras over the dual Feynman transform 12 4. Stable graph complexes 13 4.1. Commutative case 14 4.2. Associative case 15 5. Examples 17 6. Moduli spaces of metric graphs 19 6.1. Commutative case 19 6.2. Associative case 21 7. BV-resolution of a modular operad 22 7.1. Basic construction and description of algebras 22 7.2. Stable BV-graph complexes 23 References 26 Introduction arXiv:0704.2561v2 [math.QA] 27 Apr 2007 The relationship between operadic algebras and various moduli spaces goes back to Kontse- vich’s seminal papers [19] and [20] where graph homology was also introduced.
    [Show full text]
  • Direct Products and Homomorphisms
    Commuting properties Direct products and homomorphisms Simion Breaz logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Outline 1 Commuting properties Products and coproducts Contravariant functors Covariant functors logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits. logo Simion Breaz Direct products and homomorphisms Products and coproducts Commuting properties Contravariant functors Covariant functors Introduction Important properties of objects in particular categories (e.g. varieties of universal algebras) can be described using commuting properties of some canonical functors. For instance, in [Ad´amek and Rosicki: Locally presentable categories] there are the following examples: If V is a variety of finitary algebras and A ∈ V then A is finitely generated iff the functor Hom(A, −): V → Set preserves direct unions (i.e. directed colimits of monomorphisms); A is finitely presented (i.e. it is generated by finitely many generators modulo finitely many relations) iff the functor Hom(A, −): V → Set preserves directed colimits.
    [Show full text]
  • Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
    BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set.
    [Show full text]
  • Orthogonal Complements (Revised Version)
    Orthogonal Complements (Revised Version) Math 108A: May 19, 2010 John Douglas Moore 1 The dot product You will recall that the dot product was discussed in earlier calculus courses. If n x = (x1: : : : ; xn) and y = (y1: : : : ; yn) are elements of R , we define their dot product by x · y = x1y1 + ··· + xnyn: The dot product satisfies several key axioms: 1. it is symmetric: x · y = y · x; 2. it is bilinear: (ax + x0) · y = a(x · y) + x0 · y; 3. and it is positive-definite: x · x ≥ 0 and x · x = 0 if and only if x = 0. The dot product is an example of an inner product on the vector space V = Rn over R; inner products will be treated thoroughly in Chapter 6 of [1]. Recall that the length of an element x 2 Rn is defined by p jxj = x · x: Note that the length of an element x 2 Rn is always nonnegative. Cauchy-Schwarz Theorem. If x 6= 0 and y 6= 0, then x · y −1 ≤ ≤ 1: (1) jxjjyj Sketch of proof: If v is any element of Rn, then v · v ≥ 0. Hence (x(y · y) − y(x · y)) · (x(y · y) − y(x · y)) ≥ 0: Expanding using the axioms for dot product yields (x · x)(y · y)2 − 2(x · y)2(y · y) + (x · y)2(y · y) ≥ 0 or (x · x)(y · y)2 ≥ (x · y)2(y · y): 1 Dividing by y · y, we obtain (x · y)2 jxj2jyj2 ≥ (x · y)2 or ≤ 1; jxj2jyj2 and (1) follows by taking the square root.
    [Show full text]
  • Does Geometric Algebra Provide a Loophole to Bell's Theorem?
    Discussion Does Geometric Algebra provide a loophole to Bell’s Theorem? Richard David Gill 1 1 Leiden University, Faculty of Science, Mathematical Institute; [email protected] Version October 30, 2019 submitted to Entropy Abstract: Geometric Algebra, championed by David Hestenes as a universal language for physics, was used as a framework for the quantum mechanics of interacting qubits by Chris Doran, Anthony Lasenby and others. Independently of this, Joy Christian in 2007 claimed to have refuted Bell’s theorem with a local realistic model of the singlet correlations by taking account of the geometry of space as expressed through Geometric Algebra. A series of papers culminated in a book Christian (2014). The present paper first explores Geometric Algebra as a tool for quantum information and explains why it did not live up to its early promise. In summary, whereas the mapping between 3D geometry and the mathematics of one qubit is already familiar, Doran and Lasenby’s ingenious extension to a system of entangled qubits does not yield new insight but just reproduces standard QI computations in a clumsy way. The tensor product of two Clifford algebras is not a Clifford algebra. The dimension is too large, an ad hoc fix is needed, several are possible. I further analyse two of Christian’s earliest, shortest, least technical, and most accessible works (Christian 2007, 2011), exposing conceptual and algebraic errors. Since 2015, when the first version of this paper was posted to arXiv, Christian has published ambitious extensions of his theory in RSOS (Royal Society - Open Source), arXiv:1806.02392, and in IEEE Access, arXiv:1405.2355.
    [Show full text]
  • Lecture 1.3: Direct Products and Sums
    Lecture 1.3: Direct products and sums Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Advanced Linear Algebra M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 1 / 5 Overview In previous lectures, we learned about vectors spaces and subspaces. We learned about what it meant for a subset to span, to be linearly independent, and to be a basis. In this lecture, we will see how to create new vector spaces from old ones. We will see several ways to \multiply" vector spaces together, and will learn how to construct: the complement of a subspace the direct sum of two subspaces the direct product of two vector spaces M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 2 / 5 Complements and direct sums Theorem 1.5 (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional. (b) Every subspace Y has a complement in X : another subspace Z such that every vector x 2 X can be written uniquely as x = y + z; y 2 Y ; z 2 Z; dim X = dim Y + dim Z: Proof Definition X is the direct sum of subspaces Y and Z that are complements of each other. More generally, X is the direct sum of subspaces Y1;:::; Ym if every x 2 X can be expressed uniquely as x = y1 + ··· + ym; yi 2 Yi : We denote this as X = Y1 ⊕ · · · ⊕ Ym. M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 3 / 5 Direct products Definition The direct product of X1 and X2 is the vector space X1 × X2 := (x1; x2) j x1 2 X1; x2 2 X2 ; with addition and multiplication defined component-wise.
    [Show full text]