Variability in the Crystallographic Texture of Bivalve Nacre

Total Page:16

File Type:pdf, Size:1020Kb

Variability in the Crystallographic Texture of Bivalve Nacre Variability in the crystallographic texture of bivalve nacre JIØÍ FRÝDA, MAGDALENA KLICNAROVÁ, BARBORA FRÝDOVÁ & MICHAL MERGL The crystallographic texture of nacre in eleven bivalve species belonging to the superorders Opponobranchia, Pteriomorpha, and Paleoheterodonta, was studied. Our analysis confirmed a uniform orientation of the crystallographic c-axes of aragonite platelets in all the species studied, but a variable arrangement of a- and b-axes. New data suggest that the rate of alignment of a- and b-axes from girdle-like (unordered nacre) to a single crystal-like texture (ordered nacre) differs considerably among the analyzed species. Numerical evaluation of the data obtained from species with ordered nacre also revealed systematic differences in texture strength among the main crystallographic axes of aragonite plate- lets. The texture strength of a-axes (direction parallel to growth lines) is always weaker than that of b- and c-axes. Ob- served differences in shape of the growth lines on the surface of nacreous platelets, in twinning percentage as well as in rate of alignment of a- and b-axes suggest variations in nacre growth process in individual phylogenetic lineages of the Class Bivalvia. These facts may imply not only evolutionary changes in microstructure and crystallographic texture of the nacre but also in molecular mechanisms driving its production during the long molluscan evolution. • Key words: Bivalvia, nacre, crystallographic texture, phylogeny. FRÝDA, J., KLICNAROVÁ, K., FRÝDOVÁ,B.&MERGL, M. 2010. Variability in the crystallographic texture of bivalve nacre. Bulletin of Geosciences 85(4), 645–662 (9 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manu- script received October 18, 2010; accepted in revised form December 6, 2010; published online December 13, 2010; is- sued December 20, 2010. Jiří Frýda, Czech Geological Survey, P.O.B. 85, 118 21 Prague 1, and Faculty of Environmental Sciences, Czech Uni- versity of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic; [email protected] • Magdalena Klicnarová, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6 – Suchdol, Czech Republic • Barbora Frýdová, VÚRV v.v.i., Research Institute, Drnovská 507, 161 06 Prague – Ruzyně, Czech Republic • Michal Mergl, University of West Bohemia, Faculty of Education, Department of Bi- ology, Klatovská 51, 306 19 Plzeň, Czech Republic; [email protected] The study of biologically controlled mineralization is one make preparation of new nanocomposites possible in the of topics connecting scientists with quite different metho- future. dological approaches, such as material physicists, zoolo- The molecular mechanism determining the shape and gists, molecular biologists, paleontologists and medical orientation of individual calcium carbonate crystals in mol- doctors. The fact that molecular mechanisms in some or- luscan shells is very complex and still not well understood ganisms may control and produce at low temperature per- even though it had been intensively studied during the last fectly organized structures on a nanoscale is a great inspi- three decades. Recent studies showed that molluscan shell ration for material scientists. The formation of molluscan mineralization is a very complex process in which different shells is one of the most studied cases of biologically con- shell proteins play a very important role (e.g., Marin & trolled mineralization. Molluscan shells consist mainly of Luquet 2004; Marie et al. 2008, 2009; Ouhenia et al. calcium carbonate crystals (aragonite and/or calcite, ra- 2008b; see excellent review by Marin et al. 2008). Bio- rely vaterite) with a small amount of other organic subs- chemical studies produced evidence of the active role of tances. The carbonate mono- or polycrystals forming some macromolecules in control of the polymorphism of these shells are organized into many different microstruc- calcium carbonate. It was shown that macromolecules ex- tures and textures (see Carter 1990a, b). It has been shown tracted from the aragonite shell layer induced the growth of several times that the style of nanoscale organization of aragonite in vitro on a substrate of polysaccharide b-chitin inorganic and organic components of the molluscan shells and hydrophobic silk protein (e.g., Falini et al. 1996). Re- considerably changes their physical properties (e.g., Ber- cently a team of Japanese scientists (Suzuki et al. 2009) toldi et al. 2008, Denkena et al. 2010, Ouhenia et al. reported a discovery of two novel proteins, named Pif80 2008a, Chateigner et al. 2010). Understanding of the bio- and Pif97, which seem to be the key players in controlling mineralization processes on a molecular level should the crystal structure of nacre in pearl-forming oysters. DOI 10.3140/bull.geosci.1217 645 Bulletin of Geosciences Vol. 85, 4, 2010 During the last decades, biochemical studies have thus Channel coast near Brighton, England, and from (2) the produced many significant insights into the mechanisms of North Sea, Slemmestad near Oslo, Sweden], Mytilus gal- shell formation on the molecular level. As has been previ- loprovincialis Lamarck, 1819, from the Adriatic Sea near ously shown, that each particular shell microstructure is the town of Rabac, Istria, Croatia, and Mytilus california- very complex nanocomposite which is also the product of a nus (Conrad, 1837), from the coast of the Pacific Ocean very complex molecular mechanism. Because of this a par- near the town of Brookings, SW Oregon, U.S.A. The genus allel development of shell layer with the same micro- Modiolus Lamarck, 1799, is represented by the species structure and texture is highly unlikely. Better understand- Modiolus barbatus (Linnaeus, 1758), from the Adriatic ing of the relationships between particular molecular Sea near the village of Izola, Slovenia, and the genus Bra- processes on the one hand and microstructure and texture chidontes Swainson, 1840, by the species Brachidontes of individual shell layers on the other hand will thus pro- rostratus (Dunker, 1857), from Brouler Beach near Syd- duce a new data source for understanding the long evolu- ney, NSW, Australia. Two species of genera Pinctada Ro- tion of molluscs. Inorganic and organic components of ding, 1798, and Pinna Linnaeus, 1758 from the order Pteri- molluscan shells and their functions may be studied only in ida were studied: Pinctada radiata (Leach, 1814), from the living molluscs. However the extremely rich and diverse Mediterranean Sea, Karpathos island, Greece, and Pinna fossil record of molluscan evolution gives the chance to nobilis (Linnaeus, 1758), from two localities [(1) the coast study only inorganic biomineralization products, i.e., mol- of the Mediterranean Sea near Dénia, 80 km SE of Valen- luscan shells. Individual molluscan shell layers may be cia, Spain, and (2) the Adriatic Sea near the village of Izola, characterized by their shell microstructure, phase composi- Slovenia]. Three freshwater species of unionid genera, Am- tion, and crystallographic texture. The shell micro- blema Rafinesque, 1820, Leptodea Rafinesque, 1820, and structure, characterizing the shape of biocrystals, has been Quadrula Rafinesque, 1820, were selected to characterize the most studied property of molluscan shells. On the other the superorder Heteroconchia Cox, 1960: Amblema plicata hand, there are almost no data on crystallographic textures (Say, 1817), Leptodea fragilis (Rafinesque, 1820), and Qua- of particular shell layers of living as well as fossil molluscs. drula apiculata (Say, 1829), all coming from NW Texas. The crystallographic texture describing the arrangement of Bivalve shells selected for crystallographic texture crystal axes of individual biocrystals thus provides non-re- analysis were gently broken to preserve information on the dundant characteristics of a particular shell layer. biological orientation of each which may be valuable in fu- In this short paper we present the results of crystallo- ture research. Several shell fragments of each species were graphic texture analysis of nacre in eleven bivalve species studied under SEM (Figs 1–3) and special attention was belonging to three different superorders. The main goal of paid to lateral thickness variability of the nacreous layer. this short study was to test how variable are the crystallo- Fragments with the thickest nacreous layer were used for graphic texture characteristics of bivalve nacre (i.e., quan- crystallographic texture analysis and separately embedded titatively evaluate texture pattern of the bivalve nacre and in epoxy resin. The biological orientation of each shell percentage of twinning of nacreous platelets). fragment was marked on the surface of the surrounding ep- oxy resin block. Subsequently, each shell fragment was polished using a progressively finer polishing medium Material and methods (down to 5 μm grit SiC followed by several minutes with 3 μm diamond, 1 μm diamond, 0.25 μm diamond, and 5 The present study is based on crystallographic texture ana- minutes with 0.05 μm colloidal silica). Each shell fragment lysis of nacre in eleven bivalve species belonging to supe- was polished parallel to the inner shell surface and to a rorders Opponobranchia Giribet, 2008, Pteriomorpha Be- level cutting roughly to the middle of the nacreous shell urlen, 1944, and Paleoheterodonta Newell, 1965, all of layer (i.e., area having the same distance from inner surface which develope a nacreous layer in their
Recommended publications
  • Marine Bivalve Molluscs
    Marine Bivalve Molluscs Marine Bivalve Molluscs Second Edition Elizabeth Gosling This edition first published 2015 © 2015 by John Wiley & Sons, Ltd First edition published 2003 © Fishing News Books, a division of Blackwell Publishing Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Long-Term Origination Rates Are Reset Only at Mass Extinctions
    Downloaded from geology.gsapubs.org on August 18, 2012 Long-term origination rates are reset only at mass extinctions Andrew Z. Krug and David Jablonski Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637, USA ABSTRACT time series of supports for each infl ection point Diversifi cation during recovery intervals is rapid relative to background rates, but the (Fig. 1). The most strongly supported infl ec- impact of recovery dynamics on long-term evolutionary patterns is poorly understood. The tion points stand out as peaks in this spectrum. age distributions for cohorts of marine bivalves show that intrinsic origination rates tend Survivorship curves suffer from two poten- to remain constant, shifting only during intervals of high biotic turnover, particularly mass tial biases that may confound the ability to esti- extinction events. Genera originating in high-turnover intervals have longer stratigraphic mate shifts in origination rates around infl ection durations than genera arising at other intervals, and drive the magnitude of the shift following points. (1) Genus-level BSCs are potentially the Cretaceous–Paleogene (K-Pg) extinction. Species richness and geographic range promote age-dependent, meaning that the elapsed time survivorship and potentially control rates through ecospace utilization, and both richness and since the origination of the genus can alter the range have been observed to expand more rapidly in recovery versus background states. Post- probability that a branching event occurs. If this Paleozoic origination rates, then, are directly tied to recovery dynamics following each mass effect is large, extinction intensity may factor extinction event. into the slopes of BSCs (Foote, 2001), produc- ing infl ection points even when the origination INTRODUCTION resents the net rate of accumulation through rate is constant.
    [Show full text]
  • Meg-Bitten Bone
    The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 32 Number 2 June 2017 Meg-Bitten Bone Features Meg-Bitten Whale Bone The Bruce Museum The State Museum of New Jersey Inside Micro-Teeth Donated Fecal Pellets in Ironstone Starfish Eocene Bird Tracks Bear and Shark Tooth Over-Achieving Shark Turtle Myth Horse Foot Bones Meg 7 Months Apart Capacious Coprolite Small Dolphin Radius Otter Cam Pen Shell Miocene Volute Peccary Scapula Found Club Events Pegmatite from C. Cliffs This small piece of fossil whale bone was found along the Potomac Crayfish on the Potomac River by Paul Murdoch. It is noteworthy because two of its sides are Hadrodelphis Caudals strongly marked by parallel grooves cut into the bone, prior to it Fractured Caudal becoming fossilized, by the serrations on the cutting edge of the teeth What is nice about large bite of Carcharocles megalodon. The thickness of the bone suggests baleen marks on whale bone from this whale in origin, but which bone remains unknown. Below, serrated locality is that there is no other edge of C. megalodon tooth. Photos by S. Godfrey. ☼ shark with serrated teeth large enough (right) to mark fossil bone thusly; confirming a meg/cetacean encounter. It is not known from this piece of bone if this was a predatory or scavenging event. Metric scale. CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora June 2017 Micros Donated to CMM Adrien Malick found and donated this piece of limonite that preserves impressions of fecal? pellets (upper left of image; enlarged below). (Limonite is a sedimentary rock made of iron oxyhydroxides.) Enlarged view of what appear to be impressions of millimeter-scale fecal pellets in limonite.
    [Show full text]
  • Spatial Distribution and Abundance of the Endangered Fan Mussel Pinna Nobilis Was Investigated in Souda Bay, Crete, Greece
    Vol. 8: 45–54, 2009 AQUATIC BIOLOGY Published online December 29 doi: 10.3354/ab00204 Aquat Biol OPENPEN ACCESSCCESS Spatial distribution, abundance and habitat use of the protected fan mussel Pinna nobilis in Souda Bay, Crete Stelios Katsanevakis1, 2,*, Maria Thessalou-Legaki2 1Institute of Marine Biological Resources, Hellenic Centre for Marine Research (HCMR), 46.7 km Athens-Sounio, 19013 Anavyssos, Greece 2Department of Zoology–Marine Biology, Faculty of Biology, University of Athens, Panepistimioupolis, 15784 Athens, Greece ABSTRACT: The spatial distribution and abundance of the endangered fan mussel Pinna nobilis was investigated in Souda Bay, Crete, Greece. A density surface modelling approach using survey data from line transects, integrated with a geographic information system, was applied to estimate the population density and abundance of the fan mussel in the study area. Marked zonation of P. nobilis distribution was revealed with a density peak at a depth of ~15 m and practically zero densities in shallow areas (<4 m depth) and at depths >30 m. A hotspot of high density was observed in the south- eastern part of the bay. The highest densities occurred in Caulerpa racemosa and Cymodocea nodosa beds, and the lowest occurred on rocky or unvegetated sandy/muddy bottoms and in Caulerpa pro- lifera beds. The high densities of juvenile fan mussels (almost exclusively of the first age class) observed in dense beds of the invasive alien alga C. racemosa were an indication of either preferen- tial recruitment or reduced juvenile mortality in this habitat type. In C. nodosa beds, mostly large individuals were observed. The total abundance of the species was estimated as 130 900 individuals with a 95% confidence interval of 100 600 to 170 400 individuals.
    [Show full text]
  • A New Insight on the Symbiotic Association Between the Fan Mussel Pinna Rudis and the Shrimp Pontonia Pinnophylax in the Azores (NE Atlantic)
    Global Journal of Zoology Joao P Barreiros1, Ricardo JS Pacheco2 Short Communication and Sílvia C Gonçalves2,3 1CE3C /ABG, Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity A New Insight on the Symbiotic Group. University of the Azores, 9700-042 Angra do Heroísmo, Portugal Association between the Fan 2MARE, Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal Mussel Pinna Rudis and the Shrimp 3MARE, Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences Pontonia Pinnophylax in the Azores and Technology, University of Coimbra, 3004-517 Coimbra, Portugal (NE Atlantic) Dates: Received: 05 July, 2016; Accepted: 13 July, 2016; Published: 14 July, 2016 collect fan mussels which implied that the presence of the shrimps was *Corresponding author: João P. Barreiros, evaluated through underwater observation of the shell (when slightly CE3C /ABG, Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity opened) or through counter light (by means of pointing a lamp). A Group. University of the Azores, 9700-042 Angra do previous note on this work was reported by the authors [4]. Presently, Heroísmo, Portugal, E-mail; [email protected] the authors are indeed collecting specimens of P. rudis in the same www.peertechz.com areas referred here for a more comprehensive project on symbiotic mutualistic/ relationships in several subtidal Azorean animals (work Communication in progress). Bivalves Pinnidae are typical hosts of Pontoniinae shrimps. Pinna rudis is widely distributed along Atlantic and Several species of this family were documented to harbor these Mediterranean waters but previous records of the association decapods inside their shells, especially shrimps from the genus between this bivalve and P.
    [Show full text]
  • Ascendency As Ecological Indicator for Environmental Quality Assessment at the Ecosystem Level: a Case Study
    Hydrobiologia (2006) 555:19–30 Ó Springer 2006 H. Queiroga, M.R. Cunha, A. Cunha, M.H. Moreira, V. Quintino, A.M. Rodrigues, J. Seroˆ dio & R.M. Warwick (eds), Marine Biodiversity: Patterns and Processes, Assessment, Threats, Management and Conservation DOI 10.1007/s10750-005-1102-8 Ascendency as ecological indicator for environmental quality assessment at the ecosystem level: a case study J. Patrı´ cio1,*, R. Ulanowicz2, M. A. Pardal1 & J. C. Marques1 1IMAR- Institute of Marine Research, Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal 2Chesapeake Biological Laboratory, Center for Environmental and Estuarine Studies, University of Maryland, Solomons, Maryland, 20688-0038, USA (*Author for correspondence: E-mail: [email protected]) Key words: network analysis, ascendency, eutrophication, estuary Abstract Previous studies have shown that when an ecosystem consists of many interacting components it becomes impossible to understand how it functions by focussing only on individual relationships. Alternatively, one can attempt to quantify system behaviour as a whole by developing ecological indicators that combine numerous environmental factors into a single value. One such holistic measure, called the system ‘ascen- dency’, arises from the analysis of networks of trophic exchanges. It deals with the joint quantification of overall system activity with the organisation of the component processes and can be used specifically to identify the occurrence of eutrophication. System ascendency analyses were applied to data over a gradient of eutrophication in a well documented small temperate intertidal estuary. Three areas were compared along the gradient, respectively, non eutrophic, intermediate eutrophic, and strongly eutrophic. Values of other measures related to the ascendency, such as the total system throughput, development capacity, and average mutual information, as well as the ascendency itself, were clearly higher in the non-eutrophic area.
    [Show full text]
  • Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A
    ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 267–294. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.G. Olfer’ev, V.N. Beniamovski, V.S. Vishnevskaya, A.V. Ivanov, L.F. Kopaevich, M.N. Ovechkina, E.M. Pervushov, V.B. Sel’tser, E.M. Tesakova, V.M. Kharitonov, E.A. Shcherbinina, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 47–74. Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A. G. Olfer’eva, V. N. Beniamovskib, V. S. Vishnevskayab, A. V. Ivanovc, L. F. Kopaevichd, M. N. Ovechkinaa, E. M. Pervushovc, V. B. Sel’tserc, E. M. Tesakovad, V. M. Kharitonovc, and E. A. Shcherbininab a Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Saratov State University, Astrakhanskaya ul., 83, Saratov, 410012 Russia d Moscow State University, Vorob’evy Gory, Moscow, 119991 Russia Received November 7, 2006; in final form, March 21, 2007 Abstract—Problems of geochronological correlation are considered for the formations established in the study region with due account for data on the Mezino-Lapshinovka, Lokh and Teplovka sections studied earlier on the northwest of the Saratov region. New paleontological data are used to define more precisely stratigraphic ranges of some stratigraphic subdivisions, to consider correlation between standard and local zones established for different groups of fossils, and to suggest how the Upper Cretaceous regional scale of the East European platform can be improved.
    [Show full text]
  • LP 23 FST 3 2006 Full Text.Pdf
    (JU.! 1-11 Perpustaka n 7 Universit1 Malaysia Terengganu (UMT) 1100046026 1lllilli1111 I 100046026 The use of two different preservativesand dna extraction methods for tissues of Crassostea lredalei (Oyster) in per amplification study/ Kong Hui Jie. PERPUSTAKAAN KOLEJ UNIVERSITI:SAINS & TEKNOLOGI MALAYSIA 21030 KUALA TERENGGANU · ·1 [)0046026 • Lihat sebelah HAK MILIK PfR ?USTAKAA_.. l<UST,EM Pcrpustnka n Universiti Malaysia Terengganu (U:AT) THE USE OF TWO DIFFERENTPRESERVATIVES AND DNA EXTRACTION METHODSFOR TISSUES OF CRASSOSTREA IREDALEI (OYSTER) IN PCR AMPLIFICATIONSTUDY By Kong Hui Jie Research Report submitted in partial fulfilment of the requirements for the degree of Bachelor of Science (Biological Sciences) Department of Biological Sciences Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2006 This project should be cited as: Kong, H.J. 2006. The Use of Two Different Preservatives and DNA Extraction Methods for Tissues of Crassostrea iredalei (Oyster) in PCR Amplification Study. Undergraduate thesis, Bachelor of Science in Biological Sciences, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia. Terengganu. 48p. No part of this project report may be produced by any mechanical, photographic, or electronic process, or in form of phonographic recording, nor may be it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor (s) of the project. ·1100046026 JABATAN SAINS BIOLOGI FAKULTl SAINS DAN TEKNOLOGI KIJS'l&,f KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: THE USE OF TWO DIFFERENT PRESERVATIVES AND DNA EXTRACTION METHODS FOR TISSUES OF SPECIES CRASSOSTREA IREDALEI (TIRAM) IN PCR AMPLIFICATION STUDY oleh Kong Hui Jie, no.
    [Show full text]
  • Rising the Persian Gulf Black-Lip Pearl Oyster to the Species Level: Fragmented Habitat and Chaotic Genetic Patchiness in Pinctada Persica
    1 Evolutionary Biology Achimer March 2016, Volume 43 Issue 1 Pages 131-143 http://dx.doi.org/10.1007/s11692-015-9356-1 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00319/43040/ © Springer Science+Business Media New York 2015 Rising the Persian Gulf Black-Lip Pearl Oyster to the Species Level: Fragmented Habitat and Chaotic Genetic Patchiness in Pinctada persica Ranjbar Mohammad Sharif 1, Zolgharnien Hossein 2, Yavari Vahid 3, Archangi Bita 2, Salari Mohammad Ali 2, Arnaud-Haond Sophie 4, Cunha Regina L. 5, * 1 Hormozgan Univ, Fac Sci, Dept Marine Biol, Bandar Abbas, Iran. 2 Khoramshahr Univ Marine Sci & Technol, Fac Marine Sci, Dept Marine Biol, Khorramshahr, Iran. 3 Khoramshahr Univ Marine Sci & Technol, Fac Marine Resources, Dept Fishery, Khorramshahr, Iran. 4 IFREMER UMR MARBEC Marine Biodivers Exploitat & C, Blvd Jean Monnet,BP 171, F-34203 Sete, France. 5 Univ Algarve, Ctr Marine Sci CCMAR, Campus Gambelas, P-8005139 Faro, Portugal. * Corresponding author : Regina L. Cunha, email address : [email protected] Abstract : Marine organisms with long pelagic larval stages are expected to exhibit low genetic differentiation due to their potential to disperse over large distances. Growing body of evidence, however, suggests that marine populations can differentiate over small spatial scales. Here we focused on black-lip pearl oysters from the Persian Gulf that are thought to belong to the Pinctada margaritifera complex given their morphological affinities. This species complex includes seven lineages that show a wide distribution ranging from the Persian Gulf (Pinctada margaritifera persica) and Indian Ocean (P. m. zanzibarensis) to the French Polynesia (P.
    [Show full text]
  • Akoya Pearl Production from Hainan Province Is Less Than One Tonne (A
    1.2 Overview of the cultured marine pearl industry 13 Xuwen, harvest approximately 9-10 tonnes of pearls annually; Akoya pearl production from Hainan Province is less than one tonne (A. Wang, pers. comm., 2007). China produced 5-6 tonnes of marketable cultured marine pearls in 1993 and this stimulated Japanese investment in Chinese pearl farms and pearl factories. Pearl processing is done either in Japan or in Japanese- supported pearl factories in China. The majority of the higher quality Chinese Akoya pearls are exported to Japan. Additionally, MOP from pearl shells is used in handicrafts and as an ingredient Pearl farm workers clean and sort nets used for pearl oyster culture on a floating pontoon in Li’an Bay, Hainan Island, China. in cosmetics, while oyster meat is sold at local markets. India and other countries India began Akoya pearl culture research at the Central Marine Fisheries Research Institute (CMFRI) at Tuticorin in 1972 and the first experimental round pearl production occurred in 1973. Although a number of farms have been established, particularly along the southeastern coast, commercial pearl farming has not become established on a large scale (Upare, 2001). Akoya pearls from India generally have a diameter of less than 5-6 mm (Mohamed et al., 2006; Kripa et al., 2007). Halong Bay in the Gulf of Tonking in Viet Nam has been famous for its natural pearls for many centuries (Strack, 2006). Since 1990, more than twenty companies have established Akoya pearl farms in Viet Nam and production exceeded 1 000 kg in 2001. Akoya pearl culture has also been investigated on the Atlantic coast of South America (Urban, 2000; Lodeiros et al., 2002), in Australia (O’Connor et al., 2003), Korea (Choi and Chang, 2003) and in the Arabian Gulf (Behzadi, Parivak and Roustaian, 1997).
    [Show full text]
  • Are Pinctada Radiata
    Biodiversity Journal, 2019, 10 (4): 415–426 https://doi.org/10.31396/Biodiv.Jour.2019.10.4.415.426 MONOGRAPH Are Pinctada radiata (Leach, 1814) and Pinctada fucata (Gould, 1850) (Bivalvia Pteriidae) only synonyms or really different species? The case of some Mediterranean populations 2 Danilo Scuderi1*, Paolo Balistreri & Alfio Germanà3 1I.I.S.S. “E. Majorana”, via L. Capuana 36, 95048 Scordia, Italy; e-mail: [email protected] 2ARPA Sicilia Trapani, Viale della Provincia, Casa Santa, Erice, 91016 Trapani, Italy; e-mail: [email protected] 3Via A. De Pretis 30, 95039, Trecastagni, Catania, Italy; e-mail: [email protected] *Corresponding author ABSTRACT The earliest reported alien species that entered the Mediterranean after only nine years from the inauguration of the Suez Canal was “Meleagrina” sp., which was subsequently identified as the Gulf pearl-oyster, Pinctada radiata (Leach, 1814) (Bivalvia Pteriidae). Thereafter, an increasing series of records of this species followed. In fact, nowadays it can be considered a well-established species throughout the Mediterranean basin. Since the Red Sea isthmus was considered to be the only natural way of migration, nobody has ever doubted about the name to be assigned to the species, P. radiata, since this was the only Pinctada Röding, 1798 cited in literature for the Mediterranean Sea. Taxonomy of Pinctada is complicated since it lacks precise constant morphological characteristics to distinguish one species from the oth- ers. Thus, distribution and specimens location are particularly important since different species mostly live in different geographical areas. Some researchers also used a molecular phylogenetic approach, but the results were discordant.
    [Show full text]
  • Nacre Tablet Thickness Records Formation Temperature in Modern and Fossil Shells
    Lawrence Berkeley National Laboratory Recent Work Title Nacre tablet thickness records formation temperature in modern and fossil shells Permalink https://escholarship.org/uc/item/1rf2g647 Authors Gilbert, PUPA Bergmann, KD Myers, CE et al. Publication Date 2017-02-15 DOI 10.1016/j.epsl.2016.11.012 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bivalve nacre preserves a physical indicator of paleotemperature Pupa U.P.A Gilbert1,2*, Kristin D. Bergmann3,4, Corinne E. Myers5,6, Ross T. DeVol1, Chang-Yu Sun1, A.Z. Blonsky1, Jessica Zhao2, Elizabeth A. Karan2, Erik Tamre2, Nobumichi Tamura7, Matthew A. Marcus7, Anthony J. Giuffre1, Sarah Lemer5, Gonzalo Giribet5, John M. Eiler8, Andrew H. Knoll3,5 1 University of Wisconsin–Madison, Department of Physics, Madison WI 53706 USA. 2 Harvard University, Radcliffe Institute for Advanced Study, Fellowship Program, Cambridge, MA 02138. 3 Harvard University, Department of Earth and Planetary Sciences, Cambridge, MA 02138. 4 Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA 02138. 5 Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138. 6 University of New Mexico, Department of Earth and Planetary Sciences, Albuquerque, NM 87131. 7 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. 8 California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA 91125 * [email protected], previously publishing as Gelsomina De Stasio Abstract: Biomineralizing organisms record chemical information as they build structure, but to date chemical and structural data have been linked in only the most rudimentary of ways. In paleoclimate studies, physical structure is commonly evaluated for evidence of alteration, constraining geochemical interpretation.
    [Show full text]