Åström, Karl Johan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Controlo'2000
VENUE AND SCOPE (1 000 PTE ≈ 5 Euros) CONTROLO’2000 Before August 15, 2000 After August 15, 2000 The Portuguese Association of Automatic Control Member of APCA: Member of APCA: (APCA) invites researchers, professionals, students, Full fee 35 000 PTE Full fee 45 000 PTE th Reduced fee* 17 500 PTE Reduced fee* 22 500 PTE 4 PORTUGUESE CONFERENCE industrialists and businessmen to participate in the th ON AUTOMATIC CONTROL CONTROLO’2000: 4 PORTUGUESE-INTERNATIONAL Non-member of APCA: Non-member of APCA: CONFERENCE ON AUTOMATIC CONTROL, which will be held Full fee 45 000 PTE Full fee 55 000 PTE at the Campus of Azurém of the University of Minho, Reduced fee* 22 500 PTE Reduced fee* 27 500 PTE in the town of Guimarães. Final Announcement The conference is intended as an international forum *Reduced fee: students under 25. and where an effective exchange of knowledge and experience amongst researchers active in various An online pre-registration form is available at the internet (http://www.dei.uminho.pt/controlo2000) Call for Papers theoretical and applied areas of systems and control can take place. This is also an excellent opportunity LOCAL ORGANIZING COMMITTEE to promote the Portuguese control community and stimulate the establishment of new international C. Couto (Chairman) (Dep. Industrial Electronics) links. E. Bicho (Dep. Industrial Electronics) 4-6 October 2000 The program will include an ample space for E. Ferreira (Dep. Biological Eng.) promoting the implementation of new technologies, J. Ferreira da Silva (Dep. Mechanical Eng.) emphasizing simultaneously the real-world F. Fontes (Dep. Mathematics) challenges in their applications. -
My Berkeley Years: Control at Cal, 1955-1961 by Michael Athans
TALESof AUTOMATIC CONTROL My Berkeley Years: Control at Cal, 1955-1961 By Michael Athans beauty of physics without having to struggle with multi- Tales of Automatic Control features personal reminis- ple integrals and other horrid math stuff. cences of personalities and events in modern control Toward the middle of my freshman year, I started hav- science and engineering. Readers who have stories to ing doubts about being a chemistry major. Apart from share are encouraged to get in touch with the Edi- causing a couple of small explosions in the chemistry lab, tor-in-Chief, [email protected]. I felt there were too many chemists in Greece. So I decided to become an engineer. I certainly did not have the foggi- was fortunate to have been an undergraduate and est idea what kind of an engineer I wanted to be, but me- chanical engineer sounded like a good choice that would graduate student at the University of California at be marketable in Greece. In their infinite wisdom, the peo- Berkeley (Cal for short) during the initial period of the I ple in the College of Engineering assigned an academic ad- modern control theory revolution. I shall recount some of visor to help me with course selection. He was Hans the events that took place at Cal during that time and rem- Albert Einstein, a professor of hydraulic engineering (and inisce about my teachers and colleagues in the early days the son of Albert Einstein). I was flabbergasted, to say the of optimal control theory. I have tried to interlace my per- least, but it turned out that he was an ordinary and kind sonal experiences with the educational, research, and so- human being. -
LIDS – a BRIEF HISTORY Alan S
LIDS – A BRIEF HISTORY Alan S. Willsky The Laboratory for Information and Decision Systems (LIDS) is MIT’s oldest laboratory and has evolved in scope and changed its name several times during its long and rich history. For a more detailed account of its early years, see From Servo Loops to Fiber Nets, a document produced in 1990 by then-co-directors Sanjoy K. Mitter and Robert G. Gallager as part LIDS’ 50th anniversary celebration. The 1940s into the 1950s The Servomechanism Laboratory was established in 1940 by Professor Gordon Brown, one year before the United States entered World War II. At that time, the concepts of feedback control and servomechanisms were being codified and recognized as important disciplines, and the need for advances – initially driven by military challenges and later by industrial automation – were substantial. Indeed, the first electrical engineering department courses in servomechanisms were created only in 1939 and were codified in the classic 1948 textbook Principles of Servomechanisms by Gordon Brown and Donald Campbell. Wartime applications such as servo controls for the pointing of guns pushed the application and the foundational methodology and theory of servomechanisms and control. On the theoretical/methodological side, this push led to the 1957 text Analytical Design of Linear Feedback Controls, by George Newton, Leonard Gould, and James Kaiser, which combined Norbert Wiener’s theory of estimation of time series and the principles of servomechanisms to create new approaches to control design and the understanding of fundamental limits of performance. On the applications side, military and industrial post-war challenges led to major programs and contributions by researchers in the Lab. -
A Brief History of Automatic Control
A Brief History of Automatic Control Stuart Bennett utomatic feedback control systems have been known and hence the rate of combustion and heat output. Improved tempera Aused for more than 2000 years; some of the earliest examples ture control systems were devised by Bonnemain (circa 1743- are water clocks described by Vitruvius and attributed to Ktesi 1828), who based his sensor and actuator on the differential bios (circa 270 B.C.). Some three hundred years later, Heron of expansion of different metals. During the 19th century an exten Alexandria described a range of automata which employed a sive range of thermostatic devices were invented, manufactured, variety of feedback mechanisms. The word "feedback" is a 20th and sold. These devices were, predominantly, direct-acting con century neologism introduced in the 1920s by radio engineers to trollers; that is, the power required to operate the control actuator describe parasitic, positive feeding back of the signal from the was drawn from the measuring system. output of an amplifier to the input circuit. It has entered into The most significant control development during the 18th common usage in the English-speaking world during the latter century was the steam engine governor. The origins of this device half of the century. lie in the lift-tenter mechanism which was used to control the gap Automatic feedback is found in a wide range of systems; between the grinding-stones in both wind and water mills. Mat Rufus Oldenburger, in 1978, when recalling the foundation of thew Boulton (1728-1809) desclibed the lift-tenter in a letter IFAC, commented on both the name and the breadth of the (dated May 28,1788) to his partner, James Watt (1736-1819), subject: "I felt that the expression 'automatic control' covered who realized it could be adapted to govcrn thc speed of the rotary all systems, because all systems involve variables, and one is steam engine. -
The ACC 2009 Awards Ceremony Program, Including Lists of Past
AAOO The 2009 AACC Awards Ceremony AMERICAN AUTOMATIC CONTROL COUNCIL AIAA, AIChE, AIST, ASCE, ASME, IEEE, ISA, SCS 2009 American Control Conference St. Louis, Missouri, USA June 11, 2009 AWARDS PROGRAM 2009 ACC BEST STUDENT-PAPER AWARD Finalists and Winner Announced during Awards Ceremony O. HUGO SCHUCK BEST PAPER AWARD Robert D. Gregg and Mark W. Spong, “Reduction-based Control with Application to Three-Dimensional Bipedal Walking Robots” K. Stegath, N. Sharma, C. M. Gregory, and W. E. Dixon, “Nonlinear Tracking Control of a Human Limb via Neuromuscular Electrical Stimulation” DONALD P. ECKMAN AWARD Paulo Tabuada CONTROL ENGINEERING PRACTICE AWARD Suresh M. Joshi JOHN R. RAGAZZINI EDUCATION AWARD George Stephanopoulos RICHARD E. BELLMAN CONTROL HERITAGE AWARD George Leitmann PAST RECIPIENTS DONALD P. ECKMAN AWARD 1964 Michael Athans 1965 John Bollinger 1966 Roger Bakke 1967 Roger Brockett 1968 Robert E. Larson 1969 W. Harmon Ray 1970 John Seinfeld 1971 Raman Mehra 1972 Cecil L. Smith 1973 Edison Tse 1974 Timothy L. Johnson 1975 Alan S. Willsky 1976 Robert W. Atherton 1977 Nils R. Sandell, Jr. 1978 Narendra K. Gupta 1979 Joe Hong Chow 1980 Manfred Morari 1981 Rajan Suri 1982 Bruce Hajek 1983 John C. Doyle 1984 Mark A. Shayman 1985 P. R. Kumar 1986 Yaman Arkun 1987 R. Shoureshi 1988 Bijoy K. Ghosh 1989 P. P. Khargonekar 1990 Shankar S. Sastry 1991 Carl N. Nett 1992 Stephen P. Boyd 1993 Munther Dahleh 1994 Kameshwar Poolla 1995 Andrew Packard 1996 Jeff S. Shamma 1997 R. M. Murray 1998 I. Kanellakopoulos 1999 Andrew R. Teel 2000 Richard D. Braatz 2001 Dawn M. -
SURVEY of DECENTRALIZED CONTROL METHODS* Michael
SURVEY OF DECENTRALIZED CONTROL METHODS* Michael Athans** Massachusetts Institute of Technology Cambridge, Massachusetts INTRODUCTION This paper presents an overview of the types of problems that are being considered by control theorists in the area of dynamic large-scale systems with emphasis on decentralized control strate- gies. A similar paper by Varaiya (ref. 1) indicated the interplay between static notions drawn from the mathematical economics, management, and programming areas and the attempts by control theorists to extend the static notions into the stochastic dynamic case. In this paper, we shall not elaborate upon the dynamic or team aspects of large-scale systems. Rather we shall concentrate on approaches that deal directly with decentralized decision making for large-scale systems. Although a survey paper, the number of surveyed results is relatively small. This is due to the fact that there is still not a unified theory for decentralized control. What is available is a set of individual contributions that point out both "blind alleys" as well as potentially fruitful approaches. What we shall attempt to point out is that future advances in decentralized system theory are intimately connected with advances in the soK;alled stochastic control problem with nonclassical information pattern. To appreciate how this problem differs from the classical stochastic control problem, it is useful to briefly summarize the basic assumptions and mathematical tools associated with the latter. This is done in section 2. Section 3 is concerned with certain pitfalls that arise when one attempts to impose a decentralized structure at the start, but the mathematics "wipes out" the original intent. -
(URS). EDRS Is Not * Responsible for the Quality of the Original Document
DOCUMENT RESUME ED 119 723 IR 003 195 TITLE 16mm Film and Videotape'Lectures and Demonstrations. 1976/1977 COalog. INSTITUTION Massachusetts Inst. of Tech., Cambridge. Center for Advanced Engineering Study. PUB DATE 76 NOTE 101p. AVAILABLE FROM Massachusetts Institute of Technology, Center for Advanced Engineering Study, Cambridge, Massachusetts 02139 EDRS PRICE MF-$0.83 HC -$6.O1 Plus Postage DESCRIPTORS Artificial Intelligence; Calculus; *Catalogs; Chemistry; Computer Science; Economics; Electronics; Engineering; Experiments; Higher Education; *Instructional Films; Mathematics; Physics; Probability Theory; *Sciences; Statistics; Systems Analysis; Thermodynamics; *Video Tape Recordings IDENTIFIERS Massachusetts Institute of Technology ABSTEACT The Massachusetts Institute of Technology provides a catalog of 16mm filmed and videotaped lectures and demonstrations. Each listing includes title, short description, length of presentation, catalog number, purchase and rental prices, and indications as to whether the item is film or videotape and black-and-white or color. The catalog is divided into 17 categories: artificial intelligence; calculus; colloid and surface chemistry; computer languages; digital signal processing; economics; engineering economy; friction, wear, and lubrication; introduction to experimentation; mechanics of polymer processing; modern control theory; network analysis and design; nonlinear vibrations; probability; random processes; thermostatics and thermodynamics; and special programs. Ordering information and forms -
Math, Science and Technology in Control Systems Education
44th IEEE Conference on Decision and Control and European Control Conference ECC 2005 6:00-7:30 pm, Tuesday, December 13, 2005 The Terrace Room Organizer and Chair: Bozenna Pasik-Duncan, Technical Committee on Control Education The session will address important The invited international control engineering scholars and educators will share a word of education issues of balancing math, wisdom in addressing the following and other science and technology in related questions: engineering education. • What we, scientists and educators, should do about cultivating student interest in The session has been organized as a science, math and engineering, in particular, control engineering? part of the ongoing national and • Is it important for control engineering international dialogue after some students to know math and science? "alarming reports" have been issued • Should control engineering education in the United States. focus mostly on technology? • “In September, IBM said it would Panelists Include: back 100 employees financially to Michael Athans leave the company and become Instituto Superior Tecnico, Lisbon Alain Bensoussan math and science teachers. University of Texas, Dallas • In October, the National John Baras Academy of Science, the National University of Maryland Academy of Engineering and the Sergio Bittanti Institute of Medicine in USA Politecnico di Milano issued a report titled “Rising Peter Caines Above the Gathering Storm.” McGill University, Montreal Tyrone Duncan • It urged the nation to recruit University of Kansas 10,000 students to science and P.R. Kumar math teaching each year by University of Illionis, Urbana creating scholarships. In return, Lennart Ljung program graduates would teach Linkoping University in the public schools for five Sanjoy Mitter years. -
Stochastic Control for Economic Models
STOCHASTIC CONTROL FOR ECONOMIC MODELS Second Edition Books by David Andrew Kendrick Programming Investment in the Process Industries Notes and Problems in Microeconomic Theory (with Peter Dixon and Samuel Bowles ) The Planning of Industrial Investment Programs (with Ardy Stoutjesdijk) The Planning of Investment Programs in the Steel Industry (with Alexander Meeraus and Jaime Alatorre) GAMS: A User’s Guide (with Anthony Brooke and Alexander Meeraus) Feedback: A New Framework for Macroeconomic Policy Models for Analyzing Comparative Advantage Handbook of Computational Economics (edited with Hans M. Amman and John Rust) STOCHASTIC CONTROL FOR ECONOMIC MODELS Second Edition David A. Kendrick The University of Texas Typeset by VTEX Ltd., Vilnius, Lithuania (Rimas Maliukevicius and Vytas Statulevicius) STOCHASTIC CONTROL FOR ECONOMIC MODELS Second Edition, Version 2.00 2002 Copyright for the First Edition ©1981 by McGraw-Hill, Inc. Copyright transferred to David Kendrick in 1999. David Andrew Kendrick Department of Economics The University of Texas Austin, Texas, U.S.A. [email protected] http://eco.utexas.edu/faculty/Kendrick To Gail Contents Preface iv Preface to Second Edition vii 1 Introduction 1 I Deterministic Control 3 2 Quadratic Linear Problems 4 2.1 Problem Statement . ...................... 5 2.2 Solution Method .......................... 10 3 General Nonlinear Models 19 3.1 Problem Statement . ...................... 20 3.2 Quadratic Linear Approximation Method . ........ 21 3.3 Gradient Methods .......................... 25 3.4 Special Problems .......................... 27 3.4.1 Accuracy and Roundoff Errors ............... 27 3.4.2 Large Model Size ...................... 27 3.4.3 Inequality Constraints on State Variables . ........ 28 4 Example of Deterministic Control 29 4.1 System Equations ......................... -
Portug. Res. Univs. Paper
PORTUGUESE RESEARCH UNIVERSITIES: WHY NOT THE BEST? by Michael Athans Visiting Research Professor, Instituto de Sistemas e Robótica (ISR) Instituto Superior Técnico (IST), Lisbon, Portugal and Professor of Electrical Engineering and Computer Science (emeritus) Massachusetts Institute of Technology (MIT), Cambridge, Mass., USA [email protected] June 18, 2001 ABSTRACT In this paper I present certain controversial ideas and suggestions whose purpose is to help strengthen the ability of Portuguese universities to carry out first-rate research in the engineering and technology international arena, and to increase the visibility of Portuguese researchers and their institutions among their international peers. The specific suggestions relate to: (a) increase the productive time for serious research for faculty and post-graduate students, through changes in the academic calendar and examination procedures; (b) strengthen the incentives and rewards for superior researchers; (c) create a university administrative environment that fosters, encourages and rewards educational and research excellence and (d) improve university-industry collaboration. To implement these suggestions requires radical changes in current university rules and procedures with respect to teaching loads, examination procedures, faculty hiring and promotion policies, reward mechanisms, and accountability standards. Such changes will also require cooperative actions by the ministries of Education and Science & Technology. 1. BACKGROUND After 38 years as a faculty member at MIT I have been fortunate to have a visiting research professor position at ISR/IST for the past 3 years. During this period of time I have had numerous discussions with engineering faculty and students at several Portuguese universities. Based on these discussions, I have become convinced that there is an urgent need for structural reform in both the engineering education system and 1 university-based research in major Portuguese universities. -
Russian/Soviet 'Iranology' and Russo-Iranian
Oriental Studies and Foreign Policy: Russian/Soviet ‘Iranology’ and Russo-Iranian relations in late Imperial Russia and the early USSR A thesis submitted to the University of Manchester for the Degree of Doctor of Philosophy in the Faculty of Humanities 2014 Denis V. Volkov School of Arts, Languages and Cultures Table of Contents List of Contents.....................................................................................................................2 Alphabetical List of Abbreviations and Acronyms...........................................................5 List of Archives used for research (Russia and Georgia).................................................9 Abstract...............................................................................................................................10 Declaration……………………………………………….……………………………….11 Copyright Statement…………………………………………………………………….11 A Note on Transliteration……………………………………………………………….12 Acknowledgements……………………………………………………………………..13 About the Author………………………………………………………………………14 Introduction........................................................................................................................15 Research context and rationale...................................................................................15 Statement of method...................................................................................................20 Chapter One Theoretical framework: Foucauldian notions and their applicability to the Russian Case………………..……………………………… 26 Introduction………………………..…………….……….………………..………26 -
Toward a Unified Modeling and Control for Sustainable And
Full text available at: http://dx.doi.org/10.1561/3100000002 Toward a Unified Modeling and Control for Sustainable and Resilient Electric Energy Systems Marija D. Ilic´ Carnegie Mellon University United States [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/3100000002 Foundations and Trends R in Electric Energy Sys- tems Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. PO Box 179 2600 AD Delft The Netherlands Tel. +31-6-51115274 The preferred citation for this publication is Marija D. Ilic.´ Toward a Unified Modeling and Control for Sustainable and Resilient Electric R Energy Systems. Foundations and Trends in Electric Energy Systems, vol. 1, no. 1, pp. 1–141, 2016. R This Foundations and Trends issue was typeset in LATEX using a class file designed by Neal Parikh. Printed on acid-free paper. ISBN: 978-1-68083-227-3 c 2016 Marija D. Ilic´ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by yan means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers. Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 Rose- wood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific c lients, i s g ranted b y n ow P ublishers I nc f or u sers registered with the Copyright Clearance Center (CCC).