Redundant Neuromodulatory Mechanisms That Control Fear Memory Consolidation

Total Page:16

File Type:pdf, Size:1020Kb

Redundant Neuromodulatory Mechanisms That Control Fear Memory Consolidation University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Redundant Neuromodulatory Mechanisms That Control Fear Memory Consolidation Matthew Young University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Neuroscience and Neurobiology Commons Recommended Citation Young, Matthew, "Redundant Neuromodulatory Mechanisms That Control Fear Memory Consolidation" (2013). Publicly Accessible Penn Dissertations. 822. https://repository.upenn.edu/edissertations/822 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/822 For more information, please contact [email protected]. Redundant Neuromodulatory Mechanisms That Control Fear Memory Consolidation Abstract The ability to reliably and powerfully store memories for frightening experiences is crucial to survival in an ever-changing and potentially dangerous environment. Consolidation is the process by which long-term memories are stored in the brain, and much is understood about the processes that occur within a neuron in the hours after a learning event that stabilize learning-induced changes. However, the specific mechanisms through which fear exacerbates those processes remains unclear. Neuromodulators are a prime object of research to understand the consolidation of fear memory given that their release is a hallmark of the fear response. While several neuromodulatory systems are known to facilitate consolidation, no individual system yet appears to be essential. This dissertation explores the hypothesis that several neuromodulators work together to ensure proper consolidation of fear memory. The research contained in this dissertation employs pharmacologic and genetic manipulation of individual neuromodulatory receptor systems and associated intracellular signaling pathways to determine the essential neurobiology for consolidating of Pavlovian fear conditioning in mice. The results of this investigation reveal that β2-adrenergic, D5-dopaminergic and M1-muscarinic receptors in the basolateral amygdala (BLA) are essential to fear conditioning in a redundant manner, wherein two or more receptor types must be blocked in order to prevent consolidation. Furthermore, these three receptors are observed to redundantly activate phospholipase C (PLC), which this dissertation shows is necessary for consolidation in the BLA. Finally, evidence is provided to suggest that PLC promotes fear memory consolidation by inhibiting a voltage-dependent potassium channel (KCNQ/M) that regulates neuronal excitability and also appears to control consolidation. Together, this dissertation proposes that fear- induced neuromodulatory release promotes consolidation through redundant neuromodulatory activation of PLC, which puts the BLA in an excitable state that does not persist into the consolidation window after emotionally neutral experiences. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Neuroscience First Advisor Steven A. Thomas Keywords Acetylcholine, Consolidation, Dopamine, Fear Memory, KCNQ, Norepinephrine Subject Categories Neuroscience and Neurobiology This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/822 REDUNDANT NEUROMODULATORY MECHANISMS THAT CONTROL FEAR MEMORY CONSOLIDATION Matthew Brandon Young A DISSERTATION in Neuroscience Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 2013 Supervisor of Dissertation Graduate Group Chairperson Signature___________________________ Signature___________________________ Steven A. Thomas, MD, PhD Joshua I. Gold, PhD Associate Professor, Department of Associate Professor, Department of Pharmacology, School of Medicine Neuroscience, School of Medicine Dissertation Committee R. Christopher Pierce (Chair), PhD, Associate Professor of Psychiatry, School of Medicine Marcos G. Frank, PhD, Associate Professor of Neuroscience, School of Medicine Isabel I. Muzzio, PhD, Assistant Professor of Psychology, School of Arts and Sciences Leonard L. Howell, PhD, Professor of Psychiatry and Behavioral Sciences, Emory University, Yerkes National Primate Research Center ACKNOWLEDGMENT Thanks Mom, Dad, Craig, Ryan, Hannah, and Grandma. I had grand intentions of writing a heartfelt acknowledgement to all of the people without whom I never would have completed, or even began, this journey. I thought that waiting to write those acknowledgements as the final coda of the writing process – a final reflection on the connections in my life – was a great idea. More than a hundred pages later, I’m not so sure. You see, I didn’t always want to be a scientist. In fact, I hated science in high school and through most of college, largely due to uninspired and mostly incompetent teachers. Were it not for mentors at Arizona State University like Cheryl Conrad, David Capco, Eddie Casteneda, Jennifer Fewell, and Ryan Wright, I can’t, for better or worse, imagine what I would be doing. I certainly would not be getting my doctorate in neuroscience. Sure, there have been many times in the past five years that I have found myself a fish out of water, wondering what the hell I was doing in a Ph.D. program at an Ivy League institution, surrounded by nerds—found myself dreaming begrudgingly of what I could be doing if it weren’t for all those wonderful people who inspired me to pursue a degree in neuroscience. Thankfully, I had people around me who enriched my life and made these last five years a true pleasure – Jason Rodriguez, Michael Castle Greg Dunn, Matt Nassar, Collin Challis, Misty Vaught, Natalie Rizzo, Gina Lavery, and Michelle Bland. And I had Caitlyn Dunning in my life, a dear and loving and patient woman, to serve as a beacon, even from so far away, to guide me toward an as yet undisclosed but exciting future. And it certainly goes without saying that my completion of this process would have been impossible without my advisor Steve Thomas, who handled my bouts of discontent with Buddah-like patience. Now, much like the process of this most recent phase of my life, I find myself somehow at the end of what I thought was a herculean task without really even noticing how I got there. Thanks all you people. ii ABSTRACT REDUNDANT NEUROMODULATORY MECHANISMS THAT CONTROL FEAR MEMORY CONSOLIDATION Matthew Brandon Young Steven A. Thomas The ability to reliably and powerfully store memories for frightening experiences is crucial to survival in an ever-changing and potentially dangerous environment. Consolidation is the process by which long-term memories are stored in the brain, and much is understood about the processes that occur within a neuron in the hours after a learning event that stabilize learning-induced changes. However, the specific mechanisms through which fear exacerbates those processes remains unclear. Neuromodulators are a prime object of research to understand the consolidation of fear memory given that their release is a hallmark of the fear response. While several neuromodulatory systems are known to facilitate consolidation, no individual system yet appears to be essential. This dissertation explores the hypothesis that several neuromodulators work together to ensure proper consolidation of fear memory. The research contained in this dissertation employs pharmacologic and genetic manipulation of individual neuromodulatory receptor systems and associated intracellular signaling pathways to determine the essential neurobiology for consolidating of Pavlovian fear conditioning in mice. The results of this investigation reveal that β2-adrenergic, D5-dopaminergic and M1-muscarinic receptors in the basolateral amygdala (BLA) are essential to fear conditioning in a redundant manner, wherein two or more receptor types must be blocked in order to prevent consolidation. Furthermore, these three receptors are observed to redundantly activate iii phospholipase C (PLC), which this dissertation shows is necessary for consolidation in the BLA. Finally, evidence is provided to suggest that PLC promotes fear memory consolidation by inhibiting a voltage-dependent potassium channel (KCNQ/M) that regulates neuronal excitability and also appears to control consolidation. Together, this dissertation proposes that fear-induced neuromodulatory release promotes consolidation through redundant neuromodulatory activation of PLC, which puts the BLA in an excitable state that does not persist into the consolidation window after emotionally neutral experiences. iv TABLE OF CONTENTS Abstract………………………………………………………………………………………….iii Table of Contents……………………………………………………………………………....v List of Figures……………………………………………………………………………….....vi CHAPTER 1: A General Introduction to Fear Memory Consolidation………………...1 CHAPTER 2: Redundant catecholamine signaling consolidates fear memory via phospholipase C…………………………………………………………..18 CHAPTER 3: M1-muscarinic receptors promote fear memory consolidation via phospholipase C and the M-current……………………………………48 CHAPTER 4: General Conclusions and Future Directions……………………………77 References……………………………………………………………………………………..85 v LIST OF FIGURES Chapter 2 Figure 1.1 D1/5-dopaminergic signaling is redundant with β2-adrenergic signaling for fear memory consolidation………………………………………………………………...44 Figure 1.2 Redundancy for fear memory consolidation also occurs in rats……………..44 Figure 1.3 BLA is the locus of redundant signaling in fear memory consolidation…………………………………………………………………………………….45
Recommended publications
  • 613638V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hippocampal network reorganization underlies the formation of a temporal association memory Mohsin S. Ahmed1,2,*, James B. Priestley2,3,4,*, Angel Castro1,2, Fabio Stefanini3,4, Elizabeth M. Balough2,3, Erin Lavoie1,2, Luca Mazzucato2,4,5,6, Stefano Fusi2,4,5, Attila Losonczy2,5y 1 Department of Psychiatry 2 Department of Neuroscience 3 Doctoral Program in Neurobiology and Behavior 4 Center for Theoretical Neuroscience 5 Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University, New York, NY 10027 USA 6 Departments of Mathematics and Biology University of Oregon, Eugene, OR 97403 USA ∗ These authors contributed equally to this work y To whom correspondence should be addressed: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract 1 Episodic memory requires linking events in time, a function dependent on the hippocampus. In 2 \trace" fear conditioning, animals learn to associate a neutral cue with an aversive stimulus despite 3 their separation in time by a delay period on the order of tens of seconds. But how this temporal 4 association forms remains unclear. Here we use 2-photon calcium imaging to track neural 5 population dynamics over the complete time-course of learning and show that, in contrast to 6 previous theories, the hippocampus does not generate persistent activity to bridge the time delay.
    [Show full text]
  • The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder
    Biological Psychiatry: Commentary CNNI The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder Robert Stickgold and Dara S. Manoach Abnormal sleep is a prominent feature of Axis I neuropsychia- fear and distress are extinguished. Based on a compelling tric disorders and is often included in their DSM-5 diagnostic body of work from human and rodent studies, fear extinction criteria. While often viewed as secondary, because these reflects not the erasure of the fear memory but the develop- disorders may themselves diminish sleep quality, there is ment of a new safety or “extinction memory” that inhibits the growing evidence that sleep disorders can aggravate, trigger, fear memory and its associated emotional response. and even cause a range of neuropsychiatric conditions. In this issue, Straus et al. (3 ) report that total sleep Moreover, as has been shown in major depression and deprivation can impair the retention of such extinction mem- attention-deficit/hyperactivity disorder, treating sleep can ories. In their study, healthy human participants in three improve symptoms, suggesting that disrupted sleep contri- groups successfully learned to associate a blue circle (condi- butes to the clinical syndrome and is an appropriate target for tioned stimulus) with the occurrence of an electric shock treatment. In addition to its effects on symptoms, sleep (unconditioned stimulus) during a fear acquisition session. disturbance, which is known to impair emotional regulation The following day, during extinction learning, the blue circle and cognition in otherwise healthy individuals, may contribute was repeatedly presented without the shock. The day after to or cause disabling cognitive deficits. For sleep to be a target that, extinction recall was tested by again repeatedly present- for treatment of symptoms and cognitive deficits in neurop- ing the blue circle without the shock.
    [Show full text]
  • The Amygdala, Fear and Reconsolidation
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140 The Amygdala, Fear and Reconsolidation Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia JOHANNES BJÖRKSTRAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1652-9030 ISBN 978-91-554-9863-4 UPPSALA urn:nbn:se:uu:diva-317866 2017 Dissertation presented at Uppsala University to be publicly examined in Gunnar Johansson salen, Blåsenhus, von Kraemers allé 1A, Uppsala, Friday, 12 May 2017 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Emily Holmes (Karolinska institutet, Institutionen för klinisk neurovetenskap; University of Oxford, Department of Psychiatry). Abstract Björkstrand, J. 2017. The Amygdala, Fear and Reconsolidation. Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9863-4. The amygdala is crucially involved in the acquisition and retention of fear memories. Experimental research on fear conditioning has shown that memory retrieval shortly followed by pharmacological manipulations or extinction, thereby interfering with memory reconsolidation, decreases later fear expression. Fear memory reconsolidation depends on synaptic plasticity in the amygdala, which has been demonstrated in rodents using both pharmacological manipulations and retrieval-extinction procedures. The retrieval-extinction procedure decreases fear expression also in humans, but the underlying neural mechanism have not been studied. Interfering with reconsolidation is held to alter the original fear memory representation, resulting in long-term reductions in fear responses, and might therefore be used in the treatment of anxiety disorders, but few studies have directly investigated this question.
    [Show full text]
  • Noradrenergic Blockade Stabilizes Prefrontal Activity and Enables Fear
    Noradrenergic blockade stabilizes prefrontal activity PNAS PLUS and enables fear extinction under stress Paul J. Fitzgeralda,1, Thomas F. Giustinoa,b,1, Jocelyn R. Seemanna,b,1, and Stephen Marena,b,2 aDepartment of Psychology, Texas A&M University, College Station, TX 77843; and bInstitute for Neuroscience, Texas A&M University, College Station, TX 77843 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved June 1, 2015 (received for review January 12, 2015) Stress-induced impairments in extinction learning are believed to preferentially involved in fear extinction (32–34). Stress-induced sustain posttraumatic stress disorder (PTSD). Noradrenergic sig- alterations in the balance of neuronal activity in PL and IL as a naling may contribute to extinction impairments by modulating consequence of noradrenergic hyperarousal might therefore con- medial prefrontal cortex (mPFC) circuits involved in fear regula- tribute to extinction impairments and the maintenance of PTSD. tion. Here we demonstrate that aversive fear conditioning rapidly To address this question, we combine in vivo microelectrode re- and persistently alters spontaneous single-unit activity in the cording in freely moving rats with behavioral and pharmacological prelimbic and infralimbic subdivisions of the mPFC in behaving manipulations to determine whether β-noradrenergic receptors rats. These conditioning-induced changes in mPFC firing were mediate stress-induced alterations in mPFC neuronal activity. mitigated by systemic administration of propranolol (10 mg/kg, Further, we examine whether systemic propranolol treatment, i.p.), a β-noradrenergic receptor antagonist. Moreover, proprano- given immediately after an aversive experience, rescues stress- lol administration dampened the stress-induced impairment in ex- induced impairments in fear extinction.
    [Show full text]
  • Social Fear Memory Requires Two Stages of Protein Synthesis in Mice
    International Journal of Molecular Sciences Communication Social Fear Memory Requires Two Stages of Protein Synthesis in Mice Johannes Kornhuber 1 and Iulia Zoicas 1,2,* 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; [email protected] 2 Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany * Correspondence: [email protected]; Tel.: +49-9131-85-46005 Received: 10 June 2020; Accepted: 1 August 2020; Published: 2 August 2020 Abstract: It is well known that long-term consolidation of newly acquired information, including information related to social fear, require de novo protein synthesis. However, the temporal dynamics of protein synthesis during the consolidation of social fear memories is unclear. To address this question, mice received a single systemic injection with the protein synthesis inhibitor, anisomycin, at different time-points before or after social fear conditioning (SFC), and memory was assessed 24 h later. We showed that anisomycin impaired the consolidation of social fear memories in a time-point-dependent manner. Mice that received anisomycin 20 min before, immediately after, 6 h, or 8 h after SFC showed reduced expression of social fear, indicating impaired social fear memory, whereas anisomycin caused no effects when administered 4 h after SFC. These results suggest that consolidation of social fear memories requires two stages of protein synthesis: (1) an initial stage starting during or immediately after SFC, and (2) a second stage starting around 6 h after SFC and lasting for at least 5 h. Keywords: social fear; social anxiety; anisomycin; protein synthesis; social investigation; fear learning; fear acquisition; fear extinction; fear memory; memory consolidation 1.
    [Show full text]
  • The Ventromedial Prefrontal Cortex in a Model of Traumatic Stress: Fear Inhibition Or Contextual Processing?
    Downloaded from learnmem.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Research The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing? Zachary T. Pennington,1 Austin S. Anderson,1 and Michael S. Fanselow1,2 1Department of Psychology, UCLA, Los Angeles, California 90095, USA; 2Brain Research Institute, UCLA, Los Angeles, California 90095, USA The ventromedial prefrontal cortex (vmPFC) has consistently appeared altered in post-traumatic stress disorder (PTSD). Although the vmPFC is thought to support the extinction of learned fear responses, several findings support a broader role for this structure in the regulation of fear. To further characterize the relationship between vmPFC dysfunction and responses to traumatic stress, we examined the effects of pretraining vmPFC lesions on trauma reactivity and enhanced fear learning in a rodent model of PTSD. In Experiment 1, lesions did not produce differences in shock reactivity during an acute traumatic episode, nor did they alter the strength of the traumatic memory. However, when lesioned animals were subsequently given a single mild aversive stimulus in a novel context, they showed a blunting of the enhanced fear response to this context seen in traumatized animals. In order to address this counterintuitive finding, Experiment 2 assessed whether lesions also attenuated fear responses to discrete tone cues. Enhanced fear for discrete cues following trauma was preserved in lesioned animals, indicating that the deficit observed in Experiment 1 is limited to contextual stimuli. These findings further support the notion that the vmPFC contributes to the regulation of fear through its influence on context learning and contrasts the prevailing view that the vmPFC directly inhibits fear.
    [Show full text]
  • NEUROBIOLOGY of PAVLOVIAN FEAR CONDITIONING Stephen
    P1: FQP April 4, 2001 18:39 Annual Reviews AR121-29 Annu. Rev. Neurosci. 2001. 24:897–931 Copyright c 2001 by Annual Reviews. All rights reserved NEUROBIOLOGY OF PAVLOVIAN FEAR CONDITIONING Stephen Maren Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1109; e-mail: [email protected] Key Words learning, memory, amygdala, hippocampus, synaptic plasticity ■ Abstract Learning the relationships between aversive events and the environmen- tal stimuli that predict such events is essential to the survival of organisms throughout the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning that is exhibited by both rats and humans. Recent years have seen an incredible surge in interest in the neurobiology of fear conditioning. Neural circuits underlying fear con- ditioning have been mapped, synaptic plasticity in these circuits has been identified, and biochemical and genetic manipulations are beginning to unravel the molecular machinery responsible for the storage of fear memories. These advances represent an important step in understanding the neural substrates of a rapidly acquired and adaptive form of associative learning and memory in mammals. INTRODUCTION To sum up, we may legitimately claim the study of the formation and properties of conditioned reflexes as a special department of physiology. I. P. Pavlov, 1927 Seventy-five years ago, Ivan Petrovich Pavlov advocated the physiological anal- ysis of the simple form of associative learning that carries his name: Pavlovian or classical conditioning (Pavlov 1927). If Pavlov were alive today, he would most certainly be impressed with the amazing progress we have made in delineating the brain circuits and neuronal mechanisms underlying Pavlovian conditioning in a variety of behavioral systems and species (Holland & Gallagher 1999, Krasne & Glanzman 1995, Thompson & Krupa 1994).
    [Show full text]
  • Fear Conditioning Fear Conditioning in C57BL/6J Male Mice Using
    Stanford Behavioral and Functional Neuroscience Lab Fear Conditioning in C57BL/6J Male Mice using Scopolamine Title: Procedure Fear Conditioning Stanford Behavioral and Functional Neuroscience Lab Fear Conditioning Fear Conditioning (FC) is a type of associative learning task in which mice learn to associate a particular neutral Conditional Stimulus (CS; often a tone) with an aversive Unconditional Stimulus (US; often a mild electrical foot shock) and show a Conditional Response (CR; often as freezing). After repeated pairings of CS and US, the animal learns to fear both the tone and training context. FC is learned rapidly, and after one conditioning session, a very stable and long-lasting behavioral change is produced which is useful for neurobehavioral, genetic, and pharmacological studies. In Trace FC the CS and the US are separated by a certain time interval. It has been shown that the frontotemporal amygdala has an important role in both acquisition and expression of conditional fear and that the hippocampus is necessary for contextual and trace FC. Two different contexts, Context A and B, are used in FC. In the first day, the subjects are placed in Context A, and after 3 min, they receive five tone-shock pairings. The shock (0.5 mA, 2 sec) is delivered 18 sec after the end of the tone (75dB, 2 kHz, 20 sec). An empty trace interval interposes between the tone and the shock in each CS-US pairing. In the second day, mice are placed in Context B (new olfactive cue, floor texture, and visual cues) for 3 min and subsequently given three tone presentations without any shocks.
    [Show full text]
  • Functions of SK Channels in Central Neurons
    Proceedings of the Australian Physiological Society (2007) 38: 25-34 http://www.aups.org.au/Proceedings/38/25-34 ©E.S.L. Faber 2007 Functions of SK channels in central neurons E.S. Louise Faber and Pankaj Sah Queensland Brain Institute,University of Queensland, St Lucia, QLD 4072, Australia Summary only share significant homology with voltage-gated potassium channels in the pore region3 (Figure 1b). SK 1. SK channels are small conductance calcium- channels lack an obvious calcium-binding domain and their activated potassium channels that are widely expressed in calcium sensitivity is conferred by calmodulin, which is neurons. The traditional viewofthe functional role of SK constitutively bound to the C terminus of the channel and channels is in mediating one component of the causes channel opening upon binding of calcium.9-11 afterhyperpolarisation that follows action potentials. In situ hybridisation3,12,13 and Calcium influx via voltage-gated calcium channels active immunohistochemistry14,15 have shown that SK channels during action potentials opens SK channels and the are widely expressed throughout the central nervous resultant hyperpolarisation lowers the firing frequencyof system. SK1 and SK2 subunits are expressed at their action potentials in manyneurons. highest density in the hippocampus and cortex, whereas 2. Recent advances have shown that in addition to SK3 subunits are expressed at their highest levels in regions controlling action potential firing frequency, SKchannels such as the hypothalamus, thalamus and midbrain. When are also important in regulating dendritic excitability, expressed as homomultimers,3 SK channel subunits form synaptic transmission and synaptic plasticity. ion channels that have functional characteristics typical of 3.
    [Show full text]
  • Basolateral Amygdala Regulation of Adult Hippocampal Neurogenesis
    Molecular Psychiatry (2012) 17, 527–536 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp ORIGINAL ARTICLE Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons ED Kirby1, AR Friedman2, D Covarrubias3, C Ying2, WG Sun2, KA Goosens4, RM Sapolsky5 and D Kaufer1,2 1Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA; 2Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA; 3Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA; 4McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA and 5Department of Biological Sciences, Neurology and Neurological Sciences, Stanford, CA, USA Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information affects newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear-conditioning task.
    [Show full text]
  • Fear Conditioning in Posttraumatic Stress Disorder: Evidence for Delayed Extinction of Autonomic, Experiential, and Behavioural Responses
    ARTICLE IN PRESS Behaviour Research and Therapy 45 (2007) 2019–2033 www.elsevier.com/locate/brat Fear conditioning in posttraumatic stress disorder: Evidence for delayed extinction of autonomic, experiential, and behavioural responses Jens BlechertÃ, Tanja Michael, Noortje Vriends, Ju¨rgen Margraf, Frank H. Wilhelm Department of Clinical Psychology and Psychotherapy, Institute for Psychology, University of Basel, Missionsstrasse 60/62, CH-4055 Basel, Switzerland Received 29 August 2006; received in revised form 26 February 2007; accepted 28 February 2007 Abstract Aversive conditioning has been proposed as an important factor involved in the etiology of posttraumatic stress disorder (PTSD). However, it is not yet fully understood exactly which learning mechanisms are characteristic for PTSD. PTSD patients (n ¼ 36), and healthy individuals with and without trauma exposure (TE group, n ¼ 21; nTE group, n ¼ 34), underwent a differential fear conditioning experiment consisting of habituation, acquisition, and extinction phases. An electrical stimulus served as the unconditioned stimulus (US), and two neutral pictures as conditioned stimuli (CSþ, paired; CSÀ, unpaired). Conditioned responses were quantified by skin conductance responses (SCRs), subjective ratings of CS valence and US-expectancy, and a behavioural test. In contrast to the nTE group, PTSD patients showed delayed extinction of SCRs to the CSþ. Online ratings of valence and US-expectancy as well as the behavioural test confirmed this pattern. These findings point to a deficit in extinction learning and highlight the role of affective valence appraisals and cognitive biases in PTSD. In addition, there was some evidence that a subgroup of PTSD patients had difficulties in learning the CS–US contingency, thereby providing preliminary evidence of reduced discrimination learning.
    [Show full text]
  • Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment
    brain sciences Opinion Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment Sara Markowitz and Michael Fanselow * Psychology Department, University of California, Los Angeles, CA 90095, USA; [email protected] * Correspondence: [email protected]; Tel.: +310-206-3891 Received: 13 February 2020; Accepted: 10 March 2020; Published: 13 March 2020 Abstract: Recent research indicates that there is mixed success in using exposure therapies on patients with post-traumatic stress disorder (PTSD). Our study argues that there are two major reasons for this: The first is that there are nonassociative aspects of PTSD, such as hyperactive amygdala activity, that cannot be attenuated using the exposure therapy; The second is that exposure therapy is conceptualized from the theoretical framework of Pavlovian fear extinction, which we know is heavily context dependent. Thus, reducing fear response in a therapist’s office does not guarantee reduced response in other situations. This study also discusses work relating to the role of the hippocampus in context encoding, and how these findings can be beneficial for improving exposure therapies. Keywords: post-traumatic stress disorder; exposure therapy; fear extinction; nonassociative 1. Introduction Post-traumatic stress disorder (PTSD) is a mental disorder affecting up to 9% of the US population [1]. It can best be described as a heightened arousal response after experiencing an extremely stressful event or trauma. Distress due to and avoidance of reminders of the trauma are common, as are negative alterations in mood [2]. It is theorized that PTSD is strongly related to fear learning and conditioned fear, and therefore, fear conditioning is often used as a model in anxiety-related studies [3].
    [Show full text]