Investigating Human and Megafauna Co-Occurrence in Australian Prehistory: Mode and Causality in Fossil Accumulations at Cuddie Springs

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Human and Megafauna Co-Occurrence in Australian Prehistory: Mode and Causality in Fossil Accumulations at Cuddie Springs Quaternary International 211 (2010) 123–143 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Investigating human and megafauna co-occurrence in Australian prehistory: Mode and causality in fossil accumulations at Cuddie Springs Melanie Fillios a, Judith Field a,b,*, Bethan Charles c a Australian Key Centre for Microscopy and Microanalysis, Electron Microscope Unit F09, The University of Sydney, NSW 2006 Australia b School of Philosophical and Historical Inquiry, The University of Sydney, NSW 2006, Australia c Department of Archaeology, The University of Sydney, NSW 2006 Australia article info abstract Article history: Human arrival in Sahul – Pleistocene Australia and New Guinea – has long been argued as the catalyst in Available online 3 May 2009 the decline and disappearance of a suite of extinct animals referred to as megafauna. The debate con- cerning causality in Sahul is highly polarised, with climate change often cited as the alternative explanatory model. On continental Australia, there are few datasets available with which to explore the likely processes leading to the extinction events. At the present time, there is one site in New Guinea (Nombe Rockshelter) and one on continental Australia (Cuddie Springs) where the coexistence and temporal overlap of humans and megafauna has been identified. The Cuddie Springs Pleistocene archaeological site in southeastern Australia contains an association of fossil extinct and extant fauna with an archaeological record through two sequential stratigraphic units dating from c. 36 to c. 30 ka ago. A taphonomic study of the fossil fauna has revealed an accumulation of bone in a primary depositional context, consistent with a waterhole death assemblage. Overall the faunal assemblage studied here (n: 8146; NISP: 1355) has yielded little direct evidence of carnivore damage or human activities. Post depositional factors such as physical destruction incurred by trampling, compaction of sediments, and/or the hydrological status of the lake at that time have played important roles. As the only known site on continental Australia where megafauna and humans co-occur, the Cuddie Springs faunal assemblage yields equivocal evidence for a significant human role in the accumulation of the fauna here. At the present time there is no evidential basis to the argument that humans had a primary role in the extinction of the Australian megafauna. The first colonisers are likely to have preyed upon those few species known to have persisted to this time, but their impact may have been restricted to the tail end of a process that had been underway for millennia prior to human arrival. Ó 2009 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction Australian continent, the impact of colonising humans on habitat and fauna is much less clear (see Wroe and Field, 2006). First, The arrival of humans into new environments is often linked identifying the exact timing of colonization by humans has been with distinct and irreversible changes in habitat and faunal pop- problematic due to methodological issues with dating techniques, ulations. One of the best cited examples is New Zealand and the taphonomy and interpretation of stratigraphy (see O’Connell and subsequent extinction of the Moa and other bird species (Anderson, Allen, 2004, 2007); and second, the currently available chronolo- 2003). However, the events that have been well documented on gies for megafauna are few and provide no clear indication of islands are not always mirrored on continents, though the two are timing or direction in the extinction process (Field et al., 2008). The often treated as one (see Wroe et al., 2002, 2004a). On the nearby result of these two separate dilemmas is that almost any cause can be invoked for the Late Pleistocene faunal extinctions, and the two primary candidates – humans and climate change – are mostly presented as opposing positions rather than two elements of * Corresponding author: Australian Key Centre for Microscopy and Microanalysis, a complex puzzle (see Horton, 1984; Flannery, 1990; Wroe et al., Electron Microscope Unit F09, The University of Sydney, NSW 2006 Australia. Tel.: 2004a; Johnson, 2006; Koch and Barnosky, 2006; Wroe and Field, þ1 612 9351 7412; fax: þ1 612 9351 7862. E-mail addresses: m.fi[email protected] (M. Fillios), j.fi[email protected] (J. Field), 2006; Prideaux et al., 2007; Turney et al., 2008). As a debate [email protected] (B. Charles). continues over primary causes, empirical evidence implicating 1040-6182/$ – see front matter Ó 2009 Elsevier Ltd and INQUA. All rights reserved. doi:10.1016/j.quaint.2009.04.003 124 M. Fillios et al. / Quaternary International 211 (2010) 123–143 people in the extinction of the megafauna is yet to be revealed. Brook et al., 2006; Gillespie and Brooks, 2006). In each case the Recent claims of a human mediated extinction process in Tasmania association of megafauna and humans is proposed to be the result (Turney et al., 2008) are unsupported and no evidence of of disturbance: the megafauna bones have been ‘reworked’ into the a temporal overlap of humans with megafauna has yet been found more recent levels, and/or the artefacts have been introduced into (R. Cosgrove personal communication). Furthermore, full consid- the deeper megafauna bearing deposits from overlying disturbed eration of the potential for humans to effect a mass extinction is horizons. Initially, the megafaunal bones were argued to be a lag rarely given; though modeling studies have attempted to predict deposit (Roberts et al., 2001b). Gillespie and Brooks (2006) have this potential (e.g. Brook and Bowman, 2004), they are usually declared that the megafaunal bones are in fact ‘bed-load’ derived based on the rather poor datasets currently available and unproven from a palaeo-channel which can be seen in aerial photographs. assumptions about human behaviour (see Field et al., 2008). Roberts et al. (2001b) argued that the original (and older) sedi- Further advances in understanding the extinction problem in Sahul ments were removed by wind or water. Subsequently, 36 ka year are constrained by the sparse nature of the fossil record (Wroe and old sediments, charcoal and stones accumulated around the bones. Field, 2006). While megafauna in Australia are widely known from If the bones were bed-load or a lag deposit then they should exhibit pit traps in caves (e.g. Reed and Bourne, 2000; Prideaux et al., signs of significant weathering and abrasion. Skeletal elements 2007), it seems likely that any records of megafauna co-occurrence with thin cortical bone such as vertebrae would be severely with people will be located near or in watering points on the degraded, the processes either missing or damaged. If they are bed- landscape (e.g. the sites of Lancefield Swamp, Lime Springs and load there would be no coherent association of bones and fluvial Cuddie Springs), where large animals will more often be encoun- sorting would be evident in directionality and skeletal part repre- tered and taken (O’Connell, 2000). sentation (after Voorhies, 1969). Assuming that 36 ka bones would also accumulate with the archaeology, then the 36 ka faunal 1.1. Megafauna and Archaeology assemblages from this horizon (SU6A and SU6B) would exhibit markedly different preservation to the lag assemblage, and overall Sahul (Pleistocene Australia–New Guinea) has yielded only two there would be a great variation in Rare Earth Element signatures sites where the questions of human and megafauna coexistence can consistent with this scenario (see Trueman et al., 2005). be explored: Nombe Rockshelter, a limestone shelter in the New Other researchers have proposed a mechanism by which the Guinea Highlands; and Cuddie Springs, an ephemeral lake in semi- stones were moved downwards from a pavement (SU5) which seals arid southeastern Australia (Field et al., 2008). If humans have had the more recent (European) deposits from the underlying Pleisto- a profound impact on the Australian Pleistocene fauna, then this cene megafauna bearing sediments (Gillespie and David, 2001; should be apparent at one or both sites where an association and David, 2002; Brook et al., 2006). This thin capping (c. 5 cm thick and temporal overlap of humans and megafauna are found. At Cuddie c. 1 m subsurface) was interpreted by the site investigators and Springs, the association occurs over at least two stratigraphic geomorphologists as a deflation pavement, comprised predomi- horizons and is coincident with a palaeoenvironmental record of nantly of flaked stone artefacts, which formed over an extended vegetation and lake hydrology spanning this period (Field and time period of c. 10,000 years (Field and Dodson, 1999; Field et al., Dodson, 1999; Field et al., 2001, 2002, 2008; Field, 2004, 2006). 2002, 2001). In contrast, David and others believe it was laid down Cuddie Springs is part of a dreaming track across central by farmers 60 or so years ago, to stop cows sinking in the mud northern New South Wales. A long known Aboriginal Dreamtime around a central well. It is argued that ‘local farmers’ raided other story about Mullyan the eagle-hawk relates the formation of the (as yet unidentified) local archaeological sites for ‘gravel-sized fossil deposits (Anderson and Fletcher, 1934). While the presence of stones’ which they brought in with horse drawn drays (Gillespie giant, extinct marsupials and flightless birds at Cuddie Springs has and Brooks, 2006). Any stones found in association with the been established for over a century, it was only in the early 1990s megafauna were pushed down by cow hooves when the sediments that an archaeological record was identified (Wilkinson, 1885; were wet. If the faunal assemblages are in situ and have not moved Anderson and Fletcher, 1934; Dodson et al., 1993; Furby et al., 1993). from elsewhere, then the archaeological stone assemblages intro- The evidence recovered therein helped to reignite the debate on the duced by the trampling of cows, would effectively be homogenous timing and cause of the Late Pleistocene faunal extinctions in through the whole of SU6.
Recommended publications
  • SUPPLEMENTARY INFORMATION for a New Family of Diprotodontian Marsupials from the Latest Oligocene of Australia and the Evolution
    Title A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Authors Beck, RMD; Louys, J; Brewer, Philippa; Archer, M; Black, KH; Tedford, RH Date Submitted 2020-10-13 SUPPLEMENTARY INFORMATION FOR A new family of diprotodontian marsupials from the latest Oligocene of Australia and the evolution of wombats, koalas, and their relatives (Vombatiformes) Robin M. D. Beck1,2*, Julien Louys3, Philippa Brewer4, Michael Archer2, Karen H. Black2, Richard H. Tedford5 (deceased) 1Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Manchester, UK 2PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 3Australian Research Centre for Human Evolution, Environmental Futures Research Institute, Griffith University, Queensland, Australia 4Department of Earth Sciences, Natural History Museum, London, United Kingdom 5Division of Paleontology, American Museum of Natural History, New York, USA Correspondence and requests for materials should be addressed to R.M.D.B (email: [email protected]) This pdf includes: Supplementary figures Supplementary tables Comparative material Full description Relevance of Marada arcanum List of morphological characters Morphological matrix in NEXUS format Justification for body mass estimates References Figure S1. Rostrum of holotype and only known specimen of Mukupirna nambensis gen. et. sp. nov. (AMNH FM 102646) in ventromedial (a) and anteroventral (b) views. Abbreviations: C1a, upper canine alveolus; I1a, first upper incisor alveolus; I2a, second upper incisor alveolus; I1a, third upper incisor alveolus; P3, third upper premolar. Scale bar = 1 cm.
    [Show full text]
  • Hdl 128344.Pdf
    PUBLISHED VERSION Elizabeth Reed The contribution of cave sites to the understanding of Quaternary Australian megafauna records Proceedings of the 17th International Congress of Speleology, Volume 1 Edition 2, 2017 / Moore, K., White, S. (ed./s), vol.1, pp.2 © 2017 Australian Speleological Federation Inc, This work is licensed under Creative Commons Attribution ShareAlike International License (CC-BY-SA). To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Individual Authors retain copyright over their work, while allowing the conference to place this unpublished work under a Creative Commons Attribution ShareAlike which allows others to freely access, use, and share the work, with an acknowledgement of the work’s authorship and its initial presentation at the 17th International Congress of Speleology, Sydney NSW Australia.. Published version https://www.caves.org.au/resources/category/37-conference- proceedings?start=40 PERMISSIONS http://creativecommons.org/licenses/by/4.0/ 6 October 2020 http://hdl.handle.net/2440/128344 Te Contribution of Cave Sites to the Understanding of Quaternary Australian Megafauna Records. Elizabeth Reed1,2 Afliation: 1Environment Institute and School of Physical Sciences, Te University of Adelaide, Adelaide, South Australia, AUSTRALIA. 2Palaeontology department, South Australian Museum, Adelaide, South Australia. Abstract Since the frst discoveries of megafauna fossils in the Wellington Valley of New South Wales in the 1830s, caves have featured prominently in the study of Quaternary Australia. Today, most of the well-dated, strati- fed Quaternary megafauna sites are known from caves. Tis refects the relatively stable preservation environment within Australian caves, where skeletal remains may lay undisturbed for hundreds of thousands of years.
    [Show full text]
  • January 2005] Reviews Trivers's Theory Of
    January 2005] Reviews 367 Trivers's theory of parent-offspring conflict associated fauna and flora, biotic history of has shed relatively little empirical light on sib- Australia, possible feeding habits, and the like. licide in birds will undoubtedly provoke some The book's concept, organization, and visual raised eyebrows. But Mock's perspectives are so presentation are brilliant, but the execution has clearly articulated and thoughtfully explained some serious flaws. that even readers with dissenting views will be The first known species, Dromornis australis, unlikely to object strenuously. was described in 1874 by Richard Owen, and I highly recommend this book to anyone inter- for almost a century and a quarter the drom- ested in the evolutionary biology of family con- ornithids were associated with paleognathous flict. It will be especially useful to ornithologists ratites such as emus and cassowaries. The name working on such topics as hatching asynchrony "mihirung" was originally adopted for these siblicide, brood reduction, and parental care. birds by Rich (1979) from Aboriginal traditions And for anyone wanting to know how to write of giant emus (mihirung paringmal) believed pos- a scholarly biological book that will appeal to a sibly to apply to Genyornis. It was not until the general audience. More Than Kin and Less Than seminal paper of Murray and Megirian (1998), Kind should be essential reading.•RONALD L. based on newly collected Miocene skull mate- MUMME, Department of Biology, Allegheny College, rial, that the anseriform relationships of the 520 North Main Street, Meadville, Pennsylvania Dromornithidae were revealed. Six years later, 16335, USA. E-mail: [email protected] Murray and Vickers-Rich glibly and rather mis- leadingly refer to these birds as gigantic geese and imply that their nonratite nature should have been apparent earlier.
    [Show full text]
  • Onetouch 4.0 Scanned Documents
    / Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded.
    [Show full text]
  • The Artist & Scientist03.Cdr
    The Artist and the Scientists Exhibition - Painting Prehistory from the Rocks. The artwork of Peter Trusler CuriouSCI! ty Photograph provided by the Herald Sun: Boy and Dinosaur CuriouSCI! ty is the offspring of the Monash the National Museum of Natural Sciences Science Centre, which was launched in 1993 (Taiwan,) and Timor-Leste). as the brainchild of a research academic and Successful Exhibitions rely on strong the Vice Chancellor of Monash University. It relationships with host venues and research filled a community need – that of access to organisations such as, National Geographic content-rich science and technology Society (Washington), Paleontological information, particularly by youth, delivered in Institute of the Russian Academy of Sciences such a way that it could be understood, with (Moscow), Museo Palaeontologico Egidio observers empowered and enthused to seek Feruglio (Trelew, Argentina), Queen Victoria more and personally evaluate the information Museum and Art Gallery (Launceston), the they were accessing. Fukui Prefectural Dinosaur Museum, the CuriouSCI! ty is located in the science Gunma Prefectural Museum and the National precinct on the Clayton campus of Monash Museum (the latter 3 in Japan). University. Monash University is Australia’s CuriouSCI! ty and its outreach primary largest and most internationally focussed education partner PrimeSCI! highly value the University. Sir David Attenborough, the patron of the co-operative input to exhibitions and CuriouSCI! ty and PrimeSCI! . The Patron of this Centre is Sir David education modules by community groups, Photo by David McKay. Attenborough. government and the private sector, for example the SES (State Emergency Services), CuriouSCI! ty EMA (Emergency Management Australia), In the last 11 years CFA (Country Fire Authority), Qantas, and GlaxoSmithKlein and others.
    [Show full text]
  • Megafauna Extinction
    Episode 15 Teacher Resource 2nd June 2020 Megafauna Extinction 1. Before watching the BTN story, record what you know about Students will learn more about Australian megafauna and megafauna. investigate why they became 2. What is megafauna? extinct. 3. About how many years ago did megafauna exist in Australia? a. 4,000 b. 40,000 c. 400,000 Science – Year 6 The growth and survival of living 4. Complete the following sentence. A Diprotodon was a giant things are affected by physical _________________. conditions of their environment. 5. What did palaeontologist Dr Scott Hocknull and his team discover? Science – Year 7 6. Where did they make the discovery? Scientific knowledge has changed peoples’ understanding of the 7. What did they use to create images of what the megafauna might world and is refined as new have looked like? evidence becomes available. 8. Give some examples of the megafauna species they discovered. Interactions between organisms, 9. What might have caused megafauna to become extinct? including the effects of human 10. What did you learn watching the BTN story? activities can be represented by food chains and food webs. What do you know about megafauna? As a class discuss the BTN Megafauna Extinction story and ask students to record what they learnt watching the story. Record any questions they have. Here are some questions they can use to help guide their discussion. • What does the term megafauna mean? • When did megafauna exist? • How do we know they existed? • Why did megafauna grow so big? • What might have caused Australia’s megafauna to die out? Glossary Students will brainstorm a list of key words and terms that relate to the BTN Megafauna Extinction story.
    [Show full text]
  • Megafauna Fossils
    Episode 20 Teacher Resource 1st August 2017 Megafauna Fossils Students will develop a deeper 1. What does the BTN story explain? understanding of Australian megafauna and fossils 2. On which island were fossils found recently? 3. What is the name of someone who studies fossils? a. Ecologist b. Biologist c. Palaeontologist 4. Explain what scientists found on the island. Science – Year 6 5. Name three facts you learnt about the Tasmanian Tiger. The growth and survival of living 6. What does Aaron say about the possibility of the thylacine being alive things are affected by physical conditions of their today? environment (ACSSU094) 7. Describe what a diprotodon looks like. 8. What can the footprints found on Kangaroo Island tell us? Science – Year 7 9. Illustrate an aspect of the story? Scientific knowledge has changed peoples’ understanding of the world 10. What did you like about the Fossil Footprints story? and is refined as new evidence becomes available (ACSHE119) Interactions between organisms, including the effects of human activities can be represented by food chains and food Negotiate with students how many activities they will need to complete. webs(ACSSU112) • Students develop a glossary of words and terms that relate to fossils and megafauna. Below are some words to get them started. Add words and meanings to your glossary as you come across unfamiliar words throughout your research. Consider using pictures and diagrams to illustrate meanings. extinct fossil megafauna palaeontologist thylacine diprotodon • What do you THINK about what you saw in the Megafauna Fossils story? What does this video make you WONDER? o Think of three questions you have about the BTN Megafauna Fossils story.
    [Show full text]
  • Genomic Signature of an Avian Lilliput Effect Across the K-Pg Extinction
    Syst. Biol. 67(1):1–13, 2018 © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syx064 Advance Access publication July 13, 2017 Genomic Signature of an Avian Lilliput Effect across the K-Pg Extinction ,∗, , , JACOB S. BERV1 † AND DANIEL J. FIELD2 3 † 1Department of Ecology & Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca NY, 14853, USA; 2Department of Geology & Geophysics, Yale University, 210 Whitney Avenue New Haven, CT, 06511, USA; and 3Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, UK ∗ Correspondence to be sent to: Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA; E-mail: [email protected]. †Jacob S. Berv and Daniel J. Field contributed equally to this work. Received 12 February 2017; reviews returned 03 July 2017; accepted 05 July 2017 Associate Editor: Simon Ho Abstract.—Survivorship following major mass extinctions may be associated with a decrease in body size—a phenomenon called the Lilliput Effect. Body size is a strong predictor of many life history traits (LHTs), and is known to influence demography and intrinsic biological processes. Pronounced changes in organismal size throughout Earth history are therefore likely to be associated with concomitant genome-wide changes in evolutionary rates. Here, we report pronounced heterogeneity in rates of molecular evolution (varying up to ∼20-fold) across a large-scale avian phylogenomic data set and show that nucleotide substitution rates are strongly correlated with body size and metabolic rate.
    [Show full text]
  • Relative Demographic Susceptibility Does Not Explain the Extinction Chronology of Sahul's Megafauna
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342303; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Full title: Relative demographic susceptibility does not explain the 2 extinction chronology of Sahul’s megafauna 3 Short title: Demographic susceptibility of Sahul’s megafauna 4 5 Corey J. A. Bradshaw1,2,*, Christopher N. Johnson3,2, John Llewelyn1,2, Vera 6 Weisbecker4,2, Giovanni Strona5, and Frédérik Saltré1,2 7 1 Global Ecology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 8 South Australia 5001, Australia, 2 ARC Centre of Excellence for Australian Biodiversity and Heritage, 9 EpicAustralia.org, 3 Dynamics of Eco-Evolutionary Pattern, University of Tasmania, Hobart, Tasmania 10 7001, Australia, 4 College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 11 South Australia 5001, Australia, 5 Research Centre for Ecological Change, University of Helsinki, 12 Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland 13 14 * [email protected] (CJAB) 15 ORCIDs: C.J.A. Bradshaw: 0000-0002-5328-7741; C.N. Johnson: 0000-0002-9719-3771; J. 16 Llewelyn: 0000-0002-5379-5631; V. WeisbecKer: 0000-0003-2370-4046; F. Saltré: 0000- 17 0002-5040-3911 18 19 Keywords: vombatiformes, macropodiformes, flightless birds, carnivores, extinction 20 Author Contributions: C.J.A.B and F.S. conceptualized the paper, and C.J.A.B.
    [Show full text]
  • THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3
    RESEARCH CATCHING the MARSUPIAL ‘LION’ by the TAIL: THYLACOLEO CARNIFEX and the NARACOORTE CAVES Michael Curry, Liz Reed1,2 and Steve Bourne3 1School of Physical Sciences, The University of Adelaide, Adelaide, SA, Australia; 2School of Biological Sciences, Flinders University, Bedford Park, SA, Australia; 3Naracoorte Lucindale Council, Naracoorte, SA, Australia. “Thylacoleo exemplifies the simplest and most effective dental machinery for predatory life and carnivorous diet known in the Mammalian class. It is the extreme modification, to this end, of the Diprotodont type of Marsupialia.” Owen (1866) Introduction defending Thylacoleo as “A very gentle beast, and of good conscience” (Macleay 1859). Macleay based his Of all the extinct Australian Pleistocene megafauna argument on Thylacoleo’s relationship with other species, Thylacoleo carnifex (the marsupial ‘lion’) has Diprotodont marsupials, most of which are herbivores. captured the imagination and interest of people more Gerard Krefft, Curator of the Australian Museum, was than any other. Perhaps it is the allure of its predatory almost equally as unimpressed with Thylacoleo’s habits, (Australia’s Pleistocene answer to T. rex); or the carnivory, opining that it “…was not much more intriguing notion that it used caves as dens (Lundelius, carnivorous than the Phalangers (possums) of present 1966 ). It is certainly an enigma and, as Owen (1866) time.” (Krefft, 1866). Owen, meanwhile, had received an suggested, an extreme and meat-eating version of the almost complete skull from the Darling Downs, in otherwise herbivorous diprotodont marsupials. Queensland and published a more detailed paper, Spectacular fossil finds over the past few decades have further describing the skull and teeth of Thylacoleo, put to rest much of the speculation regarding its habits acknowledging its diprotodont affiliation but more and morphology.
    [Show full text]
  • Marsupial Fossils from Wellington Caves, New South Wales; the Historic and Scientific Significance of the Collections in the Australian Museum, Sydney
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Dawson, Lyndall, 1985. Marsupial fossils from Wellington Caves, New South Wales; the historic and scientific significance of the collections in the Australian Museum, Sydney. Records of the Australian Museum 37(2): 55–69. [1 August 1985]. doi:10.3853/j.0067-1975.37.1985.335 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1985) Vo!. 37(2): 55-69. ISSN·1975·0067. 55 Marsupial Fossils from Wellington Caves, New South Wales; the Historic and Scientific Significance of the Collections in the Australian Museum, Sydney LYNDALL DAWSON School of Zoology, University of New South Wales, Kensington, N.S.W., 2033 ABSTRACT. Since 1830, fossil vertebrates, particularly marsupials, have been collected from Wellington Caves, New South Wales. The history of these collections, and particularly of the collection housed in the Australian Museum, Sydney, is reviewed in this paper. A revised faunal list of marsupials from Wellington Caves is included, based on specimens in mUSeum collections. The provenance of these specimens is discussed. The list comprises 58 species, of which 30 are extinct throughout Australia, and a further 12 no longer inhabit the Wellington region. The deposit also contains bones of reptiles, birds, bats, rodents and monotremeS. On the basis of faunal correlation and some consideration of taphonomy in the deposits, the age range of the fossils represented in the mUSeum collections is suggested to be from the late Pliocene to late Pleistocene (with a possible minimum age of 40,000 years BP).
    [Show full text]
  • Australia's Lost Giants
    Reading Australia’s Lost Giants What happened to Australia’s megafauna, the giant animals that once existed across this enormous continent? A In 1969, a fossil hunter named Rod Wells came to Naracoorte in South Australia to explore what was then known as Victoria Cave. Wells clawed through narrow passages, and eventually into a huge chamber. Its floor of red soil was littered with strange objects. It took Wells a moment to realize what he was looking at; the bones of thousands of creatures that must have fallen through holes in the ground above and become trapped. Some of the oldest belonged to mammals far larger than any found today in Australia. They were the ancient Australian megafauna – huge animals of the Pleistocene epoch. In boneyards across the continent, scientists have found the fossils of a giant snake, a huge flightless bird, and a seven foot kangaroo, to name but a few. Given how much ink has been spilled on the extinction of the dinosaurs, it’s a wonder that even more hasn’t been devoted to megafauna. Prehistoric humans never threw spears at Tyrannosaurus rex but really did hunt mammoths and mastodons. B The disappearance of megafauna in America – mammoths, saber-toothed cats, giant sloths, among others – happened relatively soon after the arrival of human beings, about 13,000 years ago. In the 1960s, paleoecologist Paul Martin developed what became known as the blitzkrieg hypothesis. Modern humans, Martin said, created havoc as they spread through the Americas, wielding spears to annihilate animals that had never faced a technological predator.
    [Show full text]