( 12 ) United States Patent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tesis Doctoral 2014 Filogenia Y Evolución De Las Poblaciones Ambientales Y Clínicas De Pseudomonas Stutzeri Y Otras Especies
TESIS DOCTORAL 2014 FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta TESIS DOCTORAL 2014 Programa de Doctorado de Microbiología Ambiental y Biotecnología FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta Director/a: Jorge Lalucat Jo Director/a: Margarita Gomila Ribas Director/a: Antonio Bennasar Figueras Doctor/a por la Universitat de les Illes Balears Index Index ……………………………………………………………………………..... 5 Acknowledgments ………………………………………………………………... 7 Abstract/Resumen/Resum ……………………………………………………….. 9 Introduction ………………………………………………………………………. 15 I.1. The genus Pseudomonas ………………………………………………….. 17 I.2. The species P. stutzeri ………………………………………………......... 23 I.2.1. Definition of the species …………………………………………… 23 I.2.2. Phenotypic properties ………………………………………………. 23 I.2.3. Genomic characterization and phylogeny ………………………….. 24 I.2.4. Polyphasic identification …………………………………………… 25 I.2.5. Natural transformation ……………………………………………... 26 I.2.6. Pathogenicity and antibiotic resistance …………………………….. 26 I.3. Habitats and ecological relevance ………………………………………… 28 I.3.1. Role of mobile genetic elements …………………………………… 28 I.4. Methods for studying Pseudomonas taxonomy …………………………... 29 I.4.1. Biochemical test-based identification ……………………………… 30 I.4.2. Gas Chromatography of Cellular Fatty Acids ................................ 32 I.4.3. Matrix Assisted Laser-Desorption Ionization Time-Of-Flight -
Method for Producing Methacrylic Acid And/Or Ester Thereof
(19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials. -
Osher Lifelong Learning Institute
USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions) -
Gaseous Chlorine Dioxide
Bacterial Endospores Mycobacteria Non-Enveloped Viruses Fungi Gram Negative Bacteria Gram Positive Bacteria Enveloped, Lipid Viruses Blakeslea trispora 28 E. coli O157:H7 G5303 1 Bordetella bronchiseptica 8 E. coli O157:H7 C7927 1 Brucella suis 30 Erwinia carotovora (soft rot) 21 Burkholderia mallei 36 Franscicella tularensis 30 Burkholderia pseudomallei 36 Fusarium sambucinum (dry rot) 21 Campylobacter jejuni 39 Fusarium solani var. coeruleum (dry rot) 21 Clostridium botulinum 32 Helicobacter pylori 8 Corynebacterium bovis 8 Helminthosporium solani (silver scurf) 21 Coxiella burneti (Q-fever) 35 Klebsiella pneumonia 3 E. coli ATCC 11229 3 Lactobacillus acidophilus NRRL B1910 1 E. coli ATCC 51739 1 Lactobacillus brevis 1 E. coli K12 1 Lactobacillus buchneri 1 E. coli O157:H7 13B88 1 Lactobacillus plantarum 5 E. coli O157:H7 204P 1 Legionella 38 E. coli O157:H7 ATCC 43895 1 Legionella pneumophila 42 E. coli O157:H7 EDL933 13 Leuconostoc citreum TPB85 1 The Ecosense Company (844) 437-6688 www.ecosensecompany.com Page 1 of 6 Leuconostoc mesenteroides 5 Yersinia pestis 30 Listeria innocua ATCC 33090 1 Yersinia ruckerii ATCC 29473 31 Listeria monocytogenes F4248 1 Listeria monocytogenes F5069 19 Adenovirus Type 40 6 Listeria monocytogenes LCDC-81-861 1 Calicivirus 42 Listeria monocytogenes LCDC-81-886 19 Canine Parvovirus 8 Listeria monocytogenes Scott A 1 Coronavirus 3 Methicillin-resistant Staphylococcus aureus 3 Feline Calici Virus 3 (MRSA) Foot and Mouth disease 8 Multiple Drug Resistant Salmonella 3 typhimurium (MDRS) Hantavirus 8 Mycobacterium bovis 8 Hepatitis A Virus 3 Mycobacterium fortuitum 42 Hepatitis B Virus 8 Pediococcus acidilactici PH3 1 Hepatitis C Virus 8 Pseudomonas aeruginosa 3 Human coronavirus 8 Pseudomonas aeruginosa 8 Human Immunodeficiency Virus 3 Salmonella 1 Human Rotavirus type 2 (HRV) 15 Salmonella spp. -
Pedobacter Ghigonii Sp. Nov., Isolated from the Microbiota of the Planarian Schmidtea Mediterranea
Article Pedobacter ghigonii sp. nov., Isolated from the Microbiota of the Planarian Schmidtea mediterranea Luis Johnson Kangale 1,2 , Didier Raoult 2,3,4 and Fournier Pierre-Edouard 1,2,* 1 UMR VITROME, SSA, Aix-Marseille University, IRD, AP-HM, IHU-Méditerranée-Infection, 13385 Marseille, France; [email protected] 2 IHU-Méditerranée-Infection, 13385 Marseille, France; [email protected] 3 Department of Epidemiology of Parasitic Diseases, Aix Marseille University, IRD, AP-HM, MEPHI, 13385 Marseille, France 4 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia * Correspondence: [email protected]; Tel.: +33-0413732401; Fax: +33-0413732402 Abstract: The planarian S. mediterranea is a platyhelminth with worldwide distribution that can regenerate any part of its body after amputation and has the capacity to eliminate a large spectrum of human bacterial pathogens. Surprisingly, the microbiota of S. mediterranea remains poorly investi- gated. Using the culturomics strategy to study the bacterial component of planarians, we isolated a new bacterial strain, Marseille-Q2390, which we characterized with the taxono-genomic approach that associates phenotypic assays and genome sequencing and analysis. Strain Marseille-Q2390 exhibited a 16S rRNA sequence similarity of 99.36% with Pedobacter kyungheensis strain THG-T17T, the closest phylogenetic neighbor. It is a white-pigmented, Gram-negative, and rod-shaped bacterium. It grows in aerobic conditions and belongs to the family Sphingobacteriaceae. The genome of strain Marseille-Q2390 is 5,919,359 bp-long, with a G + C content of 40.3%. By comparing its genome with Citation: Kangale, L.J.; Raoult, D.; other closely related strains, the highest Orthologous Average Nucleotide Identity (Ortho-ANI) and Pierre-Edouard, F. -
Bismis-2016 Abstract Book
BISMiS-2016 Abstract Book Third Meeting of Bergey's International Society for Microbial Systematics on Microbial Systematics and Metagenomics September 12-15, 2016 | Pune, INDIA PUNE UNIT Abstracts - Opening Address - Keynotes Abstract Book | BISMiS-2016 | Pune, India Opening Address TAXONOMY OF PROKARYOTES - NEW CHALLENGES IN A GLOBAL WORLD Peter Kämpfer* Justus-Liebig-University Giessen, HESSEN, Germany Email: [email protected] Systematics can be considered as a comprehensive science, because in science it is an essential aspect in comparing any two or more elements, whether they are genes or genomes, proteins or proteomes, biochemical pathways or metabolomes (just to list a few examples), or whole organisms. The development of high throughput sequencing techniques has led to an enormous amount of data (genomic and other “omic” data) and has also revealed an extensive diversity behind these data. These data are more and more used also in systematics and there is a strong trend to classify and name the taxonomic units in prokaryotic systematics preferably on the basis of sequence data. Unfortunately, the knowledge of the meaning behind the sequence data does not keep up with the tremendous increase of generated sequences. The extent of the accessory genome in any given cell, and perhaps the infinite extent of the pan-genome (as an aggregate of all the accessory genomes) is fascinating but it is an open question if and how these data should be used in systematics. Traditionally the polyphasic approach in bacterial systematics considers methods including both phenotype and genotype. And it is the phenotype that is (also) playing an essential role in driving the evolution. -
Japanese Apple Rust Gymnosporangium Yamadae Belongs to the Pucciniales, an Order That Includes Rust Fungi That Cause Diseases on Plants
U.S. Department of Agriculture, Agricultural Research Service Systematic Mycology and Microbiology Laboratory - Invasive Fungi Fact Sheets Japanese apple rust Gymnosporangium yamadae belongs to the Pucciniales, an order that includes rust fungi that cause diseases on plants. Gymnosporangium yamadae has been limited in distribution to Asia (China, Japan and Korea) where it can be a serious pathogen of cultivated apples, especially if the host of the telial state, Juniperus spp., occurs in close proximity. This fungus was recently reported from the United States (DE, PA) in its aecial state on the ornamental tree, Malus toringo (Yun et al. 2009). Gymnosporangium yamadae Miyabe ex G. Yamada 1904 Aecia on Malus, foliicolous, then hypophyllous, also less commonly caulicolous, fructicolous; initially developing in a whitish leaf spot that becomes rose red with a distinct margin. Peridium cornute to tubular, 3-7(-8) mm high, retaining this shape at maturity but with lacerate sides that often form a reticulate pattern, apex typically closed to occasionally dehiscent, yellow-brown to brown; peridial cells long-narrow rhomboid to linear-rhomboid, 59-115 µm long, pale yellow, appearing verrucose with long papillae to tuberculate, outer walls smooth, inner and side walls sparsely echinulate. Aeciospores globoid, 16-26 × 18-27 µm, walls dark yellow, 1.0-2.5 µm thick, rarely up to 3.5 µm thick, sparsely echinulate, 4-7 pores scattered on surface. Telia on Juniperus, caulicolous, rarely foliicolous, produced on globoid swellings or small galls, telial horns cylindric-acuminate, 1-3 mm diam, 5-8 mm high or more, orange, gelatinouse. Teliospores two-celled, oblong, ellipsoid or obovoid, 15-28 x 32-56 µm, walls 0.8-2.0 µm thick, yellow or orange, with two pores near septum and one pore toward apex in upper cell, frequently with an obtuse, hyaline papilla at apex. -
Sniper Disinfectant Comparison.Xlsx
Distributed by FULL CIRCLE ENTERPRISES, LLC 4334 E Washington Blvd Commerce CA 90023 N O N C O R R O S I V E S C OR R O S I V ES Tel: 877-572-4725 Buffered Name Brands Causes Skin Burns. Breathing Masks Required. Email: [email protected] Chlorine Dioxide Amazing what's Those that can be used on hard surfaces, The Disinfectant that "Mild enough to wash your hands in" still living Wipe Off REQUIRED. Can NOT be left on Surface "Kills like a 'corrosive' but mild No Clean Up Necessary AAFTER Treatment enough to wash your hands in" If it's important to kill the germs then why not More than kill them all? 300 MILLION & See our "WATCH THE 9's" Article some are very scary! Bacteria Acinetobacter Calcoaceticus Blakeslea trispora Bordetella bronchiseptica Brucella suis Burkholderia mallei Burkholderia cepacia Burkholderia pseudomallei Campylobacter jejuni Clostridium botulinum Clostridium difficile Corynebacterium bovis Corynebacterium diphtheriae Coxiella burneti (Q-fever) Enterococcus faecalius Enterobacter Aerogenes E. coli ATCC 11229 E. coli ATCC 51739 E. coli K12 E. coli O157:H7 13B88 E. coli O157:H7 204P E. coli O157:H7 ATCC 43895 E. coli O157:H7 EDL933 E. coli O157:H7 G5303 E. coli O157:H7 C7927 Erwinia carotovora (soft rot) Franscicella tularensis Fusarium sambucinum (dry rot) Fusarium solani var. coeruleum (dry rot) Helicobacter pylori Helminthosporium solani (silver scurf) Klebsiella pneumonia Klebsiella pneumonia NDM 1 Positive Klebsiella pneumonia Carbapenem Resistant Lactobacillus acidophilus NRRL B1910 Lactobacillus brevis Lactobacillus -
'Fenghong Nichang' Flowering Crabapple
HORTSCIENCE 54(7):1260–1262. 2019. https://doi.org/10.21273/HORTSCI13897-19 Province of China. Because Malus seeds need cold stratification, we placed these seeds under moisture sand at –5 to 10 °C until ‘Fenghong Nichang’ Flowering radicles emerged. We then sowed them on raising beds in the field in Spring 2010 Crabapple at the National Crabapple Germplasm Ge- netic Center (Yangzhou, Jiangsu, China) Junjun Fan (Table 1). From 1,251 seedlings in 2012, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; one double-flowered seedling was observed Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing and selected for further evaluation. In 2013 Forestry University, Nanjing 210037, China; and Department of Horticulture, and 2014, the plant consistently exhibited University of Georgia, Athens, GA 30602 15 to 25 petals per flower, and we named this individual plant ‘Fenghong Nichang’ Wangxiang Zhang (Fig. 1). From 2013 through 2015, we also College of Forestry, Nanjing Forestry University, Nanjing 210037, China; budded it into the popular rootstock, M. hupehensis, seedlings for 3 consecutive years. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing In 2016 and 2017, 177 budded plants showed Forestry University, Nanjing 210037, China; and Yangzhou Crabapple the same flowering characteristics. From 2014 Horticulture Limited Company, Yangzhou 225200, China to 2015, we also conducted regional experi- ments in Shandong and Anhui Provinces Donglin Zhang (Table 1). ‘Fenghong Nichang’ showed the Department of Horticulture, University of Georgia, Athens, GA 30602 same flowering characteristics in these places. Malus halliana has a long cultiva- 1 Ting Zhou, Hao Jiang, Guibin Wang , and Fuliang Cao tion history in China. -
Culturable Aerobic and Facultative Bacteria from the Gut of the Polyphagic Dung Beetle Thorectes Lusitanicus
Insect Science (2015) 22, 178–190, DOI 10.1111/1744-7917.12094 ORIGINAL ARTICLE Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle Thorectes lusitanicus Noemi Hernandez´ 1,Jose´ A. Escudero1, Alvaro´ San Millan´ 1, Bruno Gonzalez-Zorn´ 1, Jorge M. Lobo2,Jose´ R. Verdu´ 3 and Monica´ Suarez´ 1 1Department Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, Madrid, CP 28040, 2Department Biogeograf´ıa y Cambio Global, Museo Nacional de Ciencias Naturales, CSIC, JoseGuti´ errez´ Abascal 2, Madrid 28006, and 3I.U.I. CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante 03080, Spain Abstract Unlike other dung beetles, the Iberian geotrupid, Thorectes lusitanicus, exhibits polyphagous behavior; for example, it is able to eat acorns, fungi, fruits, and carrion in addition to the dung of different mammals. This adaptation to digest a wider diet has physiological and developmental advantages and requires key changes in the composition and diversity of the beetle’s gut microbiota. In this study, we isolated aerobic, facultative anaerobic, and aerotolerant microbiota amenable to grow in culture from the gut contents of T. lusitanicus and resolved isolate identity to the species level by sequencing 16S rRNA gene fragments. Using BLAST similarity searches and maximum likelihood phylogenetic analyses, we were able to reveal that the analyzed fraction (culturable, aerobic, facultative anaerobic, and aerotolerant) of beetle gut microbiota is dominated by the phyla Pro- teobacteria, Firmicutes,andActinobacteria. Among Proteobacteria, members of the order Enterobacteriales (Gammaproteobacteria) were the most abundant. -
Draft Genome Sequence of Pedobacter Agri PB92T, Which Belongs to the Family Sphingobacteriaceae
GENOME ANNOUNCEMENT Draft Genome Sequence of Pedobacter agri PB92T, Which Belongs to the Family Sphingobacteriaceae Myunglip Lee,a,b Seong Woon Roh,a Hae-Won Lee,a,c Kyung June Yim,a Kil-Nam Kim,a Jin-Woo Bae,c Kwang-Sik Choi,d You-Jin Jeon,d Won-Kyo Jung,e Heewan Kang,b Chang-Gu Hyun,f and Daekyung Kima Jeju Center, Korea Basic Science Institute, Jeju, Republic of Koreaa; Graduate School of Bio and Information Technology, Hankyong National University, Anseong, Republic of Koreab; Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Republic of Koreac; Department of Marine Life Science and Faculty of Marine Biomedical Science (POST BK 21), Jeju National University, Jeju, Republic of Koread; Department of Marine Life Science, Chosun University, Gwangju, Republic of Koreae; and Bio-Industry Development Center, Jeju Technopark, Jeju, Republic of Koreaf Downloaded from Strain PB92T of Pedobacter agri, which belongs to the family Sphingobacteriaceae, was isolated from soil in the Republic of Ko- rea. The draft genome of strain PB92T contains 5,141,552 bp, with a G؉C content of 38.0%. This is the third genome sequencing project of the type strains among the Pedobacter species. he genus Pedobacter, proposed by Steyn et al. (11), belongs to We thank the JDC (Jeju Free International City Development Center) http://jb.asm.org/ Tthe family Sphingobacteriaceae in the phylum Bacteroidetes. for assisting in the administration of the Jeju Center of Korea Basic Sci- Members of the genus Pedobacter are characterized as aerobic, ence Institute. Gram-negative, and rod-shaped bacteria having menaquinone 7 REFERENCES (MK-7) as a major isoprenoid quinone (12). -
Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).