Seed Germination and Plant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
The Genomic Impact of Mycoheterotrophy in Orchids
fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming. -
Invasive Alien Plants an Ecological Appraisal for the Indian Subcontinent
Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent EDITED BY I.R. BHATT, J.S. SINGH, S.P. SINGH, R.S. TRIPATHI AND R.K. KOHL! 019eas Invasive Alien Plants An Ecological Appraisal for the Indian Subcontinent FSC ...wesc.org MIX Paper from responsible sources `FSC C013604 CABI INVASIVE SPECIES SERIES Invasive species are plants, animals or microorganisms not native to an ecosystem, whose introduction has threatened biodiversity, food security, health or economic development. Many ecosystems are affected by invasive species and they pose one of the biggest threats to biodiversity worldwide. Globalization through increased trade, transport, travel and tour- ism will inevitably increase the intentional or accidental introduction of organisms to new environments, and it is widely predicted that climate change will further increase the threat posed by invasive species. To help control and mitigate the effects of invasive species, scien- tists need access to information that not only provides an overview of and background to the field, but also keeps them up to date with the latest research findings. This series addresses all topics relating to invasive species, including biosecurity surveil- lance, mapping and modelling, economics of invasive species and species interactions in plant invasions. Aimed at researchers, upper-level students and policy makers, titles in the series provide international coverage of topics related to invasive species, including both a synthesis of facts and discussions of future research perspectives and possible solutions. Titles Available 1.Invasive Alien Plants : An Ecological Appraisal for the Indian Subcontinent Edited by J.R. Bhatt, J.S. Singh, R.S. Tripathi, S.P. -
Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris. -
Morphological Description of Plants: New Perspectives in Development and Evolution
® International Journal of Plant Developmental Biology ©2010 Global Science Books Morphological Description of Plants: New Perspectives in Development and Evolution 1* 2 Emilio Cervantes • Juana G . de Diego 1 IRNASA-CSIC. Apartado 257. 37080. Salamanca. Spain 2 Dept Bioquímica y Biología Molecular. Campus Miguel de Unamuno. Universidad de Salamanca. Spain Corresponding author : * [email protected] ABSTRACT The morphological description of plants has been fundamental in the history of botany and provided the keys for taxonomy. Nevertheless, in biology, a discipline governed by the interest in function and based on reductionist approaches, the analysis of forms has been relegated to second place. Plants contain organs and structures that resemble geometrical forms. Plant ontogeny may be seen as a sequence of growth processes including periods of continuous growth with modification that stop at crucial points often represented by structures of remarkable similarity to geometrical figures. Instead of the tradition in developmental studies giving more importance to animal models, we propose that the modular type of plant development may serve to remark conceptual aspects in that may be useful in studies with animals and contribute to original views of evolution. _____________________________________________________________________________________________________________ Keywords: concepts, description, geometry, structure INTRODUCTION: PLANTS OFFER NEW reflects a more general situation in Biology, a discipline APPROACHES TO DEVELOPMENT that has matured from the experimental protocols and views of biochemistry, where the predominant role of experimen- The study of development is today a major biological disci- tation has contributed to a decline in basic aspects that need pline. Although it was traditionally more focused in animal to be more descriptive, such as those related with mor- systems, increased emphasis in plant development may phology. -
Phyllotaxis: a Remarkable Example of Developmental Canalization in Plants Christophe Godin, Christophe Golé, Stéphane Douady
Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Golé, Stéphane Douady To cite this version: Christophe Godin, Christophe Golé, Stéphane Douady. Phyllotaxis: a remarkable example of devel- opmental canalization in plants. 2019. hal-02370969 HAL Id: hal-02370969 https://hal.archives-ouvertes.fr/hal-02370969 Preprint submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Gol´e,St´ephaneDouady September 2019 Abstract Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenenesis, morphogenetic processes are constrained to operate within the context of the current organism being built, which is thought to bias or to limit phenotype variability. One universal aspect of this context is the shape of the organism itself that progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where conspicuous patterns are formed by the lateral organs produced by apical meristems. -
Plant Development Series Editor Paul M
VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Series Editor Paul M. Wassarman Department of Developmental and Regenerative Biology Mount Sinai School of Medicine New York, NY 10029-6574 USA Olivier Pourquié Institut de Génétique et de Biologie Cellulaire et Moléculaire (IGBMC) Inserm U964, CNRS (UMR 7104) Université de Strasbourg Illkirch France Editorial Board Blanche Capel Duke University Medical Center Durham, NC, USA B. Denis Duboule Department of Zoology and Animal Biology NCCR ‘Frontiers in Genetics’ Geneva, Switzerland Anne Ephrussi European Molecular Biology Laboratory Heidelberg, Germany Janet Heasman Cincinnati Children’s Hospital Medical Center Department of Pediatrics Cincinnati, OH, USA Julian Lewis Vertebrate Development Laboratory Cancer Research UK London Research Institute London WC2A 3PX, UK Yoshiki Sasai Director of the Neurogenesis and Organogenesis Group RIKEN Center for Developmental Biology Chuo, Japan Philippe Soriano Department of Developmental and Regenerative Biology Mount Sinai Medical School New York, USA Cliff Tabin Harvard Medical School Department of Genetics Boston, MA, USA Founding Editors A. A. Moscona Alberto Monroy VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Edited by MARJA C. P. TIMMERMANS Cold Spring Harbor Laboratory Cold Spring Harbor New York, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32, Jamestown Road, London NW1 7BY, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK First edition 2010 Copyright Ó 2010 Elsevier Inc. -
Aeginetia Indica L
Bioscience Discovery, 9(4):498-500, Oct - 2018 © RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in ISSN: 2229-3469 (Print); ISSN: 2231-024X (Online) Research Article Aeginetia indica L. and Conyza bonariensis (L.) Cronq. are new distributional records in Satpuda range of Khandesh region, Maharashtra Tanveer A. Khan1 and Javed V. Khan2 1Department of Botany, H. J. Thim College of Arts and Science, Mehrun, Jalgaon, Maharashtra, India. 2Department of Biotechnology, PGCSTR, Jalgaon, Maharashtra, India. Article Info Abstract Received: 21-09-2018, Satpuda range of Khandesh region with great diversity of plants. The present paper Revised: 06-10-2018, deals with addition of two new flowering plants records from different parts of the Accepted: 11-10-2018 Satpuda ranges of Khandesh region of Maharashtra are new distributional records for Keywords: the first time. These species are Aeginetia indica L. (Orobanchaceae) and Conyza New Records, Satpuda bonariensis (L.) Cronq. (Asteraceae) are reported for the first time for Satpuda ranges Ranges, Khandesh of Khandesh region of Maharashtra. The study provides a detailed taxonomic region. description, photographs and relevant information based on fresh collections. INTRODUCTION and 760 28' East longitude. Khandesh covers a total Vegetational and floristic studies have been area of 26,703.36 sq. km. The forest of the gained increased importance and relevance in recent Khandesh region is of dry deciduous type. The years in view of the present need for a thorough, up vegetation varies with the changes in altitude, to date assessment of the natural resources of our aspect and rainfall. While working on floristic of vast country. -
Aeginetia Indica (L.) Gaertn
Aeginetia indica (L.) Gaertn. Identifiants : 760/aegind Association du Potager de mes/nos Rêves (https://lepotager-demesreves.fr) Fiche réalisée par Patrick Le Ménahèze Dernière modification le 27/09/2021 Classification phylogénétique : Clade : Angiospermes ; Clade : Dicotylédones vraies ; Clade : Astéridées ; Clade : Lamiidées ; Ordre : Lamiales ; Famille : Orobanchaceae ; Classification/taxinomie traditionnelle : Règne : Plantae ; Sous-règne : Tracheobionta ; Division : Magnoliophyta ; Classe : Magnoliopsida ; Ordre : Scrophulariales ; Famille : Orobanchaceae ; Genre : Aeginetia ; Synonymes : Orobanche aeginetia L ; Nom(s) anglais, local(aux) et/ou international(aux) : Broomrape, , Dok din daeng, Yah-khao-gum, Ye gu ; Rapport de consommation et comestibilité/consommabilité inférée (partie(s) utilisable(s) et usage(s) alimentaire(s) correspondant(s)) : Fleurs (colorant alimentaire){{{(dp*)0(+x) Le jus de la fleur est utilisé pour colorer les plats de riz gluant. La plante se mange avec du sucre et de la muscade Partie testée : fleurs - coloriage{{{0(+x) (traduction automatique) Original : Flowers - colouring{{{0(+x) Taux d'humidité Énergie (kj) Énergie (kcal) Protéines (g) Pro- Vitamines C (mg) Fer (mg) Zinc (mg) vitamines A (µg) 0 0 0 0 0 0 0 néant, inconnus ou indéterminés. Illustration(s) (photographie(s) et/ou dessin(s)): Page 1/2 Autres infos : dont infos de "FOOD PLANTS INTERNATIONAL" : Statut : Il est vendu sur les marchés{{{0(+x) (traduction automatique). Original : It is sold in markets{{{0(+x). Distribution : C'est une plante tropicale. Il se produit sur un sol humide dans les forêts des collines. Il pousse dans un pays calcaire{{{0(+x) (traduction automatique). Original : It is a tropical plant. It occurs on wet ground in hill forests. It grows in limestone country{{{0(+x). -
Global Invasive Potential of 10 Parasitic Witchweeds and Related Orobanchaceae
Global Invasive Potential of 10 Parasitic Witchweeds and Related Orobanchaceae Item Type Article Authors Mohamed, Kamal I.; Papes, Monica; Williams, Richard; Benz, Brett W.; Peterson, A. Townsend Citation Mohamed, K.I., Papes, M., Williams, R.A.J., Benz, B.W., Peterson, A.T. (2006) 'Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae'. Ambio, 35(6), pp. 281-288. DOI: 10.1579/05-R-051R.1 DOI 10.1579/05-R-051R.1 Publisher Royal Swedish Academy of Sciences Journal Ambio Rights Attribution-NonCommercial-NoDerivs 3.0 United States Download date 30/09/2021 07:19:18 Item License http://creativecommons.org/licenses/by-nc-nd/3.0/us/ Link to Item http://hdl.handle.net/10545/623714 Report Kamal I. Mohamed, Monica Papes, Richard Williams, Brett W. Benz and A. Townsend Peterson Global Invasive Potential of 10 Parasitic Witchweeds and Related Orobanchaceae S. gesnerioides (Willd.) Vatke occurs throughout Africa, The plant family Orobanchaceae includes many parasitic perhaps thanks to its ability to develop host-specific strains, weeds that are also impressive invaders and aggressive each with a narrow host range. Indeed, Mohamed et al. (2) crop pests with several specialized features (e.g. micro- described eight host-specific strains, the most economically scopic seeds, parasitic habits). Although they have important being those attacking cowpea (Vigna unguiculata (L.) provoked several large-scale eradication and control efforts, no global evaluation of their invasive potential is Walp.) and tobacco (Nicotiana tabacum L.). Other strains are as yet available. We use tools from ecological niche reported on diverse wild dicot plants of no commercial value, modeling in combination with occurrence records from including a strain found in the southeastern United States. -
IWSS Newsletter August 2006
August 2006 NNeewwsslleetttteerr President’s In this issue you will find …… - President’s message Message - 2008 IWS Congress Information - News from Regional Representatives We are pleased to timely - News from National Societies distribute our second - Recent Events and Publications newsletter for this year - Coming Events - and more………… thanks to the efforts of our editor, Dr. Jerry Doll. We hope that the information that you find here is Crop Protection. We expect this special issue useful. Several people contributed to make it later this year or at the beginning of 2007. We possible and we all thank them for their support. are grateful to our Vice-president Baruch Rubin for making this possible. Our main task continues to be the preparation of our 2008 Congress in Vancouver. At the end of Remember that we are here to serve you. Please this Newsletter is the First Circular prepared by give us suggestions and become involved in our the Scientific Program and Local Organizing activities, especially in preparation for our committees. You will find important basic Congress in 2008. information related to the Congress and its structure. We will have 21 main topics, each Regards, under the leadership of an organizer (MTO). Bernal E. Valverde, Costa Rica Most of the MTOs have already been selected and invited to help us in this task. In the next Circular, their names will appear after we have confirmation they have accepted the invitation. The Scientific Committee is making sure that we 2008 IWS Congress will have renowned scientists in charge of these topics and the sessions associated with them. -
04-T. Iwashina-4.02
Bull. Natl. Mus. Nat. Sci., Ser. B, 36(3), pp. 127–132, August 22, 2010 Flavonoids from two Parasitic and Achlorophyllous Plants, Aeginetia indica and Orobanche minor (Orabanchaceae) Tsukasa Iwashina Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, 305–0005 Japan E-mail: [email protected] (Received 12 June 2010; accepted 23 June 2010) Abstract Two parasitic and achlorophyllous species, Aeginetia indica and Orobanche minor be- longing to the family Orobanchaceae, were surveyed for flavonoids. The flowers and aerial parts of A. indica were exracted with MeOH and the flavonoids were isolated by various chromatographical techniques. Two anthocyanins were obtained from the flowers together with other flavonoids, and characterized as cyanidin 3-O-rutinoside and 3-O-glycoside. Other flavonoids were identified as apigenin 7-O-glucuronide, luteolin 7-O-glucuronide, apigenin, luteolin, quercetin 3-O-rutinoside and naringenin 7-O-glucoside. They were also obtained from the aerial parts except for anth- cyanins and luteolin. On the other hand, two flavonoids were isolated from the aerial parts of Orobanche minor and identified as luteolin 7-O-glucoside and 7-O-glucuronide. Key words : Aeginetia indica, anthocyanin, apigenin, flavonoids, luteolin, Orobanchaceae, Orobanche minor. 1984). The occurrence of phenylethanoids, e.g. Introduction acteoside, bandioside, orobanchoside and cre- Aegineta indica L. is parasitic on roots of natoside, has been reported in the Orobanchaceae monocots, especially the Poaceae such as Sac- (Serafini et al., 1995; Mølgaard and Ravn, 1988; charum officinarum L. and Miscanthus sinensis Cometa et al., 1993; Andary et al., 1982). Anderss., and is distributed in Indonesia to Japan In this paper, the flavonoid properties of the (Mabberley, 1997).