Solving Mixed-Integer Linear and Nonlinear Network Optimization Problems by Local Reformulations and Relaxations

Total Page:16

File Type:pdf, Size:1020Kb

Solving Mixed-Integer Linear and Nonlinear Network Optimization Problems by Local Reformulations and Relaxations Solving Mixed-Integer Linear and Nonlinear Network Optimization Problems by Local Reformulations and Relaxations Lösungsmethoden für gemischt-ganzzahlige lineare und nichtlineare Netzwerkoptimierungsprobleme basierend auf lokalen Reformulierungen und Relaxierungen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Maximilian Merkert aus Kaiserslautern Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 02.11.2017 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachterin: Prof. Dr. Frauke Liers Gutachter: Prof. Dr. Rüdiger Schultz Gutachter: Prof. Dr. Christoph Helmberg Acknowledgements First of all, I would like to thank my supervisors Frauke Liers and Alexander Martin. They enabled me to work in a fruitful environment on a number of interesting projects with various academic and industrial partners. I also wish to express my deepest gratitude for their guidance not only on mathematical issues but also on more general topics regarding life in academia. I am also grateful to Johannes Jahn, Rüdiger Schultz and Christoph Helmberg for agreeing to be involved in the examination process. During my time in Erlangen, I have experienced that mathematical research is team work to a great extend. Therefore, I wish to thank my coauthors Andreas Bärmann, Thorsten Gellermann, Frauke Liers, Alexander Martin, Nick Mertens, Dennis Micha- els, Oskar Schneider, Christoph Thurner, Robert Weismantel and Dieter Weninger for the pleasant and productive collaborations. Moreover, many thanks to all my collea- gues at FAU Erlangen-Nürnberg and from the Collaborative Research Center TRR 154 for many valuable discussions as well as the supportive atmosphere and many social events. It was a pleasure to work with you! Furthermore, I want to thank Nina Gunkelmann, Andreas Bärmann, Lena Hupp, Nick Mertens, Dennis Michaels and Dieter Weninger for proof-reading parts of this thesis and helpful remarks. I gratefully acknowledge the computing resources provided by the group of Mi- chael Jünger and the technical support by Thomas Lange in Cologne as well as by Denis Aßmann and Thorsten Gellermann in Erlangen. Further thanks go to Christina Weber, Beate Kirchner and Gabriele Bittner for administrative aid. Last but not least, my special thanks go to my parents for all their support ever since I can remember, and to my partner for her great continual believe in me. 3 Abstract Since the beginnings of network optimization, the number of use cases has grown enormously and can be expected to further expand in an increasingly interconnected world. The wide range of modern applications include optimization tasks on energy networks, telecommunication networks and in public transport, just to name a few. Although many traditional network optimization problems are NP-hard in their ba- sic version, applications pose additional challenges due to more complicated—often nonlinear—dependencies or the sheer size of the network. In this thesis, we develop methods that help to cope with those challenges. A com- mon strategy will be to improve mathematical programming formulations locally by modeling substructures in an integrated way. The resulting reformulations and relax- ations will allow for global methods that either solve the problem to exact optimality or up to a predefined precision. For large-scale network expansion problems, a solution method is proposed that is based on iterative aggregation. Starting with an initial aggregation, we solve a se- quence of network design problems over increasingly fine-grained representations of the original network. This is done until the whole network is represented sufficiently well in the sense that an optimal solution to the aggregated problem can easily be ex- tended to an optimal solution of the original problem. Global optimality is guaranteed by a subproblem that computationally is less expensive and either proves optimality or gives an indication of where to refine the representation. In this algorithmic scheme, locally relaxing the problem allows us to focus on the critical part of the network. In many optimization problems on transportation networks—especially those ari- sing from energy applications—the main challenge is connected to the problem’s non- linear features, arising, for example, from laws of physics. Gas networks represent a typical example for such a nonlinear network flow setting that we will repeatedly re- fer to throughout this work. A common and established solution approach consists of constructing a piecewise linear approximation or relaxation. We study how to streng- then the resulting mixed-integer programming formulation for specific substructures in the network. We find effective cutting planes and derive a complete description for induced paths of arbitrary length—using graph-theoretic arguments related to perfect graphs. A generalization of key properties of this special case leads to an abstract defini- tion in terms of clique problems on a specific type of graph. This abstract setting also comprises a basic version of the project scheduling problem and still allows us to give totally unimodular reformulations that are of linear size. Moreover, questions regar- ding recognizability of this structure will be discussed. We also discuss the concept of simultaneous convexification that can be seen as a continuous counterpart to our approach for piecewise linearized problems. The re- sulting reformulations can improve relaxations employed by general-purpose MINLP solvers, which usually rely on convexifying nonlinear functions separately. Computational results demonstrate the practical impact of the methods developed in this thesis, in many cases using real-world data sets. 5 Zusammenfassung Seit den Anfängen der Netzwerkoptimierung ist die Zahl der Anwendungsfälle im- mens gewachsen und angesichts einer zunehmend vernetzten Welt ist ein weiterer Anstieg zu erwarten. Die Spannbreite moderner Anwendungen umfasst Optimie- rungsprobleme auf Energienetzen, Telekommunikationsnetzen und Verkehrsnetzen, um nur einige zu nennen. Auch wenn viele traditionelle Netzwerkoptimierungspro- bleme bereits in ihrer Grundversion NP-schwer sind, stellen Anwendungen weitere Anforderungen aufgrund komplexerer - oftmals nichtlinearer - Abhängigkeiten oder der schieren Größe der zugrunde liegenden Netzwerke. In dieser Arbeit werden Methoden entwickelt, um mit diesen Herausforderungen umzugehen. Die wesentliche Strategie wird darin bestehen, mathematische Problem- formulierungen lokal zu verstärken, indem ausgewählte Substrukturen als Ganzes er- fasst und modelliert werden. Die resultierenden Reformulierungen und Relaxierun- gen unterstützen globale Methoden, die entweder exakte oder bis auf eine vordefi- nierte Genauigkeit optimale Lösungen finden. Für große Netzausbauprobleme wird eine Lösungsmethodik basierend auf iterati- ver Aggregation entworfen. Beginnend mit einer Startaggregation lösen wir eine Folge zunehmend detaillierter Vergröberungen des ursprünglichen Netzwerks, bis die Dar- stellung hinreichend genau ist, sodass seine Optimallösung leicht auf das ursprüngli- che Problem übertragen werden kann. Exaktheit wird dabei durch ein Subproblem si- chergestellt, das entweder Optimalität bestätigt oder Ansatzpunkte zur Verfeinerung der Darstellung liefert. In diesem Schema erlaubt somit eine lokale Relaxierung die Fokussierung auf kritische Teile des Netzwerks. In vielen Optimierungsproblemen auf Transportnetzen, insbesondere für Energie- träger, besteht die wesentliche Herausforderung in den auftretenden Nichtlinearitä- ten, die beispielsweise physikalischen Gesetzen geschuldet sind. Gasnetwerke sind hierfür ein typisches Beispiel, auf das wir uns mehrfach in dieser Arbeit beziehen werden. Ein etablierter Lösungsansatz besteht in der Konstruktion stückweise line- arer Approximationen oder Relaxierungen. Es wird untersucht, wie die entstehende Formulierung für bestimmte Substrukturen verstärkt werden kann. Dabei finden wir effektive Schnittebenen und leiten mittels graphentheoretischer Argumente eine voll- ständige Beschreibung für induzierte Pfade her. Eine Abstraktion wesentlicher Eigenschaften dieses Spezialfalls führt auf Cliquen- probleme auf bestimmten Graphen. Dieser abstrakte Rahmen umfasst auch eine Ba- sisversion des Projektplanungsproblems und erlaubt es weiterhin, eine total unimo- dulare Reformulierung von linearer Größe nachzuweisen. Weiterhin werden Fragen zur Erkennbarkeit dieser Struktur behandelt. Außerdem wird das Konzept der simultanen Konvexifizierung diskutiert, das als kontinuierliches Gegenstück zu unserem Ansatz für stückweise linearisierte Probleme angesehen werden kann. Die entstehenden Reformulierungen verstärken Relaxierun- gen, auf die allgemeine MINLP-Löser typischerweise angewiesen sind. Rechenergebnisse unter Einbeziehung realer Datensätze zeigen den praktischen Einfluss der in dieser Arbeit entwickelten Methoden. 7 Contents 1 Introduction 17 2 Preliminaries 21 2.1 A Selection of Problems on Transportation Networks . 21 2.1.1 The Basic Linear Network Flow problem—Notations . 22 2.1.2 Analyzing Infeasibility of the Linear Network Flow Problem . 25 2.1.3 The Network Design Problem . 28 2.1.4 Further Extensions of Linear Network Design Problems . 29 2.1.5 Gas Network Optimization . 32 2.2 Modeling Piecewise Linear Functions . 37 2.2.1 The Multiple Choice Method . 38 2.2.2 The Convex Combination Method
Recommended publications
  • Algorithmic System Design Under Consideration of Dynamic Processes
    Algorithmic System Design under Consideration of Dynamic Processes Vom Fachbereich Maschinenbau an der Technischen Universit¨atDarmstadt zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Lena Charlotte Altherr aus Karlsruhe Berichterstatter: Prof. Dr.-Ing. Peter F. Pelz Mitberichterstatter: Prof. Dr. rer. nat. Ulf Lorenz Tag der Einreichung: 19.04.2016 Tag der m¨undlichen Pr¨ufung: 24.05.2016 Darmstadt 2016 D 17 Vorwort des Herausgebers Kontext Die Produkt- und Systementwicklung hat die Aufgabe technische Systeme so zu gestalten, dass eine gewünschte Systemfunktion erfüllt wird. Mögliche System- funktionen sind z.B. Schwingungen zu dämpfen, Wasser in einem Siedlungsgebiet zu verteilen oder die Kühlung eines Rechenzentrums. Wir Ingenieure reduzieren dabei die Komplexität eines Systems, indem wir dieses gedanklich in überschaubare Baugruppen oder Komponenten zerlegen und diese für sich in Robustheit und Effizienz verbessern. In der Kriegsführung wurde dieses Prinzip bereits 500 v. Chr. als „Teile und herrsche Prinzip“ durch Meister Sun in seinem Buch „Die Kunst der Kriegsführung“ beschrieben. Das Denken in Schnitten ist wesentlich für das Verständnis von Systemen: „Das wichtigste Werkzeug des Ingenieurs ist die Schere“. Das Zusammenwirken der Komponenten führt anschließend zu der gewünschten Systemfunktion. Während die Funktion eines technischen Systems i.d.R. nicht verhan- delbar ist, ist jedoch verhandelbar mit welchem Aufwand diese erfüllt wird und mit welcher Verfügbarkeit sie gewährleistet wird. Aufwand und Verfügbarkeit sind dabei gegensätzlich. Der Aufwand bemisst z.B. die Emission von Kohlendioxid, den Energieverbrauch, den Materialverbrauch, … die „total cost of ownership“. Die Verfügbarkeit bemisst die Ausfallzeiten, Lebensdauer oder Laufleistung. Die Gesell- schaft stellt sich zunehmend die Frage, wie eine Funktion bei minimalem Aufwand und maximaler Verfügbarkeit realisiert werden kann.
    [Show full text]
  • 54 OP08 Abstracts
    54 OP08 Abstracts CP1 Dept. of Mathematics Improving Ultimate Convergence of An Aug- [email protected] mented Lagrangian Method Optimization methods that employ the classical Powell- CP1 Hestenes-Rockafellar Augmented Lagrangian are useful A Second-Derivative SQP Method for Noncon- tools for solving Nonlinear Programming problems. Their vex Optimization Problems with Inequality Con- reputation decreased in the last ten years due to the com- straints parative success of Interior-Point Newtonian algorithms, which are asymptotically faster. In the present research We consider a second-derivative 1 sequential quadratic a combination of both approaches is evaluated. The idea programming trust-region method for large-scale nonlin- is to produce a competitive method, being more robust ear non-convex optimization problems with inequality con- and efficient than its ”pure” counterparts for critical prob- straints. Trial steps are composed of two components; a lems. Moreover, an additional hybrid algorithm is defined, Cauchy globalization step and an SQP correction step. A in which the Interior Point method is replaced by the New- single linear artificial constraint is incorporated that en- tonian resolution of a KKT system identified by the Aug- sures non-accent in the SQP correction step, thus ”guiding” mented Lagrangian algorithm. the algorithm through areas of indefiniteness. A salient feature of our approach is feasibility of all subproblems. Ernesto G. Birgin IME-USP Daniel Robinson Department of Computer Science Oxford University [email protected]
    [Show full text]
  • Basic Polyhedral Theory 3
    BASIC POLYHEDRAL THEORY VOLKER KAIBEL A polyhedron is the intersection of finitely many affine halfspaces, where an affine halfspace is a set ≤ n H (a, β)= x Ê : a, x β { ∈ ≤ } n n n Ê Ê for some a Ê and β (here, a, x = j=1 ajxj denotes the standard scalar product on ). Thus, every∈ polyhedron is∈ the set ≤ n P (A, b)= x Ê : Ax b { ∈ ≤ } m×n of feasible solutions to a system Ax b of linear inequalities for some matrix A Ê and some m ≤ n ′ ′ ∈ Ê vector b Ê . Clearly, all sets x : Ax b, A x = b are polyhedra as well, as the system A′x = b∈′ of linear equations is equivalent{ ∈ the system≤ A′x }b′, A′x b′ of linear inequalities. A bounded polyhedron is called a polytope (where bounded≤ means− that≤ there − is a bound which no coordinate of any point in the polyhedron exceeds in absolute value). Polyhedra are of great importance for Operations Research, because they are not only the sets of feasible solutions to Linear Programs (LP), for which we have beautiful duality results and both practically and theoretically efficient algorithms, but even the solution of (Mixed) Integer Linear Pro- gramming (MILP) problems can be reduced to linear optimization problems over polyhedra. This relationship to a large extent forms the backbone of the extremely successful story of (Mixed) Integer Linear Programming and Combinatorial Optimization over the last few decades. In Section 1, we review those parts of the general theory of polyhedra that are most important with respect to optimization questions, while in Section 2 we treat concepts that are particularly relevant for Integer Programming.
    [Show full text]
  • 1. Introduction: Learning About Operations Research
    1. Introduction: Learning about Operations Research IRV LUSTIG: So hi, my name's Irv Lustig from Princeton Consultants and today, I'm privileged to interview George Nemhauser, who is currently a distinguished professor at the Georgia Institute of Technology. So thank you, George, for joining us today and let's get started. GEORGE NEMHAUSER: Oh, you're most welcome. I'm really looking forward to it. IRV LUSTIG: All right. So tell me, when did you first learn about operations research? GEORGE NEMHAUSER: So basically, I am a chemical engineer. And I think it was the summer between when I graduated with a Bachelor's degree in Chemical Engineering and the fall, when I was going to go off to graduate school at Northwestern for Chemical Engineering, I had a job with the research department of Allied Chemical. And there was a guy-- I think he was my supervisor who was working there-- who told me he was taking a part-time degree at Princeton and he was studying things like linear programming and game theory and I think maybe Kuhn, Tucker conditions, And he told me about this kind of stuff and I thought, wow, this is really interesting stuff, much more interesting than what I'm doing in chemical engineering. So when I got to Northwestern, as a first-year graduate student in Chemical Engineering, I had one elective course. And I looked and there was this new course called Operations Research and it included linear programming and game theory and stuff like that. I said, that's it.
    [Show full text]
  • N Rapid Development of an Open-Source Minlp Solver With
    75 o N O PTIMA Mathematical Programming Society Newsletter DECEMBER 2007 Rapid Development of an Open-source Minlp Solver with COIN-OR Pierre Bonami, John J. Forrest, Jon Lee and Andreas Wächter Abstract • Csdp, Dfo, Ipopt, LaGO, and Svm- QP are solvers for different types of We describe the rapid development of Nonlinear Optimization (semidefinite, Bonmin (Basic Open-source Nonlinear derivative-free, general large-scale Mixed INteger programming) using the interior point, global optimization, QP community and components of COIN- solver for support vector machines) OR (COmputational INfrastructure • CoinMP, FlopC++, GAMSlinks, for Operations Research). NLPAPI, Osi, OS and Smi are problem 1. Introduction modeling and interface tools. Even more, COIN-OR has become the As famous examples like Linux have platform that facilitates the collaboration proven, open-source communities of optimization researchers to start entirely can produce rapidly-developing high- new projects, exploring and developing new quality software, often competitive with algorithmic ideas, by providing both a sound expensive commercial solutions. COIN- software basis that can be re-used, as well as OR (COmputational INfrastructure the technical forum to coordinate the effort. for Operations Research), originally In order to clarify a common founded by IBM in 2000 and a non-profit misconception, we want to emphasize that foundation since 2004, provides such the term “open source” does not simply refer a platform for us optimization folks. to software that is made available to some Since its conception, a number of users in source-code format. According optimization-algorithm implementations to the definition put forth by the non- and related software projects have been profit corporation Open Source Initiative contributed to COIN-OR.
    [Show full text]
  • Branch-And-Bound Strategies for Dynamic Programming
    LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY C7. WORKING PAPER ALFRED P. SLOAN SCHOOL OF MANAGEMENT BRANCH-AND-BOUND STRATEGIES FOR DYNAMIC PROGRAMMING Thomas L. Morin* and Roy E. Marsten** WP 750-74ooREVISED May 1975 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 02139 BRANCH-AND-BOUND STRATEGIES FOR DYNAMIC PROGRAMMING Thomas L. Morin* and Roy E. Mar St en** WP 750-74floREVISED May 1975 *Northwestern University, Evanston, Illinois **Massachusetts Institute of Technology Alfred P. Sloan School of Management, Cambridge, Massachusetts ABSTRACT This paper shows how branch -and -bound methods can be used to reduce storage and, possibly, computational requirements in discrete dynamic programs. Relaxations and fathoming cjriteria are used to identify and to eliminate states whose corresponding subpolicies could not lead to optimal policies. The general dynamic programming/branch- and-bound approach is applied to the traveling -salesman problem and the nonlinear knapsack problem. The reported computational experience de- monstrates the dramatic savings in both computer storage and computa- tional requirements which were effected utilizing the hybrid approach. Consider the following functional equation of dynamic programming for additive costs: = {TT(y',d) (y = (P. - f(y) min + f ') lT(y ' ,d) y] , y € y.) (1) d € D with the boundary condition f(yo) = ko (2) in which, Q is the finite nonempty state space; y- € fi is the initial state; d € D is a decision, where D is the finite nonempty set of decisions; T: n X D — n is the transition mapping, where T(y',d) is the state that is tt; -• reached when decision d is applied at state y ; Q x D IR is the cost function, where TT(y',d) is the incremental cost that is incurred when de- cision d is applied at state y'; k_ 6 IR is the initial cost incurred in the initial state y_; and in (2) we make the convenient but unnecessary assump- tion that return to the initial state is not possible.
    [Show full text]
  • A New Column for Optima Structure Prediction and Global Optimization
    76 o N O PTIMA Mathematical Programming Society Newsletter MARCH 2008 Structure Prediction and A new column Global Optimization for Optima by Alberto Caprara Marco Locatelli Andrea Lodi Dip. Informatica, Univ. di Torino (Italy) Katya Scheinberg Fabio Schoen Dip. Sistemi e Informatica, Univ. di Firenze (Italy) This is the first issue of 2008 and it is a very dense one with a Scientific February 26, 2008 contribution on computational biology, some announcements, reports of “Every attempt to employ mathematical methods in the study of chemical conferences and events, the MPS Chairs questions must be considered profoundly irrational and contrary to the spirit in chemistry. If mathematical analysis should ever hold a prominent place Column. Thus, the extra space is limited in chemistry — an aberration which is happily almost impossible — it but we like to use few additional lines would occasion a rapid and widespread degeneration of that science.” for introducing a new feature we are — Auguste Comte particularly happy with. Starting with Cours de philosophie positive issue 76 there will be a Discussion Column whose content is tightly related “It is not yet clear whether optimization is indeed useful for biology — surely biology has been very useful for optimization” to the Scientific contribution, with ­ — Alberto Caprara a purpose of making every issue of private communication Optima recognizable through a special topic. The Discussion Column will take the form of a comment on the Scientific 1 Introduction contribution from some experts in Many new problem domains arose from the study of biological and the field other than the authors or chemical systems and several mathematical programming models an interview/discussion of a couple as well as algorithms have been developed.
    [Show full text]
  • Mathematical Programming Society Newsletter
    69 o N O PTIMA Mathematical Programming Society Newsletter JANUARY2003 69 Primal Integer Programming 2 mindsharpener 8 gallimaufry 10 OPTIMA69 JANUARY 2003 PAGE 2 Primal Integer Programming Robert Weismantel Faculty of Mathematics, University of Magdeburg Universitatsplatz 2, D-39106 Magdeburg, Germany [email protected] September 17, 2002 Primal integer programming is an area of Let us begin by recalling that all the problem specific cuts such as facet-defining cuts discrete optimization that -- in a broad sense -- algorithmic schemes applied to integer for the TSP in [18]. To the best of our includes the theory and algorithms related to programming problems without a-priori knowledge, a method of this type for Integer augmenting feasible integer solutions or knowledge about the structure of the side Programming has first been suggested by Ben- verifying optimality of feasible integer points. constraints resort to the power of linear Israel and Charnes [3]. They employed the fact This theory naturally provides an algorithmic programming duality. that for any feasible solution of an integer scheme that one might regard as a generic form Dual type algorithms start solving a linear program optimality can be proven by solving a of a primal integer programming algorithm: programming relaxation of the problem, subproblem arising from the non-basic columns First detect an integer point in a given domain typically with the dual simplex method. In the of a primal feasible simplex tableau. Various of discrete points. Then verify whether this course of the algorithm one maintains as an specializations and variants of a primal cutting point is an optimal solution with respect to a invariant both primal and dual feasibility of the plane algorithm were later given by Young [21, specific objective function, and if not, find solution of the relaxation.
    [Show full text]
  • Twenty-Eighth Annual Report of The
    National Science Foundation Twenty-Eighth Annual Report for Fiscal Year 1978 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.25 Stock Number 038-000-00407-7 Letter of Transmittal Washington, D.C. DEAR MR. PRESIDENT: I have the honor to transmit herewith the Annual Report for Fiscal Year 1978 of the National Science Foundation for submission to the Congress as required by the National Science Foundation Act of 1950. Respectfully, Richard C. Atkinson Director, National Science foundation The Honorable The President of ihe United Slates Contents Page Director's Statement vii Mathematical and Physical Sciences, and Engineering 1 Physics 2 Chemistry 6 Mathematical and Computer Sciences 10 Engineering 16 Materials Research 21 Astronomical, Atmospheric, Earth, and Ocean Sciences 29 Astronomy 31 Atmospheric Sciences 39 Earth Sciences 45 Ocean Sciences 51 Polar Programs 56 Biological, Behavioral, and Social Sciences 61 Physiology, Cellular, and Molecular Biology 62 Behavioral and Neural Sciences 67 Environmental Biology 69 Social Sciences 73 Science Education '77 Science Education Resources Improvement 77 Science Education Development and Research 81 Scientific Personnel Improvement 86 Science and Society 91 Applied Science and Research Applications 97 Problem Analysis 98 Integrated Basic Research 98 Applied Research 99 Problem-Focused Research Applications 101 Intergovernmental Science and Public Technology 105 Scientific, Technological, and International Affairs 109 Policy Research and Analysis 110 Science Resources Studies 112 NSF Planning and Evaluation 115 Information Science and Technology 116 International Programs , 118 Appendices A. National Science Board, NSF Staff, Advisory Committees and Panels 121 B. Patents and Inventions Resulting from Activities Supported by the National Science Foundation 138 C.
    [Show full text]
  • From the Editor WHATS INSIDE
    Volume 6 Number 1 March 2012 International Federation of Operational Research Societies NEWS ISSN 2223-4373 WHATS INSIDE From the Editor 2 Editorial . 2011 Accomplishments - IFORS and OR publishing and A Taste of 2012 3 Publications . Elise del Rosario <[email protected]> - ITOR Features Tutorials We used to dedicate one issue of IFORS News to the - Tutorial: The importance of pricing decisions Annual Report. This year, we have a full issue that com- plements the 2011 Annual Report. The year had been 5 Developing Countries . a most productive one for the Administrative Commit- tee, as can be gleaned from the President Dominique de Werra’s summary of - A Star for ORiON the activities undertaken for the year. - Locals Support First OR Meeting in Nepal - From the DC Section Editor: On the Activities continued on into 2012, as you can see from the OR Schools con- ORSN Conference ducted in Africa and Brazil and those being planned for in Ukraine and Por- - OR tools have huge potential tugal. It is always very refreshing to see these young people, all enthusiastic about OR and benefiting from the various programs made available to them 8 Conferences . by IFORS and other sponsors. - Portugal Hosts the First ICORES - OR Luminaries Grace Peruvian Conference Conferences that were held within ALIO, EURO and APORS are covered. IFORS was well represented in the conferences that happened in Peru, Por- 10 OR Schools . tugal and Nepal. I met the Developing Countries Section editor Arabinda Tripathy at the Nepal conference, and his perspectives on that conference - IFORS Sponsors OR School in Africa are here printed.
    [Show full text]
  • George Dantzig's Contributions to Integer Programming
    Takustraße 7 Konrad-Zuse-Zentrum D-14195 Berlin-Dahlem fur¨ Informationstechnik Berlin Germany MARTIN GROTSCHEL¨ AND GEORGE L. NEMHAUSER George Dantzig’s contributions to integer programming ZIB-Report 07-39 (November 2007) George Dantzig's Contributions to Integer Programming Martin GrÄotschel Konrad-Zuse-Zentrum fÄurInformationstechnik Berlin (ZIB), Matheon, and TU Berlin, Germany [email protected] George L. Nemhauser School of Industrial and Systems Engineering Georgia Institute of Technology USA [email protected] Abstract This paper reviews George Dantzig's contribution to integer programming, espe- cially his seminal work with Fulkerson and Johnson on the traveling salesman problem. 1 Introduction George Dantzig wrote only a few papers on integer programming, including two on integer programming modeling [4, 5]; speci¯cally, how a variety of nonlinear and nonconvex opti- mization problems could be formulated as mixed-integer programs with 0-1 variables. For example, he presented the use of 0-1 variables to model ¯xed charges and variable upper bound constraints, semi-continuous variables, and nonconvex piecewise linear functions. In [5] he also proposed a very simple cutting plane for separating a fractional basic optimal solution from the convex hull of integer solutions in a pure integer program with nonnegative variables. The cut simply says that at least one of the nonbasic variables must be a positive integer, i.e., the sum of the nonbasic variables is at least one. While this is not a very strong cut, since it does not yield a ¯nitely convergent algorithm [10], a slightly tightened version of it does yield a ¯nite cutting plane algorithm [2].
    [Show full text]
  • ISMP BP Front
    Conference Program 1 TABLE OF CONTENTS Welcome from the Chair . 2 Schedule of Daily Events & Sessions . 3 20TH INTERNATIONAL SYMPOSIUM ON Speaker Information . 5 MATHEMATICAL PROGRAMMING August 23-28, 2009 Social Events & Excursions . 6 Chicago, Illinois, USA Internet Access . 7 Opening Session & Prizes . 8 Area Map . 9 PROGRAM ORGANIZING COMMITTEE COMMITTEE Exhibitors . 10 Chair Mihai Anitescu John R. Birge Argonne National Lab Plenary & Semi-Plenary Sessions . 12 University of Chicago USA Track Schedule . 17 USA John R. Birge Karen Aardal University of Chicago Floor Plans & Maps . 22 Centrum Wiskunde & USA Informatica Michael Ferris Cluster Chairs . 24 The Netherlands University of Wisconsin- Michael Ferris Madison Technical Sessions University of Wisconsin- USA Monday . 25 Madison Jeff Linderoth USA University of Wisconsin- Tuesday . 49 Michael Goemans Madison Wednesday . 74 Massachusetts Institute of USA Thursday . 98 Technology Todd Munson USA Argonne National Lab Friday . 121 Michael Jünger USA Universität zu Köln Jorge Nocedal Session Chair Index . 137 Germany Northwestern University Masakazu Kojima USA Author Index . 139 Tok yo Institute of Technology Jong-Shi Pang Session Index . 147 Japan University of Illinois at Urbana- Rolf Möhring Champaign Advertisers Technische Universität Berlin USA World Scientific . .150 Germany Stephen J. Wright Andy Philpott University of Wisconsin- IOS Press . .151 University of Auckland Madison OptiRisk Systems . .152 New Zealand USA Claudia Sagastizábal Taylor & Francis . .153 CEPEL LINDO Systems . .154 Brazil Springer . .155 Stephen J. Wright University of Wisconsin- Mosek . .156 Madison USA Sponsors . Back Cover Yinyu Ye Stanford University USA 2 Welcome from the Chair On behalf of the Organizing Committee and The University of Chicago, I The University of Chicago welcome you to ISMP 2009, the 20th International Symposium on Booth School of Business Mathematical Programming.
    [Show full text]