IMS Bulletin 32(5)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2005-2006
CORNELL UNIVERSITY DEPARTMENT OF MATHEMATICS ANNUAL REPORT 2005–2006 The Department of Mathematics at Cornell University is known throughout the world for its distinguished faculty and stimulating mathematical atmosphere. Close to 40 tenured and tenure-track faculty represent a broad spectrum of current mathematical research, with a lively group of postdoctoral fellows and frequent research and teaching visitors. The graduate program includes over 70 graduate students from many different countries. The undergraduate program includes several math major programs, and the department offers a wide selection of courses for all types of users of mathematics. A private endowed university and the federal land-grant institution of New York State, Cornell is a member of the Ivy League and a partner of the State University of New York. There are approximately 19,500 students at Cornell’s Ithaca campus enrolled in seven undergraduate units and four graduate and professional units. Nearly 14,000 of those students are undergraduates, and most of those take at least one math course during their time at Cornell. The Mathematics Department is part of the College of Arts and Sciences, a community of 6,000 students and faculty in 50 departments and programs, encompassing the humanities, sciences, mathematics, fine arts, and social sciences. We are located in Malott Hall, in the center of the Cornell campus, atop a hill between two spectacular gorges that run down to Cayuga Lake in the beautiful Finger Lakes region of New York State. Department Chair: Prof. Kenneth Brown Director of Undergraduate Studies (DUS): Prof. Allen Hatcher Director of Graduate Studies (DGS): Prof. -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Interview of Albert Tucker
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange About Harlan D. Mills Science Alliance 9-1975 Interview of Albert Tucker Terry Speed Evar Nering Follow this and additional works at: https://trace.tennessee.edu/utk_harlanabout Part of the Mathematics Commons Recommended Citation Speed, Terry and Nering, Evar, "Interview of Albert Tucker" (1975). About Harlan D. Mills. https://trace.tennessee.edu/utk_harlanabout/13 This Report is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in About Harlan D. Mills by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Princeton Mathematics Community in the 1930s (PMC39)The Princeton Mathematics Community in the 1930s Transcript Number 39 (PMC39) © The Trustees of Princeton University, 1985 ALBERT TUCKER CAREER, PART 2 This is a continuation of the account of the career of Albert Tucker that was begun in the interview conducted by Terry Speed in September 1975. This recording was made in March 1977 by Evar Nering at his apartment in Scottsdale, Arizona. Tucker: I have recently received the tapes that Speed made and find that these tapes carried my history up to approximately 1938. So the plan is to continue the history. In the late '30s I was working in combinatorial topology with not a great deal of results to show. I guess I was really more interested in my teaching. I had an opportunity to teach an undergraduate course in topology, combinatorial topology that is, classification of 2-dimensional surfaces and that sort of thing. -
Downloads Over 8,000)
Volume 47 • Issue 1 IMS Bulletin January/February 2018 National Academy new member The US National Academy of Medicine (NAM) has announced the election of 70 reg- CONTENTS ular members and 10 international members. Among them is Nicholas Patrick Jewell, 1 National Academy of University of California, Berkeley. Medicine elects Jewell Election to the Academy is considered one of the highest honors in the fields of 2 Members’ news: Nick Horton, health and medicine, recognizing individuals who have made major contributions to Eric Kolaczyk, Hongzhe Li, the advancement of the medical sciences, health care, and public health. A diversity Runze Li, Douglas Simpson, of talent among NAM’s membership is Greg Lawler, Mike Jordan, Mir assured by its Articles of Organization, Masoom Ali which stipulate that at least one-quarter 3 Journal news: EJP, ECP, Prob of the membership is selected from fields Surveys; OECD guidelines outside the health professions, for exam- 4 Takis Konstantopoulos: new ple, from law, engineering, social sciences, column and the humanities—and statistics. The newly elected members bring 6 Recent papers: Electronic Journal of Probability; Electronic NAM’s total membership to 2,127 and Communications in Probability the number of international members to 172. 11 Special Invited Lecturers; IMS Fellow Nicholas P. Jewell is New Textbook Professor of Biostatistics and Statistics 12 Obituary: Ron Getoor at the University of California, Berkeley. 13 IMS Awards Since arriving at Berkeley in 1981, he has held various academic and administrative 15 Student Puzzle Corner 19; New Researcher Award positions, most notably serving as Vice Provost from 1994 to 2000. -
Principles of Communications ECS 332
Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong (ผศ.ดร.ประพันธ ์ สขสมปองุ ) [email protected] 1. Intro to Communication Systems Office Hours: Check Google Calendar on the course website. Dr.Prapun’s Office: 6th floor of Sirindhralai building, 1 BKD 2 Remark 1 If the downloaded file crashed your device/browser, try another one posted on the course website: 3 Remark 2 There is also three more sections from the Appendices of the lecture notes: 4 Shannon's insight 5 “The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point.” Shannon, Claude. A Mathematical Theory Of Communication. (1948) 6 Shannon: Father of the Info. Age Documentary Co-produced by the Jacobs School, UCSD- TV, and the California Institute for Telecommunic ations and Information Technology 7 [http://www.uctv.tv/shows/Claude-Shannon-Father-of-the-Information-Age-6090] [http://www.youtube.com/watch?v=z2Whj_nL-x8] C. E. Shannon (1916-2001) Hello. I'm Claude Shannon a mathematician here at the Bell Telephone laboratories He didn't create the compact disc, the fax machine, digital wireless telephones Or mp3 files, but in 1948 Claude Shannon paved the way for all of them with the Basic theory underlying digital communications and storage he called it 8 information theory. C. E. Shannon (1916-2001) 9 https://www.youtube.com/watch?v=47ag2sXRDeU C. E. Shannon (1916-2001) One of the most influential minds of the 20th century yet when he died on February 24, 2001, Shannon was virtually unknown to the public at large 10 C. -
View from the Chair
View from the Chair This past summer we initiated a major new program for John Imbrie research experiences for undergraduates (REUs), Professor of Mathematics/Chair combining Ken Ono's long-running program in number theory with a new program in geometry and topology, I write at the conclusion of an extraordinary year for our supported by the RTG grant. Despite the challenges of work- department. As 2020 began, we were gearing up to host the ing remotely, the program was very successful -- see the AMS sectional, which was to start on March 12. Early article below by Ken Ono and Tom Mark. Other indications were that large gatherings were a major highlights of this Virginia Math Bulletin include an article on contributor to the spread of the pandemic, so we hastily our new bridge program, by David Sherman (our new cancelled the event, which was to bring 700 participants to Director of Diversity, Equity, and Inclusion). Our Bridge to Charlottesville. Soon, the university cancelled classes and the Doctorate currently supports three students were abruptly sent post-baccalaureate students as they home. Faculty members and prepare for entry into a Ph.D. program. graduate students were tasked with quickly finding Sadly, it was impossible to conduct the a way to hold classes online. Gordon Keller math majors dinner. We The learning curve was had planned to host UVa graduate steep, but we came together and McShane Prize winner Adrew Booker, to reinvent our modes of who was in the news for work leading to teaching. Now we reach the the long-sought integer solutions to conclusion of a semester x3 + y3 + z3 = 33 and x3 + y3 + z3 = 42. -
Obituary Notices Ronald Drayton Brown
Obituary notices Ronald Drayton Brown Died 31 October 2008, elected to Fellowship 1965 Ronald Drayton (Ron) Brown was born in Melbourne on 14 October 1927. He grew up as an only child in modest suburban circumstances in Prahran and did not come from a scientific or academic background. His father had achieved some distinction in amateur athletics. His secondary education was at Wesley College, to which he had won a scholarship. He excelled in mathematics and physics and was an interested reader of astronomy books. He was dux of the school in his final year and was awarded an exhibition in physics in the Victorian matriculation examinations. In his first undergraduate year at the University of Melbourne, he majored in physics and chemistry. In second year he dropped Ron Brown physics, despite scoring better results than in chemistry. While completing a chemistry major he also informally attended the lectures in third year physics and mathematics, without completing the examinations, ending up with an effective triple major for his BSc in 1946. In the days before it was possible to do a PhD anywhere in Australia, Ron began his research career as an MSc student in the Department of Chemistry at the University of Melbourne with Dr Francis Lahey as supervisor. His thesis topic was alkaloid products from Australian plants, particularly Acronychia baueri. He had chosen this project because it would involve some organic chemistry and some spectroscopy. He was attracted by the relationships between the structure of organic compounds and their spectra, and the use of these ideas in deducing the structure of newly isolated compounds. -
Arxiv:1306.1586V4 [Quant-Ph]
Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched R´enyi relative entropy Mark M. Wilde∗ Andreas Winter†‡ Dong Yang†§ May 23, 2014 Abstract A strong converse theorem for the classical capacity of a quantum channel states that the probability of correctly decoding a classical message converges exponentially fast to zero in the limit of many channel uses if the rate of communication exceeds the classical capacity of the channel. Along with a corresponding achievability statement for rates below the capacity, such a strong converse theorem enhances our understanding of the capacity as a very sharp dividing line between achievable and unachievable rates of communication. Here, we show that such a strong converse theorem holds for the classical capacity of all entanglement-breaking channels and all Hadamard channels (the complementary channels of the former). These results follow by bounding the success probability in terms of a “sandwiched” R´enyi relative entropy, by showing that this quantity is subadditive for all entanglement-breaking and Hadamard channels, and by relating this quantity to the Holevo capacity. Prior results regarding strong converse theorems for particular covariant channels emerge as a special case of our results. 1 Introduction One of the most fundamental tasks in quantum information theory is the transmission of classical data over many independent uses of a quantum channel, such that, for a fixed rate of communica- tion, the error probability of the transmission decreases to zero in the limit of many channel uses. The maximum rate at which this is possible for a given channel is known as the classical capacity of the channel. -
Jacob Wolfowitz 1910–1981
NATIONAL ACADEMY OF SCIENCES JACOB WOLFOWITZ 1910–1981 A Biographical Memoir by SHELEMYAHU ZACKS Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 82 PUBLISHED 2002 BY THE NATIONAL ACADEMY PRESS WASHINGTON, D.C. JACOB WOLFOWITZ March 19, 1910–July 16, 1981 BY SHELEMYAHU ZACKS ACOB WOLFOWITZ, A GIANT among the founders of modern Jstatistics, will always be remembered for his originality, deep thinking, clear mind, excellence in teaching, and vast contributions to statistical and information sciences. I met Wolfowitz for the first time in 1957, when he spent a sab- batical year at the Technion, Israel Institute of Technology. I was at the time a graduate student and a statistician at the building research station of the Technion. I had read papers of Wald and Wolfowitz before, and for me the meeting with Wolfowitz was a great opportunity to associate with a great scholar who was very kind to me and most helpful. I took his class at the Technion on statistical decision theory. Outside the classroom we used to spend time together over a cup of coffee or in his office discussing statistical problems. He gave me a lot of his time, as though I was his student. His advice on the correct approach to the theory of statistics accompanied my development as statistician for many years to come. Later we kept in touch, mostly by correspondence and in meetings of the Institute of Mathematical Statistics. I saw him the last time in his office at the University of Southern Florida in Tampa, where he spent the last years 3 4 BIOGRAPHICAL MEMOIRS of his life. -
CSIRO Annual Report 2016-17
Annual Report 2016–17 Australia’s innovation catalyst CSIRO, in partnership with Deakin University, launched Australia’s first carbon fibre production facility. Carbon fibre is a low weight product with high rigidity, tensile strength and chemical resistance that is used in aerospace, civil engineering, cars, health and the military. Successful collaborations like this demonstrate how the Australian research sector can accelerate research, lead innovation and expand job opportunities in the country. About this report This annual report is a summary of CSIRO’s activities and financial position for the 12-month period ended 30 June 2017. In this report, unless otherwise stated, references to the ‘organisation’, ‘we’, ‘us’ and ‘our’ refer to CSIRO as a whole. In this report, references to a year are to the financial year ended 30 June 2017, unless otherwise stated. It is also available at: www.csiro.au/annualreport2017. COVER: Nanomaterials, like the carbon nanotubes illustrustrated on the front cover, are extremely small chemicals, millionths of a millimetre in size. They come in many forms each with unique mechanical, electronic and optical properties. Through the development of new products and processes, nanotechnology will potentially contribute solutions to major challenges facing Australia in the electronic, energy and environmental sectors. Image: Amanda Barnard, Data61 i www.csiro.au CSIRO Head Office Clunies Ross Street, Acton ACT 2601 GPO Box 1700, Canberra ACT 2601 Australia T (02) 6276 6000 • ABN 41 687 119 230 1 September 2017 The Hon Arthur Sinodinos AO Minister for Industry, Innovation and Science Parliament House CANBERRA ACT 2600 Australia’s national science agency took strides forward on its Strategy 2020 through the year ending 30 June 2017. -
Annual Report 2003
ANNUAL REPORT 2003 Published by the Marketing and Communications Division The Australian National University Published by The Marketing and Communications Division The Australian National University Produced by ANU Publications Unit Marketing and Communications Division The Australian National University Printed by University Printing Service The Australian National University ISSN 1327-7227 April 2004 Contents Council and University Office rs 7 Review of 2003 10 Council and Council Committee Meetings 20 University Statistics 22 Cooperation with Government and other Public Institutions 30 Joint Research Projects undertaken with Universities, CSIRO and other Institutions 76 Principal Grants and Donations 147 University Public Lectures 168 Freedom of Information Act 1982 Statement 172 Auditor-General’s Report 175 Financial Statements 179 University Organisational Structure 222 Academic Structure 223 ANU Acronyms 224 Index 225 Further information about ANU Detailed information about the achievements of ANU in 2003, especially research and teaching outcomes, is contained in the annual reports of the University’s Research Schools, Faculties, Centres and Administrative Divisions. For course and other academic information, contact: Director Student and Academic Services The Australian National University Canberra ACT 0200 T: 02 6125 3339 F: 02 6125 0751 For general information, contact: Director Marketing and Communications Division The Australian National University Canberra ACT 0200 T: 02 6125 2229 F: 02 6125 5568 The Council and University -
Rakesh V. Vohra
Rakesh V. Vohra Department of Economics and the Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA 19104 Electronic mail: [email protected], [email protected] August 15th, 2020 Experience • (2013 to date) George A. Weiss and Lydia Bravo Weiss University Professor, Depart- ment of Economics and the Department of Electrical and Systems Engineering, University of Pennsylvania • (2013 to date) Secondary appointment, Department of Computer and Information Sciences, University of Pennsylvania. • (1999 to 2013) John L. and Helen Kellogg Professor of Managerial Economics and Decision Sciences, Kellogg School of Management, Northwestern University. • (2010 to 2013) Professor (Courtesy), Department of Economics, Weinberg College of Arts and Sciences, Northwestern University. • (2006 to 2013) Professor (Courtesy), Electrical Engineering and Computer Science, Mc- Cormick School, Northwestern University. • (1998 to 1999) Professor of Managerial Economics and Decision Sciences, Kellogg School of Management, Northwestern University. • (1991 to 1998) Associate Professor of Management Science and Industrial Engineering, Fisher College of Business, The Ohio State University. • (1985 to 1991) Assistant Professor of Management Science, Fisher College of Business, The Ohio State University. • (Summer 2011, 2012, 2014) Visiting Researcher, Microsoft Research, New England. • (Summer 2006) Visiting Researcher, Microsoft Research, Redmond. • (Winter 2005) Visiting Scholar, California Institute of Technology. • (Spring 2004, 2006, 2011, 2016) Visiting Professor, Indian School of Business. 1 • (Summer 2003) METEOR Fellow, Department of Quantitative Economics, University of Maas- tricht. • (September 2000) Cycle and Carriage Visiting Professor, Department of Decision Sciences, College of Business, National University of Singapore. • (1997-1998) Visiting Associate Professor, The Kellogg School of Management, Northwestern University. • (1992 -1993, Summer '96) Visiting Associate Professor, The Sloan School, MIT.