Go-To Telescopes Under Suburban Skies (Patrick Moore's Practical

Total Page:16

File Type:pdf, Size:1020Kb

Go-To Telescopes Under Suburban Skies (Patrick Moore's Practical Patrick Moore’s Practical Astronomy Series For other titles published in this series, go to http://www.springer.com/series/3192 Go-To Telescopes Under Suburban Skies Neale Monks 123 Neale Monks HP4 3EH Berkhamsted Hertfordshire United Kingdom ISSN 1431-9756 ISBN 978-1-4419-6850-0 e-ISBN 978-1-4419-6851-7 DOI 10.1007/978-1-4419-6851-7 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010932673 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This book is a compendium of targets for owners of go-to telescopes observing from suburban and exurban (even further out than suburban) locations. Unlike most other books about the deep sky, this book doesn’t contain sky charts or star hops, since those aren’t needed by owners of go-to telescopes. Instead the aim is to pro- vide information on as many interesting stars, star clusters, nebulae, and galaxies as possible. All are visible from suburban or exurban locations, and none require an aperture greater than 200 mm. Within each season there are three categories of deep sky objects, and one cat- egory for stars. The section on wintertime objects, for example, contains 77 deep sky objects and 28 stars. The first of the deep sky object categories is one for show- piece objects; then there’s a category for interesting rather than exceptional objects, and finally a category of objects that are obscure or difficult to see under suburban conditions. The stars included in each chapter include a variety of double stars, variable stars, unusually colorful stars, and stars that feature in unusual asterisms or clusters. Sev- eral stars are included because of their historical or scientific importance. Unlike deep sky objects, stars are largely unaffected by light pollution. This makes them especially rewarding targets for suburban observers. Although written for owners of go-to telescopes, there’s nothing to stop owners of non-computerized telescopes from using this book. Used alongside a star chart or planetarium program, this book could help owners of traditional telescopes get ideas about what’s worth observing on a particular night. One key difference between this book and most other deep sky books is the assumption that the observer will be working under light-polluted skies and using a telescope with an aperture of 200 mm or less. For the purposes of this book, a v vi Preface 200 mm telescope is considered a ‘large’ telescope, one around 150 mm a ‘medium’ telescope, and anything less than 100 mm a ‘small’ telescope. Indeed, most comments on the brightness of objects will be subjective ones related to aperture and light pollution. Very little will be said about visual magni- tudes, since with deep sky objects these values are often very misleading. Instead the reader will be told about how bright the object seems, how much contrast there is between the background sky and the object itself, and whether light pollution filters help to make the object easier to see. Light pollution is one of the two most limiting issues that affect suburban astron- omy (the other being obscuring objects such as trees and buildings close to the hori- zon). Most of the author’s observing was done in three different places, all subject to light pollution of varying severities. My observing in England is done in Berkham- sted, a little over 30 miles from London, and with skies that rate about 6 on the Bortle scale of sky darkness. In the United States, my observing from suburban Lin- coln, Nebraska, is under skies of similar quality. Exurban Lincoln is quite a bit better, with the skies at the Olive Creek Recreation Park about 10 miles southwest of the city between 3 and 4 on the Bortle scale. Although this is primarily a book about northern hemisphere observing, some southern sky objects are included. In my case, these objects were mostly observed during vacations to Hutchinson Island, not far from Stuart, Florida, and at a lati- tude of 27◦ north. While many of these objects can still be seen as far north as the American Midwest, observers as far north as southern England will find southern sky targets difficult or impossible to see. Where latitude is relevant to observing an object, it is mentioned in the text, usually with some indication of how far an object rises above the southern horizon, if it does so at all. This isn’t a book about hardware. But that said, two pieces of hardware are so useful that suburban astronomers should consider owning them. The first is a light pollution filter. There are various kinds, each with its own strengths and weaknesses. The second must-have item is a reducer-corrector, a lens that allows Schmidt– Cassegrain telescopes (SCTs) to behave almost like wide field telescopes. More will be said about both of these accessories in the first chapter. Finally, some words of thanks. The eyepiece simulations used here to suggest what would be seen through a telescope were put together using Starry Night Pro Plus, courtesy of Simulation Curriculum Corp, and AllSky data, courtesy of Main- Sequence Software Inc. The author must thank Pedro Braganca and Doug George for making these excellent tools available to him. The author also wishes to thank Michelle Meskill and Kevin Kawai at Celestron for providing him with photos of Celestron hardware and offering useful comments on the text, particularly with regard to the use and maintenance of go-to telescopes. More valuable comments on the text came from David W. Knisely at the Prairie Astronomy Club in Lincoln, Nebraska. His comments on the benefits of light pollution filters were especially useful. Finally, the help that John Watson and Maury Solomon provided getting this Preface vii project off the ground cannot be overstated. To all of them, thank you for your help, patience and support. Two amateur astronomers passed away while I was putting together this book, David Brokofsky (of Lincoln) and David Schultz (of Omaha). In different ways, they each helped me enjoy this hobby and develop my observing skills. To both of them: Clear skies! Contents 1 Introduction ................................................... 1 HowtoUseThisBook........................................... 1 WhyNGCandSAONumbers?.................................... 2 ObservingfromtheSuburbsandExurbs............................ 3 LightPollutionFilters............................................ 5 BroadbandFilters............................................. 5 NarrowbandFilters ........................................... 6 LineFilters................................................... 7 UsingLightPollutionFilters...................................... 8 Reducer-Correctors.............................................. 8 DarkAdaptation................................................ 10 GettingtheMostfromaGo-ToTelescope........................... 10 2Winter........................................................ 15 ShowpieceObjects .............................................. 16 NGC224(M31,AndromedaGalaxy)............................ 16 NGC 1502 (Kemble’s Cascade Cluster) – See Also SAO 12969 . 18 NGC 1535 (Cleopatra’s Eye) . 19 NGC 1976 and 1982 (Orion Nebula). 19 NGC 2168 (M35) and NGC 2158. 21 NGC 2287 (M41) . 23 NGC 2392 (Eskimo or Clown Face Nebula) . 23 NGC 2422 (M47), NGC 2437 (M46), and NGC 2438 . 24 NGC 2437 . 26 ix x Contents NGC 2451 . 26 NGC 2632 (M44, Praesepe, Beehive Cluster) . 27 NGC 3201 . 28 InterestingDeepSkyObjects...................................... 29 NGC 205 (M110) . 29 NGC221(M32).............................................. 29 NGC752.................................................... 29 NGC 1291 . 30 NGC 1501 (Blue Oyster Nebula) . 30 NGC 1662 (Klingon Battlecruiser Cluster) . 31 NGC 1973, 1975 and 1977 (Running Man Nebula) . 31 NGC 2169 (The 37 Cluster) . 32 NGC 2237-9, 2244 and 2246 (Rosette Nebula) . 33 NGC 2264 (Cone Nebula, Christmas Tree Cluster) . 34 NGC 2323 (M50) . 34 NGC 2353 . 35 NGC 2360 . 35 NGC 2440 . 35 NGC 2447 (M93, Butterfly Cluster) . 36 NGC 2477 . 37 NGC 2527 . 37 NGC 2539 . 37 NGC 2548 (M48) . 37 NGC 2682 (M67) . 38 NGC 3132 (Southern Ring Nebula) . 38 NGC 3242 (Ghost of Jupiter Nebula) . 39 NGC 3228 . 40 NGC 4590 (M68) . 40 NGC 7662 (Blue Snowball Nebula) . 41 NGC 7686 . 42 ObscureandChallengingDeepSkyObjects......................... 42 NGC404(Mirach’sGhost)..................................... 42 NGC891.................................................... 42 NGC 1232 . 43 NGC 1788 . 43 NGC 1851 . 44 NGC 1904 (M79) . 44 NGC 1981 . 45 NGC 2022 . 45 NGC 2024 (Flame Nebula) . 46 NGC 2194 . 46 NGC 2232 . 46 NGC 2251 . 47 NGC 2261 (Hubble’s Variable Nebula) . 47 NGC 2301 . 48 Contents xi NGC 2343 (Seagull Nebula) . 48 NGC 2359 (Thor’s Helmet) . 48 NGC 2362 . 49 NGC 2371 and 2372 . 49 NGC 2403 . 50 NGC 2419 (Intergalactic Tramp) . 50 NGC 2506 . 51 NGC 2547 . ..
Recommended publications
  • Meeting Announcement Upcoming Star Parties Special Recognition the President's Corner by Dell Vance, CVAS President
    CVAS Executive Committee Pres – Dell Vance - (435) 938-8328 Loaner Scope Coordinator/NSN Coordinator – [email protected] Garrett Smith – [email protected] Vice Pres- Bruce Horrocks Past President, Webmaster, Librarian – [email protected] Tom Westre – (435) 787-6380 [email protected] Treasurer- Brad Kropp - (435) 755-0877 Public Relations – Lyle Johnson - [email protected] Secretary – Wendell Waters (435) 213-9230 [email protected] Vol. 6 Number 6 February 2019 www.cvas-utahskies.org Meeting Announcement The President’s Corner By Dell Vance, CVAS President Our February meeting will be held Wednesday, th February 27 at 7 pm in Room 840 of the main BTC Campus. Enter on the east side of the building located at 1301 North 600 West. Dr. Paul Ricket of U of U will be discussing Black Holes. Upcoming Star Parties There are no “official” star parties scheduled for the month of January (but that doesn’t mean you can’t put one together on your own!!). Special Recognition President’s Corner Several CVAS members received “Recognition of By Dell Vance Exceptional Outreach” awards at our meeting in January. Janice Bradshaw, Gary Bradshaw, Harvey You “gotta love” winter skies in Cache Brown, Bonnie Schenk-Darrington, Alannah Valley! Most nights in January have been cloudy or Darrington, Blaine Dickey, Dale Hooper, Bruce foggy. The few nights that it was clear it was 12˚ F Horrocks, Lyle Johnson, Mark Kohler, Brad Kropp, or lower. I was sure that the Lunar Eclipse would Byron N Ray, Clark Salisbury, Garrett Smith, James be a wash out this year like it was last year.
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • WASP Page 1 Hubble Eyes Aging Stars Science News, Vol. 148
    WASP Warren Astronomical Society Paper Volume 27, number 11 $1.00 for non-members November 1995 DATING THE COSMOS COMPUTER CHATTER ANNUAL HOLIDAY AWARDS Hubble eyes aging stars Larry F. Kalinowski Science News, Vol. 148, September 2,1995 submitted by Lorna Simmons Everyone knows you can't be older than your mother. But over the past year, observations with the Hubble Space Telescope and several other Comet DeVico has just passed perihelion in instruments seem to have contradicted this cardi- early October, so its beginning to fade from its maxi- nal rule. On the one hand, measurements of the mum brightness of 5.6. It was recovered in its seventy- speed at which the most distant galaxies are mov- four year orbit by independent comet observers Naka- ing from Earth suggest that the universe may be mura, Tanaka and Utsunomiya. It becomes a sixth no older than 8 billion to 12 billion years (SN: magnitude object on the night of the Macomb meeting, 10/8;94, p.232). On the other hand, astronomers October 19. Early reports say it has two tails. A morn- ing object, only, about fifteen degrees above the hori- estimate he ages of our galaxy's oldest stars at zon before twilight begins, it's easily observed as it 13 billion to 16 billion years. leaves Leo and enters the Ursa Major-Coma Berenices Now, new findings from Hubble may provide a area of the sky. However, it is quickly moving closer to step toward resolving this cosmic conundrum. the horizon and will become increasingly more difficult In viewing the globular cluster M4, the dense to observe during the rest of the month.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • List of Easy Double Stars for Winter and Spring  = Easy  = Not Too Difficult  = Difficult but Possible
    List of Easy Double Stars for Winter and Spring = easy = not too difficult = difficult but possible 1. Sigma Cassiopeiae (STF 3049). 23 hr 59.0 min +55 deg 45 min This system is tight but very beautiful. Use a high magnification (150x or more). Primary: 5.2, yellow or white Seconary: 7.2 (3.0″), blue 2. Eta Cassiopeiae (Achird, STF 60). 00 hr 49.1 min +57 deg 49 min This is a multiple system with many stars, but I will restrict myself to the brightest one here. Primary: 3.5, yellow. Secondary: 7.4 (13.2″), purple or brown 3. 65 Piscium (STF 61). 00 hr 49.9 min +27 deg 43 min Primary: 6.3, yellow Secondary: 6.3 (4.1″), yellow 4. Psi-1 Piscium (STF 88). 01 hr 05.7 min +21 deg 28 min This double forms a T-shaped asterism with Psi-2, Psi-3 and Chi Piscium. Psi-1 is the uppermost of the four. Primary: 5.3, yellow or white Secondary: 5.5 (29.7), yellow or white 5. Zeta Piscium (STF 100). 01 hr 13.7 min +07 deg 35 min Primary: 5.2, white or yellow Secondary: 6.3, white or lilac (or blue) 6. Gamma Arietis (Mesarthim, STF 180). 01 hr 53.5 min +19 deg 18 min “The Ram’s Eyes” Primary: 4.5, white Secondary: 4.6 (7.5″), white 7. Lambda Arietis (H 5 12). 01 hr 57.9 min +23 deg 36 min Primary: 4.8, white or yellow Secondary: 6.7 (37.1″), silver-white or blue 8.
    [Show full text]
  • Downloads/ Astero2007.Pdf) and by Aerts Et Al (2010)
    This work is protected by copyright and other intellectual property rights and duplication or sale of all or part is not permitted, except that material may be duplicated by you for research, private study, criticism/review or educational purposes. Electronic or print copies are for your own personal, non- commercial use and shall not be passed to any other individual. No quotation may be published without proper acknowledgement. For any other use, or to quote extensively from the work, permission must be obtained from the copyright holder/s. i Fundamental Properties of Solar-Type Eclipsing Binary Stars, and Kinematic Biases of Exoplanet Host Stars Richard J. Hutcheon Submitted in accordance with the requirements for the degree of Doctor of Philosophy. Research Institute: School of Environmental and Physical Sciences and Applied Mathematics. University of Keele June 2015 ii iii Abstract This thesis is in three parts: 1) a kinematical study of exoplanet host stars, 2) a study of the detached eclipsing binary V1094 Tau and 3) and observations of other eclipsing binaries. Part I investigates kinematical biases between two methods of detecting exoplanets; the ground based transit and radial velocity methods. Distances of the host stars from each method lie in almost non-overlapping groups. Samples of host stars from each group are selected. They are compared by means of matching comparison samples of stars not known to have exoplanets. The detection methods are found to introduce a negligible bias into the metallicities of the host stars but the ground based transit method introduces a median age bias of about -2 Gyr.
    [Show full text]
  • Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 Through 2009
    Vol. 6 No. 3 July 1, 2010 Journal of Double Star Observations Page 180 Double and Multiple Star Measurements in the Northern Sky with a 10” Newtonian and a Fast CCD Camera in 2006 through 2009 Rainer Anton Altenholz/Kiel, Germany e-mail: rainer.anton”at”ki.comcity.de Abstract: Using a 10” Newtonian and a fast CCD camera, recordings of double and multiple stars were made at high frame rates with a notebook computer. From superpositions of “lucky images”, measurements of 139 systems were obtained and compared with literature data. B/w and color images of some noteworthy systems are also presented. mented double stars, as will be described in the next Introduction section. Generally, I used a red filter to cope with By using the technique of “lucky imaging”, seeing chromatic aberration of the Barlow lens, as well as to effects can strongly be reduced, and not only the reso- reduce the atmospheric spectrum. For systems with lution of a given telescope can be pushed to its limits, pronounced color contrast, I also made recordings but also the accuracy of position measurements can be with near-IR, green and blue filters in order to pro- better than this by about one order of magnitude. This duce composite images. This setup was the same as I has already been demonstrated in earlier papers in used with telescopes under the southern sky, and as I this journal [1-3]. Standard deviations of separation have described previously [1-3]. Exposure times varied measurements of less than +/- 0.05 msec were rou- between 0.5 msec and 100 msec, depending on the tinely obtained with telescopes of 40 or 50 cm aper- star brightness, and on the seeing.
    [Show full text]
  • Events: General Meeting : Monday, May 4, 2015 at the Temecula Library, 30600 Pauba Rd, Rm
    The monthly newsletter of the Temecula Valley Astronomers May 2015 Events: General Meeting : Monday, May 4, 2015 at the Temecula Library, 30600 Pauba Rd, Rm. B at 7 pm. Tim Deardorff with his What's Up in the night sky and Curtis Croulet presents the “Illustrated history of the building of Palomar Observatory ”. Curtis is a Master Docent at the Observatory. For the latest on Star Parties, check the web page. APOD: Ring Galaxy AM 0644-741 from Hubble Image Credit: Hubble Heritage Team (AURA / STScI), J. Higdon (Cornell) ESA, NASA WHAT’S INSIDE THIS MONTH: General information: Subscription to the TVA is included in the annual $25 membership (regular members) donation ($9 student; $35 Cosmic Comments family). by President Mark Baker Looking Up President: Mark Baker 951-691-0101 by Curtis Croulet ([email protected]) Art's Night Out Vice President & Facebook: Tim Deardorff 951-775-1036 ([email protected]) by Art Cobb Outreach: John Garrett 951-609-3021 Art's Night Out Reloaded (May 2004) ([email protected]) by Art Cobb Treasurer: Curtis Croulet ([email protected]) For Sale or Trade Secretary: Deborah Cheong ([email protected]) Club Librarian: Bob Leffler 951-541-5400 Send newsletter submissions to Mark DiVecchio ([email protected]) ([email protected]) by the 20th of the month for the next month's issue. Star Party Coordinator: Deborah Cheong ([email protected]) Address renewals or other correspondence to: Like us on Facebook Temecula Valley Astronomers PO Box 1292 Murrieta, CA 92564 Mailing List: [email protected]
    [Show full text]
  • Optical Counterparts of ROSAT X-Ray Sources in Two Selected Fields at Low
    Astronomy & Astrophysics manuscript no. sbg˙comsge˙ed c ESO 2018 October 16, 2018 Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes J. Greiner1, G.A. Richter2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, 85740 Garching, Germany 2 Sternwarte Sonneberg, 96515 Sonneberg, Germany Received 14 October 2013 / Accepted 12 August 2014 ABSTRACT Context. The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. Aims. We investigate two ROSAT All-Sky Survey fields of size 10◦× 10◦ each, one at galactic latitude b = 83◦ (26 Com), the other at b = –5◦ (γ Sge), in order to optically identify the majority of sources. Methods. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All- Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. Results. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In partic- ular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula.
    [Show full text]