CBD First National Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Miombo Woodlands of Central, Eastern and Southern Africa
90 The Miombo Woodlands of Central, Eastern and Southern Africa Philomena Tuite and John J. Gardiner Dept. of Crop Science, Horticulture and Forestry, University College Dublin, Belfield. Dublin 4. Summary Aspects of the environment and ecology of Miombo woodlands are described. Attention is given to the widespread nature of their distrihution area and the role played by Miombo at local and national levels. A matrix of woodland-use is presented. This offers some insight into changing resource-usc patterns in Miombo, and highlights the conflicts which may ensue with the adoption of certain woodland management strategies. Iutroduction In Africa, tropical dry forests and woodlands constitute between 70 - 80% of all forested land (Murphy & Lugo 1986). South of the Equator, (50 to 25 0 S) Miombo woodlands are the main dry for· est type in the continent, occupying an estimated area of 7 million square kilometres (Griffith 1961). Thus, Miombo represents one of the most widespread, yet compact forest types in the world. Almost 50% of the land area of both Tanzania and Zambia, and large tracts of Mozambique, Malawi, Zimbabwe, Zaire and Angola support Miombo (Fig. 1). This aereal distribution corresponds roughly to the Zambezian Floral Domain of White (1965), recognised for its floristic richness and the widespread occurrence of the tree genera Brachystegia, lulbernardia and Isoberlinia. Despite the widespread nature of this woodland type, its long history of exploitation and the increasing human·related pressure and needs within the countries mentioned, Miombo resource-use re mains largely undocumented. The data base on inventory, silviculture, IRISH FORESTRY, 1990. Vol. 47 (2)' 90·107 THE MIOMBO WOODLANDS 91 • I _. -
Disaggregation of Bird Families Listed on Cms Appendix Ii
Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2. -
Conservation Biology and Controlling International Status of the African Wild Trade in Endangered Dog, Lycaon Pictus Species
U PDATE IncludingEndangered a Reprint Species of theTechnical latest USFWS Bulletin School of Natural Resources and Environment August 7994 Vol. 7 7 No. 70 THE UNIVERSITY OF MICHIGAN In this Issue Conservation Biology and Controlling International Status of the African Wild Trade in Endangered Dog, Lycaon pictus Species Resilience and Resistance: Old Growth Forests and the Relevance for Conservation Puerto Rican Parrot Biology and Management Conservation Biology and Status of the African wild dog, Lycaon pictus by - Joshua R, Ginsberg - The African wild dog (Lycaon Causes of Decline Loss of habitat and direct persecu- pictus) was once found from Senegal to tion by humans were probably respon- South Africa. Inhabiting a wide range of A number of explanations and hy- sible for initial declines and local extinc- ecosystems, from deserts to the alpine potheses have been invoked to explain tions. Morerecently, other factors which meadows of Mount Kilimanjaro (re- the pan-African decline in Lycaon num- may have led to local or regional de- viewed in Fanshawe et al. 1991 ; Ginsberg bers (Fanshawe et al. 1991). Wild dogs clines in numbers include competition andMacdonald 1990),Lycaon wasprob- occur at low densities relative to other with other carnivores (Frame 1986; ably found in all environments except large predators. For example, while Sinclair, in press); direct conflict with true rainforests. Well over a hundred lions frequently occur at densities of one humans (Childes 1988; Hines 1990; thousand wild dogs, or five times that lion per five square kilometers (Schaller Malcolm 1979); disease (Creel et al., in many, may have lived in Africa at the 1972), wild dog densities average one press; Burrows et al. -
New Birds in Africa New Birds in Africa
1 2 3 4 5 6 7 NEWNEW BIRDSBIRDS ININ AFRICAAFRICA 8 9 10 11 The last 50 years 12 13 Text by Phil Hockey 14 15 Illustrations by Martin Woodcock from Birds of Africa, vols 3 and 4, 16 reproduced with kind permission of Academic Press, and 17 David Quinn (Algerian Nuthatch) reproduced from Tits, Nuthatches & 18 Treecreepers, with kind permission of Russel Friedman Books. 19 20 New birds are still being discovered in Africa and 21 elsewhere, proof that one of the secret dreams of most birders 22 23 can still be realized. This article deals specifically with African discoveries 24 and excludes nearby Madagascar. African discoveries have ranged from the cedar forests of 25 northern Algeria, site of the discovery of the Algerian Nuthatch 26 27 (above), all the way south to the east coast of South Africa. 28 29 ome of the recent bird discoveries in Africa have come case, of their discoverer. In 1972, the late Dr Alexandre 30 Sfrom explorations of poorly-known areas, such as the Prigogine described a new species of greenbul from 31 remote highland forests of eastern Zaïre. Other new spe- Nyamupe in eastern Zaïre, which he named Andropadus 32 cies have been described by applying modern molecular hallae. The bird has never been seen or collected since and 33 techniques capable of detecting major genetic differences Prigogine himself subse- quently decided that 34 between birds that were previously thought to be races of the specimen was of a melanis- 35 the same species. The recent ‘splitting’ of the Northern tic Little Greenbul Andropadus 36 and Southern black korhaans Eupodotis afraoides/afra of virens, a species with a 37 southern Africa is one example. -
Kenyan Birding & Animal Safari Organized by Detroit Audubon and Silent Fliers of Kenya July 8Th to July 23Rd, 2019
Kenyan Birding & Animal Safari Organized by Detroit Audubon and Silent Fliers of Kenya July 8th to July 23rd, 2019 Kenya is a global biodiversity “hotspot”; however, it is not only famous for extraordinary viewing of charismatic megafauna (like elephants, lions, rhinos, hippos, cheetahs, leopards, giraffes, etc.), but it is also world-renowned as a bird watcher’s paradise. Located in the Rift Valley of East Africa, Kenya hosts 1054 species of birds--60% of the entire African birdlife--which are distributed in the most varied of habitats, ranging from tropical savannah and dry volcanic- shaped valleys to freshwater and brackish lakes to montane and rain forests. When added to the amazing bird life, the beauty of the volcanic and lava- sculpted landscapes in combination with the incredible concentration of iconic megafauna, the experience is truly breathtaking--that the Africa of movies (“Out of Africa”), books (“Born Free”) and documentaries (“For the Love of Elephants”) is right here in East Africa’s Great Rift Valley with its unparalleled diversity of iconic wildlife and equatorially-located ecosystems. Kenya is truly the destination of choice for the birdwatcher and naturalist. Karibu (“Welcome to”) Kenya! 1 Itinerary: Day 1: Arrival in Nairobi. Our guide will meet you at the airport and transfer you to your hotel. Overnight stay in Nairobi. Day 2: After an early breakfast, we will embark on a full day exploration of Nairobi National Park--Kenya’s first National Park. This “urban park,” located adjacent to one of Africa’s most populous cities, allows for the possibility of seeing the following species of birds; Olivaceous and Willow Warbler, African Water Rail, Wood Sandpiper, Great Egret, Red-backed and Lesser Grey Shrike, Rosy-breasted and Pangani Longclaw, Yellow-crowned Bishop, Jackson’s Widowbird, Saddle-billed Stork, Cardinal Quelea, Black-crowned Night- heron, Martial Eagle and several species of Cisticolas, in addition to many other unique species. -
Using Natural Fertilizers in Miombo Woodlands by Emmanuel Chidumayo
ISSUES 'IN AFRICAN BIODIVERSITY THE BIODIVERSITY SUPPORT PROGRAM IYwmber 2, May 1999 Using Natural Fertilizers in Miombo Woodlands By Emmanuel Chidumayo Introduction Miombo woodlands grow on the ancient central African plateau and its escarpments. They form a swathe across the continent from Angola to Mozambique, and extend from lhnzania and southern Congo in the north, to Zimbabwe in the south. Scientists distin- guish miombo from other savanna woodland and forest formations by the presence of legume trees belonging to the genera Brachustegia, Julbernardia, and Isoberlinia. The climate in the miombo zone is subhumid, characterized by a short seasonal rainfall rang- ing from 650 mm to 1,400 mm, occurring from November to March, and a long dry sea- son (April to October/November). Miombo is divided with the wetter type (with > 1,000 mm of rainfall) occurring in the north, and drier type (with < 1,000 mm) (White 1983) occurring in the south of the miombo zone. Miombo occurs on geologically old and acidic (pH 4-6) soils with low fertility. A charac- teristic association between miombo tree species and ectomycorrhizal fungi significantly increases mineral uptake from the soil. There is higher species diversity in miombo woodlands and associated wetlands or dambos than, for example, acacia woodlands. Miombo is of outstanding international importance for the conservation of plants and birds, many of whichare endemic to the region. It provides seasonal habitat for two large, spectacular antelope in Africa, the roan and sable. Miombo trees are typically highly resilient to the annual fires that sweep across the region, and resprout rapidly after anthropogenic disturbance; however, woodland regeneration can be stalled or prevented if trees are uprooted and the connection with ectomycorrhiza is disturbed. -
An Update of Wallacels Zoogeographic Regions of the World
REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009). -
The Birds of the Dar Es Salaam Area, Tanzania
Le Gerfaut, 77 : 205–258 (1987) BIRDS OF THE DAR ES SALAAM AREA, TANZANIA W.G. Harvey and KM. Howell INTRODUCTION Although the birds of other areas in Tanzania have been studied in detail, those of the coast near Dar es Salaam have received relatively little recent attention. Ruggles-Brise (1927) published a popular account of some species from Dar es Salaam, and Fuggles-Couchman (1939,1951, 1953, 1954, 1962) included the area in a series of papers of a wider scope. More recently there have been a few other stu dies dealing with particular localities (Gardiner and Gardiner 1971), habitats (Stuart and van der Willigen 1979; Howell 1981), or with individual species or groups (Harvey 1971–1975; Howell 1973, 1977). Britton (1978, 1981) has docu mented specimens collected in the area previous to 1967 by Anderson and others. The purpose of this paper is to draw together data from published reports, unpu blished records, museum specimens and our own observations on the frequency, habitat, distribution and breeding of the birds of the Dar es Salaam area, here defi ned as the portion of the mainland within a 64-km radius of Dar es Salaam, inclu ding the small islands just offshore (Fig. 1). It includes Dar es Salaam District and portions of two others, Kisarawe and Bagamoyo. Zanzibar has been omitted because its unusual avifauna has been reviewed (Pakenham 1979). Most of the mainland areas are readily accessible from Dar es Salaam by road and the small islands may be reached by boat. The geography of the area is described in Sutton (1970). -
Coordinated Monitoring of the Endangered Spotted Ground Thrush in the East African Breeding and Non-Breeding Grounds
CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT I. BASIC DATA Organization Legal Name: BirdLife International Project Title (as stated in the grant agreement): Coordinated Monitoring of the Endangered Spotted Ground Thrush in the East African Breeding and Non-breeding Grounds Implementation Partners for This Project: Wildlife Conservation Society of Tanzania, Nature Kenya, A Rocha Kenya, individual contributors of basic data Project Dates (as stated in the grant agreement): March 1, 2007 - December 31, 2008 Date of Report (month/year): February 2009 II. OPENING REMARKS Provide any opening remarks that may assist in the review of this report. Spotted Ground Thrush Zoothera guttata is an endemic resident and intra-African migrant bird species. The species is classified as Endangered. Although the species can be found in seven African countries (DRC, Kenya, Malawi, Mozambique, South Africa, Sudan, Tanzania), Z. g. fischeri, one of the five recognised races of the species, is confined to and migrates within the coastal forests of Kenya and Tanzania. Recent records from Rondo Plateau in the coastal forests of Lindi District in Tanzania indicate that Z. g. fischeri breeds in southern Tanzania coastal forests. It is known as a non-breeding visitor to forests on the Kenya coast and north- eastern Tanzania from Lamu to Pugu Hills. Since the bird is a cross-border species it is particularly difficult to conserve and requires concerted action. In response to this challenge, BirdLife International developed an International Action Plan for the species and further translated it into the national contexts for Kenya and Tanzania using participative stakeholder workshops. In all the three action plans, it is recognised that limited knowledge about the species distribution, movement and population size is a critical problem hindering its conservation, especially in East Africa. -
Miombo Ecoregion Vision Report
MIOMBO ECOREGION VISION REPORT Jonathan Timberlake & Emmanuel Chidumayo December 2001 (published 2011) Occasional Publications in Biodiversity No. 20 WWF - SARPO MIOMBO ECOREGION VISION REPORT 2001 (revised August 2011) by Jonathan Timberlake & Emmanuel Chidumayo Occasional Publications in Biodiversity No. 20 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe PREFACE The Miombo Ecoregion Vision Report was commissioned in 2001 by the Southern Africa Regional Programme Office of the World Wide Fund for Nature (WWF SARPO). It represented the culmination of an ecoregion reconnaissance process led by Bruce Byers (see Byers 2001a, 2001b), followed by an ecoregion-scale mapping process of taxa and areas of interest or importance for various ecological and bio-physical parameters. The report was then used as a basis for more detailed discussions during a series of national workshops held across the region in the early part of 2002. The main purpose of the reconnaissance and visioning process was to initially outline the bio-physical extent and properties of the so-called Miombo Ecoregion (in practice, a collection of smaller previously described ecoregions), to identify the main areas of potential conservation interest and to identify appropriate activities and areas for conservation action. The outline and some features of the Miombo Ecoregion (later termed the Miombo– Mopane Ecoregion by Conservation International, or the Miombo–Mopane Woodlands and Grasslands) are often mentioned (e.g. Burgess et al. 2004). However, apart from two booklets (WWF SARPO 2001, 2003), few details or justifications are publically available, although a modified outline can be found in Frost, Timberlake & Chidumayo (2002). Over the years numerous requests have been made to use and refer to the original document and maps, which had only very restricted distribution. -
Systematic and Taxonomic Issues Concerning Some East African Bird Species, Notably Those Where Treatment Varies Between Authors
Scopus 34: 1–23, January 2015 Systematic and taxonomic issues concerning some East African bird species, notably those where treatment varies between authors Donald A. Turner and David J. Pearson Summary The taxonomy of various East African bird species is discussed. Fourteen of the non- passerines and forty-eight of the passerines listed in Britton (1980) are considered, with reference to treatments by various subsequent authors. Twenty-three species splits are recommended from the treatment in Britton (op. cit.), and one lump, the inclusion of Jackson’s Hornbill Tockus jacksoni as a race of T. deckeni. Introduction With a revision of Britton (1980) now nearing completion, this is the first of two pa- pers highlighting the complexities that surround some East African bird species. All appear in Britton in one form or another, but since that landmark publication our knowledge of East African birds has increased considerably, and with the advances in DNA sequencing, our understanding of avian systematics and taxonomy is con- tinually moving forward. A tidal wave of phylogenetic studies in the last decade has revolutionized our understanding of the higher-level relationships of birds. Taxa pre- viously regarded as quite distantly related have been brought together in new clas- sifications and some major groups have been split asunder (Knox 2014). As a result we are seeing the familiar order of families and species in field guides and checklists plunged into turmoil. The speed at which molecular papers are being published continues at an unprec- edented rate. We must remember, however, that while many molecular results may indicate a relationship, they do not necessarily prove one. -
Protected Area Management Plan Development - SAPO NATIONAL PARK
Technical Assistance Report Protected Area Management Plan Development - SAPO NATIONAL PARK - Sapo National Park -Vision Statement By the year 2010, a fully restored biodiversity, and well-maintained, properly managed Sapo National Park, with increased public understanding and acceptance, and improved quality of life in communities surrounding the Park. A Cooperative Accomplishment of USDA Forest Service, Forestry Development Authority and Conservation International Steve Anderson and Dennis Gordon- USDA Forest Service May 29, 2005 to June 17, 2005 - 1 - USDA Forest Service, Forestry Development Authority and Conservation International Protected Area Development Management Plan Development Technical Assistance Report Steve Anderson and Dennis Gordon 17 June 2005 Goal Provide support to the FDA, CI and FFI to review and update the Sapo NP management plan, establish a management plan template, develop a program of activities for implementing the plan, and train FDA staff in developing future management plans. Summary Week 1 – Arrived in Monrovia on 29 May and met with Forestry Development Authority (FDA) staff and our two counterpart hosts, Theo Freeman and Morris Kamara, heads of the Wildlife Conservation and Protected Area Management and Protected Area Management respectively. We decided to concentrate on the immediate implementation needs for Sapo NP rather than a revision of existing management plan. The four of us, along with Tyler Christie of Conservation International (CI), worked in the CI office on the following topics: FDA Immediate