Design and Performance of an Ingaas–Inp Single-Photon Avalanche

Total Page:16

File Type:pdf, Size:1020Kb

Design and Performance of an Ingaas–Inp Single-Photon Avalanche Heriot-Watt University 1 Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector Sara Pellegrini, Ryan E. Warburton, Lionel J. J. Tan, Jo Shien Ng, Andrey B. Krysa, Kristian Groom, John P. R. David, Sergio Cova, Michael J. Robertson, and Gerald S. Buller Abstract—This paper describes the design, fabrication, and performance of planar-geometry InGaAs–InP devices which were II. DEVICE STRUCTURE specifically developed for single-photon detection at a wavelength of 1550 nm. General performance issues such as dark count rate, single-photon detection efficiency, afterpulsing, and jitter are The devices studied in this paper are of planar geometry and described. are based on the separate absorption, grading and multiplication region APDs [12] commonly used for I. INTRODUCTION applications requiring internal gain of weak input optical signals. In this structure the optical absorption is performed in INGLE-PHOTON counting and single-photon timing the In0.53Ga0.47 As, which is not suitable for multiplication, S have become increasingly important in a number of since tunnelling in this material [13] would take place at a applications such as time-resolved photoluminescence [1], lower electric field than that required for impact ionization. optical time-domain reflectometry (OTDR) [2] and time-of- Instead, multiplication takes place in the wider gap InP. In flight laser ranging [3] and imaging. More recently they have order to smooth the large valence band discontinuity between been employed in quantum key distribution [4] and InGaAs and InP (see below), a suitable quaternary grading noninvasive testing of VLSI circuits [5]. Commercially layer of InGaAsP is added between the two materials. available InGaAs-InP avalanche photodiodes (APDs) designed It is important to notice that the design criteria for the for use in linear multiplication mode have been tested in devices described in this paper are similar to linear Geiger mode [6], [7] in order to extend the spectral range of multiplication APDs except in three important respects. 1) The efficient single-photon detection to wavelengths greater than design must allow low temperature operation (at least down to that afforded by the currently available Si-based single-photon 150 K) in order to reduce the DCR due to thermally generated avalanche diode (SPAD) detectors (i.e., wavelengths greater carriers, therefore the difference between the punch-though than 1 m). These InGaAs–InP detectors have exhibited good voltage and the breakdown voltage must be of at least 30 V, single-photon detection efficiency (SPDE) (SPDE > 10%) and since the former remains almost unchanged, while the latter is subnanosecond timing jitter, however they have limited reduced with decreasing temperature. 2) The design must take counting rates due to the severe deleterious effects of the into account the higher electric fields used in comparison with afterpulsing phenomenon. Alternative approaches to photon- linear multiplication devices. In particular, it is necessary to counting have also been developed such as quantum-dot (QD) avoid as far as possible tunneling effects, even those with low field effect transistors [8] and QD resonant tunnelling diodes probability, since they will also increase the DCR. This is [9] which have shown promising results in terms of SPDE at achieved by having a low electric field in the InGaAs. 3) The wavelengths around 684 nm [10]. Superconducting single- mask design incorporates different diffused area curvatures in photon detectors [11] have demonstrated a SPDE of order to accommodate the smaller volume structures needed approximately 5% at a wavelength of 1.55 m when cooled to for low DCRs whilst avoiding edge breakdown effects, such as a temperature of 4 K. the 10-µm diameter devices (see later). The specific choice of This paper describes the design, fabrication and the zinc diffused planar geometry was based on previous characterization of planar geometry InGaAs–InP avalanche studies done by our research groups, which highlighted diode detectors, which have been specifically designed for consistently lower DCRs in devices fabricated using this single-photon detection. We describe the temperature approach [6], [7], [14]. dependence of the device SPDE, dark count rate (DCR), noise Fig. 1(a) is a schematic showing the principle of device equivalent power (NEP), and jitter, focusing on the effect of operation in relation to its energy band diagram. When a the critical InGaAsP grading layer between the narrow-gap photon is absorbed in the InGaAs layer, an electron–hole pair InGaAs absorption layer and the wide-gap InP multiplication is generated. The electron is swept toward the back contact, layer. This study represents a fabrication program for planar while the hole drifts in the depleted InGaAs layer toward the InGaAs–InP SPADs and highlights some important issues in InP multiplication region where it undergoes impact device design. ionization. The intermediate bandgap InGaAsP is introduced between InGaAs and InP to ensure efficient transfer of holes across the large valence band discontinuity. In this paper we Heriot-Watt University 2 Fig. 2. Microscope image of a 40-_m-diameter InGaAs–InP SPAD. the curvature at the edge of the device, thus reducing the likelihood of edge breakdown [17], where the device will preferentially exhibit avalanche breakdown at the edge of the active area rather than in the central region, hence significantly lowering the SPDE. The likelihood of edge breakdown can be further reduced by the introduction of floating guard rings (FGR) [12] that decrease the electric field at the edges of the main junction. Fig. 1. (a) Energy band diagram of the device under reverse bias conditions. An optical microscope image of the device prior to bonding (b) Schematic cross section of a planar SPAD with one floating guard ring, a top p-contact to the active area, and a bottom n-contact to the substrate. is shown in Fig. 2. The active area of the device is defined by the opening for the deeper zinc diffusion, and the metal contact. Both the central diffusions and the floating guard rings are concentric. The contact is formed by evaporated will show the effect of the grading layer composition on the Au-Zn-Au for the top p-side, and InGe–Au for the n-substrate. SPDE of the InGaAs–InP SPAD. The device material was grown epitaxially by metal organic III. DEVICE CHARACTERISTICS chemical vapor deposition. As shown in Fig. 1(b), the device The reverse current–voltage characteristics showed a similar consists of a 2.5-µm-thick layer of lightly n-doped InGaAs for behavior for both structures. The only evident difference in the efficient absorption of photons at a wavelength of 1.55 µm, curves shown in Fig. 3 for the dark current measured in 10- m- and a 1- m-thick layer of nominally undoped InP for diameter devices from both structures at room temperature is multiplication to take place. The charge sheet layer is a 300- the position of the punch-through voltage (V ). This is the nm-thick InP n-doped at 6 × 1016 cm-3, which is needed to PT voltage at which the depletion region extends into the In-GaAs reduce the electric field from the InP multiplication region to layer and efficient collection of the carriers generated by the InGaAs absorption layer. For the grading layer, two main absorption of 1.55-µm wavelength light can take place. The device designs were grown: 1) with a graded region consisting dark current (I ) and breakdown voltages (V ) are the same of one quaternary with an exactly intermediate bandgap D BD for both structures. The dark current at room temperature was between InGaAs and InP, which we shall call SPAD-1Q and measured to be 3 nA at 95% of V , and V varied between 2) with a graded region composed of three sublayers of BD BD 105 and 110 V across approximately 10 mm of wafer. The stepped bandgap, which we shall call SPAD-3Q. Our previous difference in the punch-through voltage value is most likely attempts to utilize a continuously varying gap were not due to the slight thickness variation between the two structures successful. The p-n junction is fabricated by diffusing the p- in the top InP layer. From Fig. 4, it can also be noticed that the type dopant zinc into the top InP region. In order to minimize punch-through voltage does not change significantly with the DCR of the device, a planar geometry device was formed temperature, as expected, nor does the value of the using the diffusion of the p-type Zn dopant alone. The use of photocurrent measured just above punch-through with an etch and regrowth techniques [15], [16] was avoided in order incident light of 1.55-µm wavelength. The breakdown voltage to reduce interface states that may contribute to dark count and decreases linearly with temperature with a coefficient of ~0.17 afterpulse levels. The active area is shaped by the diffusion of V/K, which is consistent with previously published results [7]. zinc via two separate processes using different mask sets as For the characterization of these detectors in terms of first suggested by Liu et al. [12]. This double diffusion reduces photon-counting performance, we used the setup shown in Heriot-Watt University 3 Fig. 3. Reverse dark current measured in a selection of 10-_m-diameter devices from both structures SPAD-1Q and SPAD-3Q at room temperature. Fig. 5. Experimental setup for photon-counting characterization of the InGaAs–InP SPAD. MB corresponds to the microscope baseplate, and BS is a pellicle beamsplitter. Fig. 5. Two lasers were used for the characterization: a precision alignment and focusing on the detector. White light passively Q-switched diode laser [18] for the timing and an infrared camera were used to image the devices.
Recommended publications
  • Al0.48 In0.52 As Superlattice Avalanche Photodiodes On
    www.nature.com/scientificreports OPEN Engineering of impact ionization characteristics in ­In0.53Ga0.47As/ Al0.48In0.52As superlattice avalanche photodiodes on InP substrate S. Lee1, M. Winslow2, C. H. Grein2, S. H. Kodati1, A. H. Jones3, D. R. Fink1, P Das4, M. M. Hayat4, T. J. Ronningen1, J. C. Campbell3 & S. Krishna1* We report on engineering impact ionization characteristics of ­In0.53Ga0.47As/Al0.48In0.52As superlattice avalanche photodiodes (InGaAs/AlInAs SL APDs) on InP substrate to design and demonstrate an APD with low k-value. We design InGaAs/AlInAs SL APDs with three diferent SL periods (4 ML, 6 ML, and 8 ML) to achieve the same composition as ­Al0.4Ga0.07In0.53As quaternary random alloy (RA). The simulated results of an RA and the three SLs predict that the SLs have lower k-values than the RA because the electrons can readily reach their threshold energy for impact ionization while the holes experience the multiple valence minibands scattering. The shorter period of SL shows the lower k-value. To support the theoretical prediction, the designed 6 ML and 8 ML SLs are experimentally demonstrated. The 8 ML SL shows k-value of 0.22, which is lower than the k-value of the RA. The 6 ML SL exhibits even lower k-value than the 8 ML SL, indicating that the shorter period of the SL, the lower k-value as predicted. This work is a theoretical modeling and experimental demonstration of engineering avalanche characteristics in InGaAs/AlInAs SLs and would assist one to design the SLs with improved performance for various SWIR APD application.
    [Show full text]
  • Leds As Single-Photon Avalanche Photodiodes by Jonathan Newport, American University
    LEDs as Single-Photon Avalanche Photodiodes by Jonathan Newport, American University Lab Objectives: Use a photon detector to illustrate properties of random counting experiments. Use limiting probability distributions to perform statistical analysis on a physical system. Plot histograms. Condition a detector’s signal for further electronic processing. Use a breadboard, power supply and oscilloscope to construct a circuit and make measurements. Learn about semiconductor device physics. Reading: Taylor 3.2 – The Square-Root Rule for a Counting Experiment pp. 48-49 Taylor 5.1-5.3 – Histograms and the Normal Distribution pp. 121-135 Taylor Ch. 11 – The Poisson Distribution pp. 245-254 Taylor Problem 5.6 – The Exponential Distribution p. 155 Experiment #1: Lighting an LED A Light-Emitting Diode is a non-linear circuit element that can produce a controlled amount of light. The AND113R datasheet shows that the luminous intensity is proportional to the current flowing through the LED. As illustrated in the IV curve shown below, the current flowing through the diode is in turn proportional to the voltage across the diode. Diodes behave like a one-way valve for current. When the voltage on the Anode is more positive than the voltage on the Cathode, then the diode is said to be in Forward Bias. As the voltage across the diode increases, the current through the diode increases dramatically. The heat generated by this current can easily destroy the device. It is therefore wise to install a current-limiting resistor in series with the diode to prevent thermal runaway. When the voltage on the Cathode is more positive than the voltage on the Anode, the diode is said to be in Reverse Bias.
    [Show full text]
  • SI Traceable Solar Spectral Irradiance Measurement Based on a Quantum Benchmark: a Prototype Design
    remote sensing Article SI Traceable Solar Spectral Irradiance Measurement Based on a Quantum Benchmark: A Prototype Design Xiaobing Zheng *, Maopeng Xia, Wenchao Zhai, Youbo Hu, Jianjun Li, Yinlin Yuan and Weiwei Pang Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China; [email protected] (M.X.); [email protected] (W.Z.); [email protected] (Y.H.); [email protected] (J.L.); [email protected] (Y.Y.); [email protected] (W.P.) * Correspondence: [email protected] Received: 1 March 2020; Accepted: 29 April 2020; Published: 4 May 2020 Abstract: We propose a space benchmark sensor with onboard SI (Système International) traceability by means of quantum optical radiometry. Correlated photon pairs generated by spontaneous parametric down-conversion (SPDC) in nonlinear crystals are used to calibrate the absolute responsivity of a solar observing radiometer. The calibration is systematic, insensitive to degradation and independent of external radiometric standards. Solar spectral irradiance at 380–2500 nm is traceable to the photon rate and Planck’s constant with an expected uncertainty of about 0.35%. The principle of SPDC calibration and a prototype design of the solar radiometer are introduced. The uncertainty budget is analyzed in consideration of errors arising from calibration and observation modes. Keywords: radiometric benchmark; spontaneous parametric down-conversion; correlated photons; detector calibration; solar irradiance 1. Introduction Space radiometric benchmarks were proposed in recent years to reveal the trend of climate change and evaluate the energy budget of the Earth system with high confidence [1–4].
    [Show full text]
  • Avalanche Photodiodes Arrays
    Rochester Institute of Technology RIT Scholar Works Theses 2004 Avalanche photodiodes arrays Daniel Ma Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Ma, Daniel, "Avalanche photodiodes arrays" (2004). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Avalanche Photodiodes Arrays By Daniel Ma B.S. College of Engineering, Rochester Institute of Technology (1998) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Chester F. Carlson Center for Imaging Science of the College of Science Rochester Institute of Technology August 2004 Signature of the Author __D_a_n_i e_1 _M_a_______ _ Accepted by Harvey E. Rhody .y/h~~s- ) Coordinator, M.S. Degree Program Date CHESTERF.CARLSON CENTER FOR IMAGING SCIENCE COLLEGE OF SCIENCE ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NEW YORK CERTIFICATE OF APPROVAL M.S. DEGREE THESIS The M.S. Degree Thesis of Daniel Ma has been examined and approved by the thesis committee as satisfactory for the thesis requirement for the Master of Science degree Zoran Ninkov Dr. Zoran Ninkov, Thesis Advisor Lynn Fuller Dr. Lynn Fuller Jonathan S. Arney Dr. Jon Arney Date ii THESIS RELEASE PERMISSION ROCHESTER INSTITUTE OF TECHNOLOGY COLLEGE OF SCIENCE CHESTER F. CARLSON CENTER FOR IMAGING SCIENCE Title of Thesis: Avalanche Photodiode Arrays I, Daniel Ma, hereby grant permission to the Wallace Memorial Library of R.I.T.
    [Show full text]
  • Avalanche Photodiode a User Guide Understanding Avalanche Photodiode for Improving System Performance
    High performance sensors APPLICATION NOTE Avalanche photodiode A User Guide Understanding Avalanche photodiode for improving system performance Introduction Contents Avalanche photodiode detectors (APD) APD structures have and will continue to be used in APD noise many diverse applications such as laser Photon counting technique range finders, data communications or photon correlation studies. This paper discusses APD structures, critical Applications performance parameter and excess noise Light detection factor. Laser range finder For low-light detection in the 200- to Photon counting 1150-nm range, the designer has three Datacomm basic detector choices - the silicon PIN Optical Tomography detector, the silicon avalanche LIDAR photodiode (APD) and the photomultiplier Fluorescence detection tube (PMT). Particle sizing APDs are widely used in instrumentation and aerospace applications, offering a combination of high speed and high sensitivity unmatched by PIN detectors, and quantum efficiencies at >400 nm unmatched by PMTs. www.optoelectronics.perkinelmer.com APPLICATION NOTE Table of Contents What is an Avalange photodiode 3 Selecting an APD 5 Excess Noise Factor 6 Geiger Mode 7 Applications 8 www.optoelectronics.perkinelmer.com Avalanche photodiode 2 APPLICATION NOTE What is an Avalanche Photodiode? APD Structures In order to understand why more than one APD structure exists, it is important to appreciate the design trade-offs that must be accommodated by the APD designer. The ideal APD would have zero dark noise, no excess noise, broad spectral and frequency response, a gain range from 1 to 106 or more, and low cost. More simply, an ideal APD would be a good PIN photodiode with gain! In reality however, this is difficult to achieve because of the need to trade-off conflicting design requirements.
    [Show full text]
  • 1. with Schematic Representation Explain the Working Principle of Pin Photo Diode
    Optical Communications 1. With schematic representation explain the working principle of pin photo diode. Ans: PIN Photodiode PIN diode consists of an intrinsic semiconductor sandwiched between two heavily doped p-type and n-type semiconductors as shown in Fig. 6.1.1. Sufficient reverse voltage is applied so as to keep intrinsic region free from carriers, so its resistance is high, most of diode voltage appears across it, and the electrical forces are strong within it. The incident photons give up their energy and excite an electron from valance to conduction band. Thus a free electron hole pair is generated, these are called as photo carriers. These carriers are collected across the reverse biased junction resulting in rise in current in external circuit called photocurrent. In the absence of light, PIN photodiodes behave electrically just like an ordinary rectifier diode. If forward biased, they conduct large amount of current. PIN detectors can be operated in two modes, Photovoltaic and photoconductive. In photovoltaic mode, no bias is applied to the detector. In this case the detector works very slow, and output is approximately logarithmic to the input light level. Real world fiber optic receivers never use the photovoltaic mode. In photoconductive mode, the detector is reverse biased. The output in this case is a current that is very linear with the input light power. The intrinsic region somewhat improves the sensitivity of the device. It does not provide internal gain. The combination of different semiconductors operating at different wavelengths allows the selection of material capable of responding to the desired operating wavelength.
    [Show full text]
  • Mid-Wavelength Infrared Avalanche Photodetector with Alassb/Gasb
    www.nature.com/scientificreports OPEN Mid‑wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice Jiakai Li, Arash Dehzangi, Gail Brown & Manijeh Razeghi* In this work, a mid‑wavelength infrared separate absorption and multiplication avalanche photodiode (SAM‑APD) with 100% cut‑of wavelength of ~ 5.0 µm at 200 K grown by molecular beam epitaxy was demonstrated. The InAsSb‑based SAM‑APD device was designed to have electron dominated avalanche mechanism via the band structure engineered multi‑quantum well structure based on AlAsSb/GaSb H‑structure superlattice and InAsSb material in the multiplication region. The device exhibits a maximum multiplication gain of 29 at 200 K under ‑14.7 bias voltage. The maximum multiplication gain value for the MWIR SAM‑APD increases from 29 at 200 K to 121 at 150 K. The electron and hole impact ionization coefcients were derived and the large diference between their value was observed. The carrier ionization ratio for the MWIR SAM‑APD device was calculated to be ~ 0.097 at 200 K. Mid-wavelength infrared (MWIR) photodetectors which can operate under the low fux conditions are of great interest for long-range military and astronomical applications 1,2. In most of these applications there is a need to increase the capability of the system to detect light in a low photon fux situation. Terefore, gain-based devices such as heterojunction phototransistors (HPTs) and avalanche photodiodes (APDs) are used to achieve the necessary photoresponse when the incoming photon fux is low 3–5. Compared with the HPTs, the APDs can amplify weak signals without the relatively more complicated HPT device structure6.
    [Show full text]
  • Infrared Avalanche Photodiode Detectors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Defence Science Journal Defence Science Journal, Vol. 67, No. 2, March 2017, pp. 159-168, DOI : 10.14429/dsj.67.11183 2017, DESIDOC Infrared Avalanche Photodiode Detectors Anand Singh and Ravinder Pal Solid State Physics Laboratory, Delhi - 110 054, India E-mail: [email protected] ABSTRACT This study presents on the design, fabrication and characteristics of HgCdTe mid-wave infrared avalanche photodiode (MWIR APD). The gain of 800 at - 8 V bias is measured in n+-ν-p+ detector array with pitch size of 30 μm. The gain independent bandwidth of 6 MHz is achieved in the fabricated device. This paper also covers the status of HgCdTe and III-V material based IR-APD technology. These APDs having high internal gain and bandwidth are suitable for the detection of attenuated optical signals such as in the battle field conditions/long range imaging in defence and space applications. It provides a combined solution for both detection and amplification if the detector receives a very weak optical signal. HgCdTe based APDs provide high avalanche gain with low excess noise, high quantum efficiency, low dark current and fast response time. Keywords: Avalanche photodiode detectors; APD; HgCdTe; Gain-band width product; Excess noise 1. INTRODUCTION bias with low noise and high bandwidth1-3. In general, APD Detection of camouflaged and low temperature/emissivity operates below the break down voltage of the semiconductor targets particularly at long range or in the battle field/humid and is known as the linear amplifier for the input optical signal, environments become a challenge.
    [Show full text]
  • Spaceborne,Low-Noise,Single-Photon Detection for Satellite-Based Quantum Communications
    Spaceborne,low-noise,single-photon detection for satellite-based quantum communications MENG YANG,1,2 FEIHU XU,1,2 JI-GANG REN,1,2 JUAN YIN,1,2 YANG LI,1,2 YUAN CAO,1,2 QI SHEN,1,2 HAI-LIN YONG,1,2 LIANG ZHANG,2,3 SHENG-KAI LIAO,1,2,4 JIAN-WEI PAN,1,2 AND CHENG-ZHI PENG1,2,5 1Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China 2Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China 3Key Laboratory of Space Active Opto-Electronic Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China 4e-mail: [email protected] 5e-mail: [email protected] Abstract: Single-photon detectors (SPDs) play important roles in highly sensitive detection applications, such as fluorescence spectroscopy, remote sensing and ranging, deep space optical communications, elementary particle detection, and quantum communications. However, the adverse conditions in space, such as the increased radiation flux and thermal vacuum, severely limit their noise performances, reliability, and lifetime. Herein, we present the first example of spaceborne, low-noise, high reliability SPDs, based on commercial off-the-shelf (COTS) silicon avalanche photodiodes (APD). Based on the high noise-radiation sensitivity of silicon APD, we have developed special shielding structures, multistage cooling technologies, and configurable driver electronics that significantly improved the COTS APD reliability and mitigated the SPD noise-radiation sensitivity.
    [Show full text]
  • Silicon–Germanium Receivers for Short-Wave
    Nanophotonics 2021; 10(3): 1059–1079 Review Daniel Benedikovic*, Léopold Virot, Guy Aubin, Jean-Michel Hartmann, Farah Amar, Xavier Le Roux, Carlos Alonso-Ramos, Éric Cassan, Delphine Marris-Morini, Jean-Marc Fédéli, Frédéric Boeuf, Bertrand Szelag and Laurent Vivien Silicon–germanium receivers for short-wave- infrared optoelectronics and communications High-speed silicon–germanium receivers (invited review) https://doi.org/10.1515/nanoph-2020-0547 nanophotonic devices. Along with recent advances in sili- Received September 28, 2020; accepted November 25, 2020; con–germanium-based lasers and modulators, short- published online December 8, 2020 wave-infrared receivers are also key photonic chip ele- ments to tackle cost, speed and energy consumption Abstract: Integrated silicon nanophotonics has rapidly challenges of exponentially growing data traffics within established itself as intriguing research field, whose outlets next-generation systems and networks. Herein, we provide impact numerous facets of daily life. Indeed, nano- a detailed overview on the latest development in nano- photonics has propelled many advances in optoelec- photonic receivers based on silicon and germanium, tronics, information and communication technologies, including material processing, integration and diversity of sensing and energy, to name a few. Silicon nanophotonics device designs and arrangements. Our Review also em- aims to deliver compact and high-performance compo- phasizes surging applications in optoelectronics and nents based on semiconductor chips leveraging mature communications and concludes with challenges and per- fabrication routines already developed within the modern spectives potentially encountered in the foreseeable microelectronics. However, the silicon indirect bandgap, future. the centrosymmetric nature of its lattice and its wide transparency window across optical telecommunication Keywords: group-IV nanophotonicss; integrated opto- wavebands hamper the realization of essential function- electronics and communications; optical photodetector.
    [Show full text]
  • A Compact Model for Si-Ge Avalanche Photodiodes
    A Compact Model for Si-Ge Avalanche Photodiodes Wang, Binhao; Huang, Zhihong; Zeng, Xiaoge; Sorin, Wayne V.; Liang, Di; Beausoleil, Raymond G. Hewlett Packard Labs HPE-2018-05 Keyword(s): Avalanche photodiodes (APDs); Modeling; Optical communication Abstract: A compact Si-Ge avalanche photodiode (APD) model, including carrier transit time and electrical parasitics, accurately captures electrical and optical dynamics in a wide range of gain. Excellent matching between simulated and measured 30 Gb/s eye diagrams is presented. External Posting Date: May 18, 2018 [Fulltext] Internal Posting Date: May 18, 2018 [Fulltext] Copyright 2018 Hewlett Packard Enterprise Development LP A Compact Model for Si–Ge Avalanche Photodiodes Binhao Wang*, Zhihong Huang, Xiaoge Zeng, Rui Wu, Wayne V. Sorin, Di Liang, Raymond G. Beausoleil Hewlett Packard Labs, Hewlett Packard Enterprise, Palo Alto, CA, 94304, USA *[email protected] Abstract— A compact Si-Ge avalanche photodiode (APD) each different gain-operation regime. For data communication, circuit model, including carrier transit time and electrical APDs are often operated above gain of 5 to enhance the APD parasitics, is demonstrated and accurately captures electrical and receiver sensitivity, but it also operates below the maximum optical dynamics in a wide range of multiplication gain. Excellent gain to avoid a poor signal-to-noise ratio and a large gain matching between simulated and measured 30 Gb/s eye diagrams fluctuation. Previous models for III-V or Si-Ge APDs lack is presented. accurate modeling in such a broad range of multiplication gain by considering both device electrical parasitics or carrier transit Keywords—Avalanche photodiodes (APDs); Modeling; Optical time dynamics [7, 8].
    [Show full text]
  • B2,3,8,X26093 Page 1 of 9 IAC-14-B2,3,8,X26093 IMPLICATIONS of SKY RADIANCE on DEEP-SPACE OPTICAL COMMUNICATION LINKS Ke
    65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the International Astronautical Federation. All rights reserved. IAC-14-B2,3,8,x26093 IMPLICATIONS OF SKY RADIANCE ON DEEP-SPACE OPTICAL COMMUNICATION LINKS Kevin Shortt German Aerospace Center, Germany, [email protected] Dirk Giggenbach German Aerospace Center, Germany, [email protected] Thomas Dreischer RUAG Schweiz AG, Switzerland, [email protected] Carlos Rivera ISDEFE, Spain, [email protected] Robert Daddato, Andrea Di Mira, Igor Zayer European Space Agency, Germany [email protected], [email protected], [email protected] As the number of deep-space missions that are turning to optical communications to support science operations increases, system designers are taking a more in depth look at the link budgets that govern such links. Noise sources, such as the radiance arising from scattering in the Earth’s atmosphere and light reflected from planetary bodies in close visual proximity to spacecraft, become particularly critical given the photon-starved channels normally associated with deep-space links. In the case of the Earth’s atmosphere, sky radiance becomes a significant factor when considering daytime operations especially when operators need to support spacecraft contacts close to the Sun. This paper encapsulates the implications of sky radiance on deep-space optical communication scenarios and provides an overview of the current efforts underway in Europe to further quantify its impact on future mission operations. I. INTRODUCTION In the European context, this research is particularly timely given that the European Space Agency, as well Photons received as a result of sky radiance have a as other European players, have set their sights on a major impact on optical communication links to deep- number of deep-space missions in the coming years.
    [Show full text]