Older Adults' Physical Activity and Exergames: a Systematic Review

Total Page:16

File Type:pdf, Size:1020Kb

Older Adults' Physical Activity and Exergames: a Systematic Review INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 2019, VOL. 35, NO. 2, 140–167 https://doi.org/10.1080/10447318.2018.1441253 Older Adults’ Physical Activity and Exergames: A Systematic Review Dennis L. Kappen a, Pejman Mirza-Babaei a, and Lennart E. Nacke b aUXR Lab, University of Ontario Institute of Technology, Oshawa, Canada; bHCI Games Group, Games Institute, University of Waterloo, Waterloo, Canada ABSTRACT Exertion games, also referred to as exergames, have become popular because they combine physical activity (PA) with game mechanics, such as actions, challenges, and achievements. Exergames have been also used to encourage PA among older adults, as technological interventions to help achieve the latters’ health and wellness goals and as aids to rehabilitation. To the best of our knowledge, no systematic review of empirical studies on exergaming and older adults’ PA has been reported in the literature. Our review indicates that exergames make a measurable contribution to the improvement of health and wellness goals of older adults. Our systematic review identifies 9 categories and 19 themes of exergame applications in the domain of older adults’ PA. We aggregate these categories and themes into three broader exergaming clusters, of “training,”“rehabilitation,” and “wellness.” Additionally, we outline pathways for future empirical research into applying exergames as health and wellness inter- ventions for older adults through physical activities. 1. Introduction Marsiske, Sisco, Yam, & Mann, 2012), improvement in range of motion (ROM) (Bobeth, Schmehl, Kruijff, Given advances in technology and healthcare, it is estimated that Deutsch, & Tscheligi, 2012), and mental stimulation the number of US adults aged 65 and older will more than (Ijsselsteijn, Nap, De Kort, & Poels, 2007; Marston, 2013; double to 71 million by 2030 (Centers for Disease Control and Siriaraya, Ang, & Bobrowicz, 2012), to feelings of social Prevention, 2012). Technological interventions are helping older connectedness in their peer groups (Pedell, Vetere, Kulik, adults improve their general health and wellness, as well as Ozanne, & Gruner, 2010;Waycottetal.,2013). providing them with effective rehabilitation mechanisms. Older While older adults participate in aerobic activity classes, adults face increasing cognitive and physical challenges in their dancing, yard work or gardening, swimming and water lives, and exertion games or exergames are a way of encouraging aerobics (Elsawy & Higgins, 2010), or even Tai Chi physical activity (PA), with clear anticipated benefits. (Pigford, 2010), the cognitive and physical deterioration Exergames are innovative and interactive digital games that associated with aging tends to reduce older adults’ cap- combine exercise and video games (Sinclair, Hingston, & abilities to participate in playing digital games or video Masek, 2007). These digital games may track and react to game exercising (Lin, Mamykina, Lindtner, Delajoux, & body movements. Exergaming for older adults, whose range Strub, 2006). However, playful applications, such as of PA is often delimited, demands a greater understanding of motion-based video games, hold the promise of providing the complexities of human interaction. A systematic review of accessible PA for older adults (Gerling, Livingston, Nacke, exergames in this context is needed to advance our knowledge &Mandryk,2012). Prior research focused on an older of the development of interactive systems, from a human demographic has demonstrated the benefits to physical perspective that is specific to older adults. and emotional well-being of these game applications (Jung,Li,Janissa,Gladys,&Lee,2009;Schutzer& 1.1. Exergame applications Graves, 2004). Motivational characteristics, such as purpo- seful interactions, customization of activities, fostering Participation in recreational activities, such as playing independence, building relationships, sharing, and accom- digital games or exercising as a recreational activity, modating preferences (Kappen, Nacke, Gerling, & Tsotsos, improves older adults’ quality of life (QOL) (Marston, 2016), are common for older adults, which relate to their 2013). Video games as playful technology applications lifestyle attitudes. Significant increase in wellness scores provide entertainment (Gamberini et al., 2008; measured by the Wellness Evaluation of Lifestyle inven- Smeddinck, Gerling, & Tiemkeo, 2013)forthisdemo- tory was indicated due to decreased sedentary time and graphic. The benefits of playing range from focusing increased PA (Barwais, Cuddihy, & Tomson, 2013). players’ attention (Hwang, Hong, Jong, Lee, & Chang Additionally, prescriptive interventions using casual video 2009) increased gameplay engagement (Belchior, CONTACT Dennis L. Kappen [email protected] © 2018 Taylor & Francis Group, LLC INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 141 games indicated an improvement in participants’ mood of technology (Wagner, Hassanein, & Head, 2010). A and reduced stress (Russoniello, O’Brien, & Parks, 2009). review of custom-designed motion-based games for older adults (Gerling & Mandryk, 2014) indicated the need to accommodate exergaming interaction activities to address 1.2. Current systematic reviews age-related changes due to cognitive, psychological, and Research on exergames has dramatically increased in the psychomotor impairments. last decade (Kharrazi, Lu, Gharghabi, & Coleman, 2012). Systematic reviews have also been undertaken that focus on This scoping review established the positive influence of the health benefits of exergames. A review of studies relating exergames in health contexts with specific focus on num- to simultaneous physical and cognitive exercises highlighted ber of publications per clinical contexts such as PA and the role of functional brain connectivity work and multimodal nutrition. This review concluded the need to include training to understand and train the aging brain through females and elderly in studies, increase the number of exergames (Bamidis et al., 2014). Review of studies using participants, increase the intervention period and user– exergames in Parkinson’s disease (PD) rehabilitation indicated game interaction, and expand the application of health improvements in balance, reduction in severity of motor games to clinical contexts other than PA and nutrition symptoms, and rehabilitate motor skills (Barry, Galna, & (Kharrazi et al., 2012). Previous reviews of the literature Rochester, 2014). Furthermore, a scoping review of exergames have also addressed specific health contexts relating exer- and implementation potential for patients with heart failure games as interventions for older adults. Review of exer- indicated that there was improved balance, improved cogni- games used as interventions to help cope with effects of tive function, enjoyment of the exergames, reduction of ageing indicated that this technology could be used as a depressive symptoms, thus improving the QOL for such therapeutic tool (Velazquez et al., 2014). Their review patients (Verheijden Klompstra, Jaarsma, & Strömberg, conducted assessments of 52 articles and concluded that 2014). Another systematic review on the training of muscu- exergames could serve as a diagnostic tool to find or loskeletal functions using exergames showed evidence of evaluate a health condition or as a therapeutic tool to delayed functional and muscle loss in the aged and helped modify a health condition (Velazquez et al., 2014). to overcome decline in motor skills (Rodrigues, Valderramas, However, this review did not focus on the PA outcome Rossetin, & Gomes, 2014). A systematic review on the percep- of using exergames. A review article of sedentary behavior tions of the efficacy of exergames and falls prevention sug- of older adults (56 articles) established the need to over- gested that these games facilitated intrinsic factors such as come sedentariness through PA and its relationship with independence, control, and the perceived need of safety to health outcomes such as mortality, metabolic syndrome, continue using exergame technologies (Hawley-Hague, cardiometabolic markers, triglycerides, high-density lipo- Boulton, Hall, Pfeiffer, & Todd, 2014). A narrative literature protein cholesterol, blood pressure, abdominal obesity, review looked at adults’ motivation to play exergames and the obesity, and cancer (Fornias, Rezende, Rey-Lopez, experience of playing such games which indicated that differ- Matsudo, & Luiz, 2014). The use of technology to help ences in older adults (e.g., age, gender, education) and game- improve these health outcomes is also critical from the play in natural setting would enable hedonic aspects of integration of technology and health contexts. In this vein, playing exergames (Loos, 2017). using mobile phones as health interventions to stimulate Themes such as mental, physical, and social health factors PA, medicine management, falls detection, dermatology, emerged in a systematic review on health benefits of digital and exercise monitoring for heart patients contributed to video games (Hall, Chavarria, Maneeratana, Chaney, & the overall improvement in the QOL of older adults (Joe Bernhardt, 2012). Similarly, research on the effectiveness and & Demiris, 2013). A review of seven randomized con- efficiency of digital games indicated that social, psychological, trolled trials (RCTs) using validated scales indicated the physiological, and sensory-motor themes facilitate in the pre- effectiveness of exergames in physical outcomes for
Recommended publications
  • Development of Exergaming Simulator for Gym Training, Exercise Testing and Rehabilitation
    Journal of Communication and Computer 11(2014) 403-411 D doi: 10.17265/1548-7709/2014.05 001 DAVID PUBLISHING Development of Exergaming Simulator for Gym Training, Exercise Testing and Rehabilitation Veli-Matti Nurkkala, Jonna Kalermo and Timo Jarvilehto Kajaani University of Applied Sciences, Information Systems, Kajaani 87100, Finland Abstract: “Video games that require physical activity in order to play” is a common definition of exergames. Products, such as Wii Fit and dance pads, are well-known exergame products targeted to home use. Also exergaming products for professional use are gradually becoming more common in gyms, fitness centers, rehabilitation centers, as well as in activity and amusement parks. A lot of research has been carried out on the benefits that the exergaming products can provide for people of different ages, for example. The results have been promising, and the possibilities of exergaming in the fight against obesity and inactivity have been recognized. New exergaming products are coming to markets in increasing speed. However, the field is still very young, and there is space and demand for new innovations. During the last two years, we have been developing a new exergaming simulator for gym training, exercise testing and rehabilitation. As a next generation exergaming device, the simulator combines various gym and rehabilitation equipment (treadmill, exercise bike, etc.) with virtual environments, games, sports applications, immersive gaming view, and advanced motion controllers. Key words: Exergaming, Athene exergaming, fitness games, games for health, virtual environment. 1. Introduction includes powerpad (pressure-sensors embedded between two layers of flexible plastic) with games [3]. The term exergaming (also exergaming, A year later, Exus released Foot Craz running pad portmanteau from words exercising and gaming) has which was compatible with Video Jogger and Video become widely used.
    [Show full text]
  • Video Game Sale List, August 2009.Numbers
    Atari 2600 Joe Grand’s ([email protected]) Video Game Sale List, August 2009 Item Price Amiga Joyboard controller $25 Atari 2600 4-switch black (w/ power supply) $20 Atari driving controller (one) $5 Atari joystick, standard $5 Atari paddle controllers $5 Atari Space Age joystick (two) $15 each Coleco Gemini (Atari 2600 clone) (console only) $10 Coleco Gemini paddle controllers $5 Flight Commander joystick $20 M-Network TRON joystick $20 Touchpad joystick (unknown brand) $5 Zircon Video Command joystick (like Channel F) $10 Berzerk: Voice Enhanced (homebrew) OFFER Crazy Valet (Brian Prescott, #2 of 99, autographed, 2000) (w/ manual) OFFER Secret Agent (Atari2600.com, CGE 2001, 50 copies exist) OFFER Swordfight (Intellivision Productions) (w/ manual) OFFER Synthcart (Hozer release) (w/ manual) OFFER Atari 5200 Joe Grand’s ([email protected]) Video Game Sale List, August 2009 Item Price Atari 5200 2-port w/ power supply & 2 controllers (w/ documentation) $20 Trak-Ball Controller $20 VCS Cartridge Adapter $20 Berzerk $3 Blueprint $8 Buck Rogers: Planet of Zoom (CIB) $28 Centipede (w/ 2 overlays) $2 Congo Bongo (w/ manual) $8 Countermeasure (w/ overlay) $4 Defender $1 Dig Dug (NIB) $7 Dreadnaught Factor $10 Football (w/ overlay) $1 Frogger (CIB) $12 Frogger II: Threeedeep! $25 Galaxian $1 Gorf (pen mark) $6 Gremlins (NIB) $38 Gyruss $11 James Bond 007 (CIB) $22 Jungle Hunt (w/ manual) $2 K-razy Shoot-Out $31 Kaboom (CIB) $9 Kangaroo $2 Koffi: Yellow Kopter (CIB, homebrew, first edition, #37, autographed by Ron OFFER Lloyd, 2002) Mario Bros. (w/ manual) $7 MegaMania $6 Meteorites $80 Montezuma’s Revenge (CIB) $50 Moon Patrol (CIB) $15 Mr.
    [Show full text]
  • The Benefits of Active Video Games for Educational and Physical
    NEW APPROACHES IN EDUCATIONAL RESEARCH Vol. 5. No. 2. July 2016 pp. 115-122 ISSN: 2254-7339 DOI: 10.7821/naer.2016.7.164 ORIGINAL The Benefits of Active Video Games for Educational and Physical Activity Approaches: A Systematic Review Carlos Merino Campos1* , Héctor del Castillo Fernández2 1Department of Educational Sciences, University of Alcalá, Spain {[email protected]} 2 Department of Educational Sciences, University of Alcalá, Spain {[email protected]} Received on 27 January 2016; revised on 17 February 2016; accepted on 5 April 2016; published on 15 July 2016 DOI: 10.7821/naer.2016.7.164 (2014) also concluded that AVGs are a solution which inspires ABSTRACT and motivates people to exercise. Finally, Abdul and Felicia This article sets out to conduct a systematic review of the current (2015) explained that participants’ use of AVGs exerted great literature on active video games as potential educational tools for influence on both cognitive and emotional levels. These physical education or physical activity. To begin with, research on attributes might explain why several youths choose AVG play active video games for educational and physical purposes has over traditional exercise (Papastergiou, 2009). been examined with the purpose of verifying improvement of The trend of continuous improvement and innovation in attitudes, intellectual skills, knowledge, motor skills and physical education is an epistemological topic that has existed over a long properties associated with physical activity and physical period of time in the constructivist and sociocultural view of education. A second aim will be to determine the effectiveness of learning and teaching (Kaufman & Zahn, 1993).
    [Show full text]
  • An Assessment of Mobile Fitness Games
    An Assessment of Mobile Fitness Games An Interactive Qualifying Project by Alex Carli-Dorsey James Jackman Nicholas Massa Date: 01/30/2015 Report Submitted to: Bengisu Tulu and Emmanuel Agu Worcester Polytechnic Institute This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects. 1 Abstract The purpose of this project was to find, document, and review mobile fitness games from the Android and iTunes marketplace, with a focus on those that encourage physical exercise. Using a variety of marketplaces and web searches, we, among a group of recruited and willing participants under study, played and reviewed Android and iPhone games that featured movement as an integral part of the game. We reported how effective the game is for fitness, and how engaging the content is for players. We provided reviews that can be used by: 1) Individuals seeking an enjoyable method of achieving a certain level of fitness, and 2) Game developers hoping to produce a compelling mobile fitness game of their own. 2 Table of Contents Abstract ..................................................................................................................................................... 2 1. Introduction ..........................................................................................................................................
    [Show full text]
  • Platform Studies’
    DIGITAL CULTURE & EDUCATION, 4(3) Copyright © 2012, ISSN 1836-8301 Digital Culture & Education (DCE) Publication details, including instructions for authors http://www.digitalcultureandeducation.com/ Rebranding the platform: The limitations of ‘platform studies’ Dale Leorke The University of Melbourne Online Publication Date: 15 December, 2012 To cite this Article: Leorke, D.(2012). Rebranding the platform: The limitations of ‘platform studies.’Digital Culture & Education, 4:3, 257-268. URL: http://www.digitalcultureandeducation.com/cms/wp-content/uploads/2012/12/dce1073_leorke_2012.pdf PLEASE SCROLL DOWN FOR ARTICLE Rebranding the platform Rebranding the platform: The limitations of ‘platform studies’ Dale Leorke Abstract This article provides a critical account of Bogost and Montfort’s Platform Studies series, established in 2009 with their book Racing the Beam: The Atari Video Computer System which aims to ‘promote the investigation of underlying computer systems and how they enable, constrain, shape, and support the creative work that is done on them’. The article begins with an overview of platform studies, seeking to define the term ‘platform’ within the contemporary digital media industry before outlining Montfort and Bogost’s methodological approach. It then examines the two latest books in the series: Codename Revolution by Steven E. Jones and George K. Thiruvathukal on the Nintendo Wii console; and Jimmy Maher’s The Future Was Here about the Commodore Amiga. It interrogates the extent to which these books continue the project begun by Racing the Beam, while at the same time highlighting some of the limitations of the series’ approach. Lastly it considers how the execution of the series to date might be counterproductive for its wider goal of promoting the study of digital platforms.
    [Show full text]
  • Atari 2600 Label Variations
    Atari 2600 Label Variations This Atari 2600 label list is a compilation of input from many collectors in the field. A lot of hard work has been given by these collectors. You know who you are, and are too many to list. I thank you for everything you’ve done. Since this list is a joint effort, it will be available for all to use. It is a shame that when you input something, you are not fit to use it. So make a copy for yourself or ask me for one. I tell you to do this, so the list does not vanish in case something ever happens to me or my website. To update this list on my website, contact me at [email protected]. I will try and correct any mistakes and add any new info as I come across it. I’ve compiled a new and improved list from the one you’ve seen throughout the years. I’ve also made it much simpler to use. Any questions or comments, just contact me. I’m always on the Atari Age website as Philflound and that is also my AIM name. Rarity is going to be based on the label variation of the cartridge, not the game itself. There are many websites and guides that give the rarity of the carts, so it is just duplicate info you don’t need. I am giving rarity 3 grades along with a (?) grade. There may be more than one grade for variations. For example, Combat has 26 variations listed at this time.
    [Show full text]
  • Feedback Control for Exergames
    Edith Cowan University Research Online Theses: Doctorates and Masters Theses 2011 Feedback control for exergames Jeff Sinclair Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses Part of the Public Health Commons, and the Sports Sciences Commons Recommended Citation Sinclair, J. (2011). Feedback control for exergames. https://ro.ecu.edu.au/theses/380 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses/380 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements
    [Show full text]
  • Space and Place As Expressive Categories in Videogames
    Space and place as expressive categories in videogames A thesis submitted for the degree of Doctor of Philosophy by Paul Martin School of Arts Brunel University August 2011 1 Abstract This thesis sets out to explore some of the ways in which videogames use space as a means of expression. This expression takes place in two registers: representation and embodiment. Representation is understood as a form of expression in which messages and ideas are communicated. Embodiment is understood as a form of expression in which the player is encouraged to take up a particular position in relation to the game. This distinction between representation and embodiment is useful analytically but the thesis attempts to synthesise these modes in order to account for the experience of playing videogames, where representation and embodiment are constantly happening and constantly influencing and shaping each other. Several methods are developed to analyse games in a way that brings these two modes to the fore. The thesis attempts to arrive at a number of spatial aesthetics of videogames by adapting methods from game studies, literary criticism, phenomenology, onomastics (the study of names), cartographic theory, choreography and architectural and urban formation analysis. 2 Table of Contents Abstract............................................................................................................................. 2 Table of Figures ................................................................................................................ 4
    [Show full text]
  • A History of the Amiga, Part 2: the Birth of Amiga
    http://arstechnica.com/articles/culture/a-history-of-the-amiga-part-2.ars A history of the Amiga, part 2: The birth of Amiga by Jeremy Reimer Version 1.0 – August 12, 2007 Copyright Ars Technica, LLC 1998-2007. The following disclaimer applies to the information, trademarks, and logos contained in this document. Neither the author nor Ars Technica make any representations with respect to the contents hereof. Materials available in this document are provided "as is" with no warranty, express or implied, and all such warranties are hereby disclaimed. Ars Technica assumes no liability for any loss, damage or expense from errors or omissions in the materials available in this document, whether arising in contract, tort or otherwise. The material provided here is designed for educational use only. The material in this document is copyrighted by Ars Technica, LLC., and may not be reprinted or electronically reproduced unless prior written consent is obtained from Ars Technica, LLC. Links can be made to any of these materials from a WWW page, however, please link to the original document. Copying and/or serving from your local site is only allowed with permission. As per copyright regulations, "fair use" of selected portions of the material for educational purposes is permitted by individuals and organizations provided that proper attribution accompanies such utilization. Commercial reproduction or multiple distribution by any traditional or electronic based reproduction/publication method is prohibited. Any mention of commercial products or services within this document does not constitute an endorsement. "Ars Technica" is trademark of Ars Technica, LLC. All other trademarks and logos are property of their respective owners.
    [Show full text]
  • Comparisons of Two Commercial and Two Low-Cost Interfaces for Virtual Skiing
    PsychNology Journal, 2015 Volume 13, Number 1, 57 – 74 Comparisons of Two Commercial and Two Low-cost Interfaces for Virtual Skiing Niels Christian Nilsson∗1, Stefania Serafin1 and Rolf Nordahl1 1 Aalborg University (Denmark) ABSTRACT In this paper we present two comparisons of two novel physical interface for interacting with a virtual environment in the form of a skiing game. The interfaces were compared through two separate within-subjects studies. In the first study we compared a wobble board augmented with a low-cost 3D accelerometer with the Wii Balance Board, and in the second study we compared a step machine augmented with the same accelerometer with the Wii Balance Board. Keyboard and mouse peripherals were included in both studies in order to see how the novel interfaces and the Wii Balance Board would measure up against these commonly used input devices. The interfaces were evaluated in terms of performance, perceived ease of use, and enjoyment. The results of the first study show that participants reported the wobble board to be the hardest to control, although their performance was better than using the Wii Balance Board. A positive correlation was found between reported enjoyment of the interface and easiness to control it. The results of the second study show that participants found the step machine to be the most enjoyable and the second easiest. In both studies the mouse and keyboard peripherals were superior in terms of performance and perceived ease of use. Keywords: Input devices, interfaces, interaction, virtual environment, skiing game, exergaming. 1. Introduction In the last decades, several alternative interfaces for computer games have appeared, both in the commercial and in the academic world.
    [Show full text]
  • 6. La Balance Board
    6.6. LALA BALANCEBALANCE BOARDBOARD 6.1 INTRODUCCIÓN La Wii Banlance Board es una tabla de equilibrios, que es un accesorio para la consola de videojuegos Wii, de Nintendo. Fue presentada el 11 de Julio de 2007 en el E3 (Electronic Entertainment Expo), una feria comercial anual para la industria de los videojuegos. Este dispositivo de entrada vió la luz junto al videojuego Wii Fit. Es un dispositivo wireless, que usa un standard Bluetooth para comunicarse con la Wii, implementa el mismo protocolo que el Wiimote para las comunicaciones, y expone la mayoría de sus funcionalidades. Figura 6.1: la Balance Board 1 6.2 DESARROLLO El desarrollo de la Balance Board estuvo fuertemente ligado con el desarrollo del juego Wii Fit. Inicialmente Nintendo contactó con constructores de básculas caseras normales, pero acabó construyendo la tabla sin su ayuda en un esfuerzo de reducir costes. En los primeros modelos desarrollados, la tabla era una simple báscula con un sensor de presión. Sin embargo, los desarrolladores se dieron cuenta que una simple báscula no sería útil como un accesorio de juego y ampliaron el número de sensores de presión a dos, y luego a cuatro. La idea de usar varios sensores fue inspirada en parte por como se pesan los luchadores de sumo (usando dos básculas). La forma de la Balance Board original fue inicialmente cuadrada, pero se decidió que sería muy difícil de usar para los ejercicios. Durante mucho tiempo, la tabla fue una extensión del controlador al Wii remote normal. Los efectos de esto se ven en la Balance Board lanzada, la cual actúa como un Wii Remote con el botón frontal mapeado al A y todos los sensores de presión sobre un “controlador de extensión”.
    [Show full text]
  • SIGCHI Conference Paper Format
    Physically Healthy Game Interfaces Mark Alan MacKinnon Gardiner Department of Electrical and Computer Engineering, University of Auckland, New Zealand. [email protected] ABSTRACT computer games[9], and it is difficult to persuade them to The scope of this paper is to explore the viability for relinquish these screen based activities[9]. The decline in physical interfaces to introduce exercise into computer physical activity of adolescents is one of the main factors interaction, especially in the area of games (Exergames). predisposing children to obesity. Since children between Particular focus is made on the ability of physical interfaces the ages of 8 and 18 spend more time in front of a to effectively provide healthy exercise, and their ability to computer, television, and game screens (44.5 hours per be attractive, so that a player will be encouraged to interact week) than any activity other than sleeping[11]. What through these interfaces. makes this number so concerning is that with each hour Physically exertive interfaces can be beneficial to the player spent playing electronic games, there is nearly a two fold through healthy exercise, communication, and enjoyment. increase in the risk of obesity [5]. The goal when designing many interfaces is to accurately The change towards a sedentary lifestyle is not limited to interpret a players input with the least amount of the players children and is evident across society. Exergames are video physical and mental effort. With physical interfaces games which also provide an element of exercise. It makes however, the goal of design can shift to creating an sense that working physical activity and games into the environment which promotes exercise, a greater variety in sedentary activities people are reluctant to relinquish, will the methods of controlling input, or for creating a more help to combat the problem.
    [Show full text]