Signaling in Muscle Contraction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Cecal Smooth Muscle Contraction in Laying Hens
veterinary sciences Communication Characterization of Cecal Smooth Muscle Contraction in Laying Hens Katrin Röhm 1, Martin Diener 2 , Korinna Huber 1 and Jana Seifert 1,* 1 Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany; [email protected] (K.R.); [email protected] (K.H.) 2 Institute of Veterinary Physiology and Biochemistry, Justus-Liebig University, 35392 Gießen, Germany; [email protected] * Correspondence: [email protected] Abstract: The ceca play an important role in the physiology of the gastrointestinal tract in chickens. Nevertheless, there is a gap of knowledge regarding the functionality of the ceca in poultry, especially with respect to physiological cecal smooth muscle contraction. The aim of the current study is the ex vivo characterization of cecal smooth muscle contraction in laying hens. Muscle strips of circular cecal smooth muscle from eleven hens are prepared to investigate their contraction ex vivo. Contraction is detected using an isometric force transducer, determining its frequency, height and intensity. Spontaneous contraction of the chicken cecal smooth muscle and the influence of buffers (calcium-free buffer and potassium-enriched buffer) and drugs (carbachol, nitroprusside, isoprenaline and Verapamil) affecting smooth muscle contraction at different levels are characterized. A decrease in smooth muscle contraction is observed when a calcium-free buffer is used. Carbachol causes an increase in smooth muscle contraction, whereas atropine inhibits contraction. Nitroprusside, isoprenaline and Verapamil result in a depression of smooth muscle contraction. In conclusion, the present results confirm a similar contraction behavior of cecal smooth muscles in laying hens as Citation: Röhm, K.; Diener, M.; shown previously in other species. -
Muscle Physiology Page 1 of 17
Emojevwe’s Lecture note on physiology- Muscle Physiology Page 1 of 17 MUSCLE PHYSIOLOGY (PHS 213) By Emojevwe V. Course Objectives: To familiarize students with the principles and basic facts of Human Physiology and with some of the laboratory techniques and equipment used in the acquisition of physiological data. The emphasis will be on muscles physiology. Since the course will focus on muscle physiology, some cellular and molecular mechanisms will be discussed in order to present a current view of physiological principles of muscle. Where appropriate, basic chemical and physical laws will be reviewed in order to enhance and to promote student understanding. The laboratory component of the course is designed to reinforce the topics discussed in lecture, as well as to familiarize students with some of the laboratory techniques and equipment used in muscle research Student Learning Outcomes: Upon successful completion of lecture portion of this course, the students will be able to describe, identify, and/or explain: • Structure and function of skeletal muscle, including excitation-contraction coupling, sliding filament mechanism, force generation, and isometric versus isotonic contractions. • Structure and functions of the cardiovascular system, including the mechanical and electrical properties of cardiac muscle function. • Structure and functions of smooth muscles including contraction of smooth muscle Upon successful completion of the laboratory portion of this course, the students will be able to describe, identify, explain, perform, and/or measure: • Computer simulations of the membrane potential, action potential, and synaptic neurotransmission. • Skeletal muscle mechanics, and the electromyogram (EMG). Required Course Materials: • Any textbook of physiology (human or medical) published within the last four years will be appropriate. -
Back-To-Basics: the Intricacies of Muscle Contraction
Back-to- MIOTA Basics: The CONFERENCE OCTOBER 11, Intricacies 2019 CHERI RAMIREZ, MS, of Muscle OTRL Contraction OBJECTIVES: 1.Review the anatomical structure of a skeletal muscle. 2.Review and understand the process and relationship between skeletal muscle contraction with the vital components of the nervous system, endocrine system, and skeletal system. 3.Review the basic similarities and differences between skeletal muscle tissue, smooth muscle tissue, and cardiac muscle tissue. 4.Review the names, locations, origins, and insertions of the skeletal muscles found in the human body. 5.Apply the information learned to enhance clinical practice and understanding of the intricacies and complexity of the skeletal muscle system. 6.Apply the information learned to further educate clients on the importance of skeletal muscle movement, posture, and coordination in the process of rehabilitation, healing, and functional return. 1. Epithelial Four Basic Tissue Categories 2. Muscle 3. Nervous 4. Connective A. Loose Connective B. Bone C. Cartilage D. Blood Introduction There are 3 types of muscle tissue in the muscular system: . Skeletal muscle: Attached to bones of skeleton. Voluntary. Striated. Tubular shape. Cardiac muscle: Makes up most of the wall of the heart. Involuntary. Striated with intercalated discs. Branched shape. Smooth muscle: Found in walls of internal organs and walls of vascular system. Involuntary. Non-striated. Spindle shape. 4 Structure of a Skeletal Muscle Skeletal Muscles: Skeletal muscles are composed of: • Skeletal muscle tissue • Nervous tissue • Blood • Connective tissues 5 Connective Tissue Coverings Connective tissue coverings over skeletal muscles: .Fascia .Tendons .Aponeuroses 6 Fascia: Definition: Layers of dense connective tissue that separates muscle from adjacent muscles, by surrounding each muscle belly. -
Muscle Physiology Dr
Muscle Physiology Dr. Ebneshahidi Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Skeletal Muscle Figure 9.2 (a) Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Functions of the muscular system . 1. Locomotion . 2. Vasoconstriction and vasodilatation- constriction and dilation of blood vessel Walls are the results of smooth muscle contraction. 3. Peristalsis – wavelike motion along the digestive tract is produced by the Smooth muscle. 4. Cardiac motion . 5. Posture maintenance- contraction of skeletal muscles maintains body posture and muscle tone. 6. Heat generation – about 75% of ATP energy used in muscle contraction is released as heat. Copyright. © 2004 Pearson Education, Inc., publishing as Benjamin Cummings . Striation: only present in skeletal and cardiac muscles. Absent in smooth muscle. Nucleus: smooth and cardiac muscles are uninculcated (one nucleus per cell), skeletal muscle is multinucleated (several nuclei per cell ). Transverse tubule ( T tubule ): well developed in skeletal and cardiac muscles to transport calcium. Absent in smooth muscle. Intercalated disk: specialized intercellular junction that only occurs in cardiac muscle. Control: skeletal muscle is always under voluntary control‚ with some exceptions ( the tongue and pili arrector muscles in the dermis). smooth and cardiac muscles are under involuntary control. Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Innervation: motor unit . a) a motor nerve and a myofibril from a neuromuscular junction where gap (called synapse) occurs between the two structures. at the end of motor nerve‚ neurotransmitter (i.e. acetylcholine) is stored in synaptic vesicles which will release the neurotransmitter using exocytosis upon the stimulation of a nerve impulse. Across the synapse the surface the of myofibril contains receptors that can bind with the neurotransmitter. -
Massive Alterations of Sarcoplasmic Reticulum Free Calcium in Skeletal Muscle Fibers Lacking Calsequestrin Revealed by a Genetic
Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe M. Canatoa,1, M. Scorzetoa,1, M. Giacomellob, F. Protasic,d, C. Reggiania,d, and G. J. M. Stienene,2 Departments of aHuman Anatomy and Physiology and bExperimental Veterinary Sciences, University of Padua, 35121 Padua, Italy; cCeSI, Department of Basic and Applied Medical Sciences, University G. d’Annunzio, I-66013 Chieti, Italy; dIIM-Interuniversity Institute of Myology and eLaboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081BT, Amsterdam, The Netherlands Edited* by Clara Franzini-Armstrong, University of Pennsylvania Medical Center, Philadelphia, PA, and approved November 12, 2010 (received for review June 30, 2010) The cytosolic free Ca2+ transients elicited by muscle fiber excitation tion essential to maintain a low metabolic rate in quiescent ex- are well characterized, but little is known about the free [Ca2+] citable cells. In addition, CSQ has been shown to modulate RyR- dynamics within the sarcoplasmic reticulum (SR). A targetable mediated Ca2+ release from the SR (6). To understand the pivotal ratiometric FRET-based calcium indicator (D1ER Cameleon) allowed role of CSQ in SR function, it is critical to determine free SR us to investigate SR Ca2+ dynamics and analyze the impact of cal- Ca2+ concentration, and this has been made possible by the ad- sequestrin (CSQ) on SR [Ca2+] in enzymatically dissociated flexor vent of a targetable ratiometric FRET-based indicator, such as digitorum brevis muscle fibers from WT and CSQ-KO mice lacking D1ER Cameleon (7). Seminal studies using this technique have isoform 1 (CSQ-KO) or both isoforms [CSQ-double KO (DKO)]. -
Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension
life Review Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension Qunhui Yang * and Masatoshi Hori Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-7940; Fax: +81-3-5841-8183 Abstract: Hypertension is a key risk factor for cardiovascular disease and it is a growing public health problem worldwide. The pathophysiological mechanisms of vascular smooth muscle (VSM) contrac- tion contribute to the development of hypertension. Calcium (Ca2+)-dependent and -independent signaling mechanisms regulate the balance of the myosin light chain kinase and myosin light chain phosphatase to induce myosin phosphorylation, which activates VSM contraction to control blood pressure (BP). Here, we discuss the mechanism of the contractile machinery in VSM, especially RhoA/Rho kinase and PKC/CPI-17 of Ca2+ sensitization pathway in hypertension. The two signal- ing pathways affect BP in physiological and pathophysiological conditions and are highlighted in pulmonary, pregnancy, and salt-sensitive hypertension. Keywords: vascular smooth muscle contraction; hypertension; CPI-17 Citation: Yang, Q.; Hori, M. 1. Introduction Characterization of Contractile Three types of muscle tissues are found in vertebrates: skeletal muscle, cardiac muscle, Machinery of Vascular Smooth and smooth muscle [1]. Muscle contraction depends on the ATP-driven sliding of highly Muscles in Hypertension. Life 2021, organized arrays of actin filaments against arrays of myosin II filaments [2]. In smooth 11, 702. https://doi.org/10.3390/ muscle, phosphorylation at Thr18/Ser19 of the myosin regulatory light chain results in life11070702 myosin ATPase enzymatic activity that induces actin and myosin attachment to regulate smooth muscle contraction [3,4]. -
Muscle Tissue
Muscle Tissue Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Functions of muscle tissue . Movement . Maintenance of posture . Joint stabilization . Heat generation Tendon Dr. Heba Kalbouneh Dr. Belly Tendon Types of Muscle Tissue . Skeletal muscle . Cardiac muscle Dr. Heba Kalbouneh Dr. Smooth muscle Skeletal Attach to and move skeleton 40% of body weight Fibers = multinucleate cells (embryonic cells fuse) Cells with obvious striations Contractions are voluntary Cardiac: only in the wall of the heart Cells are striated Contractions are involuntary Dr. Heba Kalbouneh Dr. Smooth: walls of hollow organs Lack striations Contractions are involuntary . Their cells are called fibers because they are elongated Similarities… . Contraction depends on myofilaments . Actin . Myosin . Plasma membrane is called sarcolemma . Sarkos = flesh . Lemma = sheath Skeletal muscle Cardiac muscle Smooth muscle Dr. Heba Kalbouneh Dr. Skeletal muscle Epimysium surrounds whole muscle Endomysium is around each Dr. Heba Kalbouneh Dr. muscle fiber Perimysium is around fascicle Epimysium Fascicle Fascicle Fascicle Fascicle Fascicle Dr. Heba Kalbouneh Dr. Fascicle Perimysium Cell Cell Cell Dr. Heba Kalbouneh Dr. Cell Cell Endomysium Dr. Heba Kalbouneh Dr. Muscle fiber== musclemuscle cell=cell= myofibermyofiber Skeletal muscle This big cylinder is a fiber: a cell Fibers (each is one cell) have striations Myofibril is an organelle Myofibrils are organelles of the cell, are made up of myofilaments Myofibrils are long rows of repeating Dr. Heba Kalbouneh -
Calcium Ion-Regulated Thin Filaments from Vascular Smooth Muscle
Biochem. J. (1980) 185, 355-365 355 Printed in Great Britain Calcium Ion-Regulated Thin Filaments from Vascular Smooth Muscle Steven B. MARSTON, Rachel M. TREVETT and Michael WALTERS Imperial Chemical Industries Limited, Pharmaceuticals Division, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, U.K. (Received 20 June 1979) Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 + 2.6 nmol/mg per min (mean + S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500nmol/mg of myosin per min (mean + S.D.)] in the presence of 1O-4M free Ca2+. At 10-8M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10-6-10-5M- Ca2+ and was half maximal at 2.7 x 10-6M (pCa2+ 5.6). The skeletal myosin-aorta-thin- filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10-8M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin fila- ments bound up to 9.5,umol of Ca2+/g in the presence of MgATP2-. In the range 0.06- 27,uM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 + 0.07) x 106 M-1 (mean + S.D.) and maximum binding of 8.0 + 0.8,umol/g (mean + S.D.). -
Skeletal Muscle Function During Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide
Int. J. Mol. Sci. 2013, 14, 7109-7139; doi:10.3390/ijms14047109 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide Frank Suhr, Sebastian Gehlert, Marijke Grau and Wilhelm Bloch * Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; E-Mails: [email protected] (F.S.); [email protected] (S.G.); [email protected] (M.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-221-4982-5380; Fax: +49-221-4982-8370. Received: 31 January 2013; in revised form: 17 March 2013 / Accepted: 19 March 2013 / Published: 28 March 2013 Abstract: Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. -
Short Duration Presynaptic Action Potentials Shape Calcium Dynamics and Transmitter Release at the Neuromuscular Junction in Healthy and Diseased States
Title Page Short duration presynaptic action potentials shape calcium dynamics and transmitter release at the neuromuscular junction in healthy and diseased states by Scott Patrick Ginebaugh B.S., Wayne State University, 2016 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2021 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Scott Patrick Ginebaugh It was defended on January 27, 2021 and approved by James R. Faeder, Ph.D., Associate Professor, Department of Computational and Systems Biology, University of Pittsburgh Zachary Freyberg, M.D., Ph.D., Assistant Professor, Department of Psychiatry, University of Pittsburgh Ivet Bahar, Ph.D., Distinguished Professor & John K. Vries Chair, Department of Computational and Systems Biology, University of Pittsburgh Rozita Laghaei, Ph.D., Research Scientist, Pittsburgh Supercomputing Center, Carnegie Mellon University Dissertation Director: Stephen D. Meriney, Ph.D., Professor, Department of Neuroscience, University of Pittsburgh ii Copyright © by Scott Patrick Ginebaugh 2021 iii Short duration presynaptic action potentials shape calcium dynamics and transmitter release at the neuromuscular junction in healthy and diseased states Scott Patrick Ginebaugh, PhD University of Pittsburgh, 2021 The action potential (AP) waveform controls the opening of voltage-gated calcium channels (VGCCs) at presynaptic nerve terminals. The calcium ion flux through these VGCCs acts as a second messenger, triggering the release of neurotransmitter. The frog and mouse neuromuscular junctions (NMJs) have long been model synapses for the study of neurotransmission, but the presynaptic AP waveforms from these NMJs have never been recorded because the nerve terminals are too small impale with an electrode for electrophysiological recordings. -
Spinal Reflexes
Spinal Reflexes Lu Chen, Ph.D. MCB, UC Berkeley 1 Simple reflexes such as stretch reflex require coordinated contraction and relaxation of different muscle groups Categories of Muscle Based on Direction of Motion Flexors Æ reduce the angle of joints Extensors Æ increase the angle of joints Categories of Muscle Based on Movement Agonist Æmuscle that serves to move the joint in the same direction as the studied muscle Antagonist Æ muscle that moves the joint in the opposite direction 2 1 Muscle Spindles •Small encapsulated sensory receptors that have a Intrafusal muscle spindle-like shape and are located within the fibers fleshy part of the muscle •In parallel with the muscle fibers capsule •Does not contribute to the overall contractile Sensory force endings •Mechanoreceptors are activated by stretch of the central region Afferent axons •Due to stretch of the whole muscle Efferent axons (including intrafusal f.) •Due to contraction of the polar regions of Gamma motor the intrafusal fibers endings 3 Muscle Spindles Organization 2 kinds of intrafusal muscle fibers •Nuclear bag fibers (2-3) •Dynamic •Static •Nuclear chain fibers (~5) •Static 2 types of sensory fibers •Ia (primary) - central region of all intrafusal fibers •II (secondary) - adjacent to the central region of static nuclear bag fibers and nuclear chain fibers Intrafusal fibers stretched Sensory ending stretched, (loading the spindle) increase firing Muscle fibers lengthens Sensory ending stretched, (stretched) increase firing Spindle unloaded, Muscle fiber shortens decrease firing 4 2 Muscle Spindles Organization Gamma motor neurons innervate the intrafusal muscle fibers. Activation of Shortening of the polar regions gamma neurons of the intrafusal fibers Stretches the noncontractile Increase firing of the center regions sensory endings Therefore, the gamma motor neurons provide a mechanism for adjusting the sensitivity of the muscle spindles. -
Association of Smooth Muscle Myosin and Its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle Jason Edward Black
Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2007 Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle Jason Edward Black Follow this and additional works at: http://mds.marshall.edu/etd Part of the Musculoskeletal, Neural, and Ocular Physiology Commons Recommended Citation Black, Jason Edward, "Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle" (2007). Theses, Dissertations and Capstones. Paper 489. This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle By Jason Edward Black Dissertation submitted to the Graduate College of Marshall University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Approved by Elizabeth C. Bryda Todd L. Green William McCumbee Michael Moore Gary L. Wright, Committee Chairperson Department of Pharmacology, Physiology, and Toxicology ABSTRACT Association of Smooth Muscle Myosin and its Carboxyl Isoforms with Actin Isoforms in Aorta Smooth Muscle By Jason Edward Black The contraction mechanism of smooth muscle is not fully understood. The primary interaction that leads to the formation of tension, the myosin-actin crossbridge, has been studied extensively. However, even this aspect of the contraction has proven not to be as simple as it might seem. There are several isoforms of smooth muscle myosin and actin, and the differences in the activities of these isoforms and their interactions during the contractile process are largely unknown.