Federal Register/Vol. 71, No. 172/Wednesday

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Federal Register / Vol. 71, No. 172 / Wednesday, September 6, 2006 / Notices 52603 under the provisions of Section 125 of Issued in Kansas City, Missouri, on August Environmental Impact Statement (EIS) the Wendell H. Ford Aviation 24, 2006. is not required and AST is issuing a Investment Reform Act for the 21st George A. Hendon, Finding of No Significant Impact Century (AIR 21). Manager, Airports Division, Central Region. (FONSI). The FAA made this [FR Doc. 06–7459 Filed 9–5–06; 8:45 am] determination in accordance with all DATES: Comments must be received on BILLING CODE 4910–13–M applicable environmental laws. or before October 6, 2006. For a copy of the Environmental ADDRESSES: Comments on this Assessment: Visit the following internet application may be mailed or delivered DEPARTMENT OF TRANSPORTATION address: http://ast.faa.gov or contact Mr. to the FAA at the following address: Doug Graham, FAA Environmental Federal Aviation Administration Federal Aviation Administration, Specialist, 800 Independence Avenue SW., Room 331, Washington, DC 20591. Central Region, Airports Division, 901 Finding of No Significant Impact Locust, Kansas City, Missouri 64106– You may also send requests via e-mail 2325. AGENCY: Federal Aviation to [email protected] or by Administration (FAA), Department of telephone at (202) 267–8568. In addition, one copy of any Transportation (DOT). DATES: The Draft EA was released for comments submitted to the FAA must ACTION: Finding of no significant public comment on June 28, 2006. The be mailed or delivered to Anna Lannin, impact. FAA held a public meeting on the Draft Engineering Division, Nebraska EA on July 25, 2006 in Van Horn, Texas Department of Aeronautics, P.O. Box SUMMARY: The Federal Aviation to collect comments from the public. All 82088, Lincoln, NE 68501. Administration (FAA) prepared an comments received before July 27, 2006 Environmental Assessment (EA) to FOR FURTHER INFORMATION CONTACT: were considered in the preparation of evaluate the proposal from Blue Origin, Nicoletta Oliver, Airports Compliance the Final EA. LLC (Blue Origin) to construct and Proposed action: Under Title 49 Specialist, FAA, Central Region, 901 operate a commercial space launch site United States Code (U.S.C.), Subtitle IX, Locust, Kansas City, MO 64106–2325, to be located on privately-owned Sections 70101–70121, Commercial (816) 329–2642. property in Culberson County, Texas. Space Launch Act, the FAA regulates The request to release property may Blue Origin proposes to develop this launches and reentries of launch and be reviewed in person at this same commercial space launch site to launch reentry vehicles, and the operation of location. vertical reusable launch vehicles (RLVs) launch and reentry sites when carried carrying space flight participants 1 on out by U.S. citizens or within the United SUPPLEMENTARY INFORMATION: The FAA suborbital, ballistic trajectories to States. (49 U.S.C. 70104, 70105) Chapter proposes to rule and invites public altitudes in excess of 99,060 meters 701 directs the FAA to exercise this comment on the request to release (325,000 feet) above sea level. The EA responsibility consistent with public property at the Blair Municipal Airport evaluated the potential environmental health and safety, safety of property, under the provisions of AIR21. impacts of issuing experimental permits and the national security and foreign On August 24, 2006, the FAA and/or licenses to Blue Origin policy interests of the United States, and determined that the request to release authorizing vertical launches and to encourage, facilitate, and promote property at the Blair Municipal Airport, landings of RLVs and/or operation of a commercial space launch and reentry by submitted by the Nebraska Department launch site for same. Blue Origin may the private sector. (49 U.S.C. 70103, of Aeronautics, as agent for the Blair seek experimental permits to conduct 70105) Airport Authority, met the procedural early developmental and test flights. The Commercial Space Launch requirements of the Federal Aviation Blue Origin may also seek a launch site Amendments Act of 2004 (CSLAA) Administration. The FAA will approve operator license, RLV mission-specific promotes the development of the or disapprove the request, in whole or licenses, and RLV operator licenses, as emerging commercial/human space in part, no later than November 30, appropriate. After reviewing and flight industry and establishes an 2006. analyzing currently available data and experimental permit regime for information on existing conditions, developmental reusable suborbital The following is a brief overview of project impacts, and measures to rockets. This newly established the request. mitigate those impacts, the FAA, Office experiment permit regime provides an The Blair Airport Authority requests of Commercial Space Transportation alternative mechanism to regulate the the release of approximately 13.97 acres (AST) has determined that issuing the launch and reentry of reusable of airport property. The land is experimental permits and/or licenses suborbital rockets (49 U.S.C. 70105a). currently not being used for analyzed in the EA to Blue Origin To conduct commercial launch aeronautical purposes. The purpose of would not significantly affect the operations, Blue Origin must obtain the this release is to sell the land to the quality of the human environment required experimental permit(s) and/or Nebraska Department of Roads (NDR) within the meaning of the National license(s) from the FAA. Under the for improvements to U.S. Highway 133. Environmental Policy Act (NEPA). proposed action the FAA would issue Therefore the preparation of an Any person may inspect the request experimental permits, a launch site in person at the FAA office listed above operator license, RLV mission-specific 1 Space flight participant means an individual, licenses, and/or RLV operator licenses, under FOR FURTHER INFORMATION who is not crew, carried within a launch vehicle or as appropriate. CONTACT. reentry vehicle. 49 United States Code (U.S.C.) 70102(17) Flight crew means any employee of a Experimental permits differ from In addition, any person may, upon licensee or transferee, or of a contractor or launch licenses in a number of ways. request, inspect the application, notice subcontractor of a licensee or transferee, who is on • Unlike a licensed operator, no and other documents that are relevant to board a launch or reentry vehicle and performs person may launch a reusable suborbital the request, in person at the Nebraska activities in the course of that employment directly relating to the launch, reentry, or other operation rocket under an experimental permit for Department of Aeronautics, Lincoln, of the launch vehicle or reentry vehicle. See 49 carrying any property or human being Nebraska. U.S.C. 70102(2) (defining crew). for compensation or hire. VerDate Aug<31>2005 18:44 Sep 05, 2006 Jkt 208001 PO 00000 Frm 00081 Fmt 4703 Sfmt 4703 E:\FR\FM\06SEN1.SGM 06SEN1 rwilkins on PROD1PC63 with NOTICES 52604 Federal Register / Vol. 71, No. 172 / Wednesday, September 6, 2006 / Notices • A permit is not transferable. A those potential effects. The FAA is using activities are proposed to occur; license is transferable from one entity to the analysis in the EA as the basis for constructing the launch site facilities; another, which could occur after a an environmental determination of the transporting the vehicle, vehicle merger or acquisition. potential impacts of these proposed components, and propellants to the • Damages arising out of a permitted actions. proposed site; assembling the various launch or reentry are not eligible for Upon receipt of complete permit or vehicle components; conducting ‘‘indemnification,’’ the provisional license applications, the Associate ground-based tests; moving the launch payment of claims under 49 U.S.C. Administrator for Commercial Space vehicle to the test pad; loading the space 70113. To the extent provided in an Transportation must determine whether flight participants or other payload; appropriation law or other legislative to issue experimental permits or loading propellants into the launch authority, damages caused by licensed licenses to Blue Origin to launch vehicle; igniting the rocket motors; activities are eligible for the provisional reusable suborbital rockets on privately- collecting any debris from the test pad; payment of claims. owned property in Culberson County, and landing, recovering, and • A permit must authorize an Texas. Environmental findings are transporting the RLV from the landing unlimited number of launch and required for the evaluation of license pad. reentries for a particular reusable and permit applications. Purpose and Need: The proposed suborbital rocket design operating from The proposed action is for the FAA to Blue Origin launch facility would a site during a one-year period. issue one or more experimental permits provide Blue Origin with an alternative An experimental permit would allow and/or licenses to Blue Origin. Blue to launching the New Shepard vehicle Blue Origin to conduct testing of Origin proposes to launch RLVs on from a Federal or other FAA-licensed reusable suborbital rockets that would suborbital, ballistic trajectories to launch facility. The proposed facility be launched and landed solely for the altitudes in excess of 99,060 meters would provide a location from which to purposes of (1) research and (325,000 feet). To conduct these transport space flight participants to the development
Recommended publications
  • Triggered Lightning Risk Assessment for Reusable Launch Vehicles at Four Regional Spaceports

    Triggered Lightning Risk Assessment for Reusable Launch Vehicles at Four Regional Spaceports

    AEROSPACE REPORT NO. ATR-2010(5387)-1 Triggered Lightning Risk Assessment for Reusable Launch Vehicles at Four Regional Spaceports April 30, 2010 Richard L. Walterscheid1, Lynette J. Gelinas1, Glenn W. Law2, Grace S. Peng3, Robert W. Seibold2, Frederick S. Simmons4, Paul F. Zittel5 John C. Willett Consultant, Garrett Park, Maryland E. Philip Krider Institute of Atmospheric Physics University of Arizona, Tucson, Arizona 1Space Sciences Department, Physical Sciences Laboratories; 2Civil and Commercial Launch Systems, Space Launch Projects; 3Computer Systems Research Department, Computer Science and Technology Subdivision; 4Sensor Systems Subdivision, Electronics and Sensors Division; 5Remote Sensing Department, Physical Sciences Laboratories Prepared for: Volpe National Transportation Systems Center U.S. Department of Transportation Cambridge, Massachusetts Contract No. DTRT57-05-D-30103 Task 13A Authorized by: Space Launch Operations Public release is authorized. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to the Department of Defense. Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMP control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
  • WALLONIE ESPACE INFOS N 44 Mai-Juin 2009

    WALLONIE ESPACE INFOS N 44 Mai-Juin 2009

    WALLONIE ESPACE INFOS n°84 janvier-février 2016 WALLONIE ESPACE INFOS n°84 janvier-février 2016 Coordonnées de l’association Wallonie Espace Wallonie Espace WSL, Liege Science Park, Rue des Chasseurs Ardennais, B-4301 Angleur-Liège, Belgique Tel. 32 (0)4 3729329 Skywin Aerospace Cluster of Wallonia Chemin du Stockoy, 3, B-1300 Wavre, Belgique Contact: Michel Stassart, e-mail: [email protected] Le présent bulletin d’infos en format pdf est disponible sur le site de Wallonie Espace (www.wallonie-espace.be), sur le portal de l’Euro Space Center/Belgium, sur le site du pôle Skywin (http://www.skywin.be). SOMMAIRE : Thèmes : articles Mentions Wallonie Espace Page Correctif - Actualité : Sentinel-1B lancé le 22 avril par Soyouz (avec ULg, Thales Alenia Space 2 OUFTI-1) – Agence spatiale interfédérale de Belgique – Vingt ans pour Belgium , Amos, VitroCiset Wallonie Espace – Une Ardéchoise, pilote de CSL Belgium, Gillam, SABCA, Samtech, Sonaca, Spacebel, Techspace Aero, UCL, ULB, ULg, CSL, Euro Space Center, Skywin 1. Politique spatiale/EU + ESA: La « première » 2016 du DG de l’ESA – 5 Tableaux Budgets ESA – Compte-rendu Conférence sur la stratégie spatiale européenne : qui mène la danse dans le couple ESA-Commission européenne ? – A l’heure du Space 4.0 – Intérêt du Grand-Duché pour les ressources dans l’espace – La Corée du Nord exclue de la communauté spatiale ? 2. Accès à l'espace/Arianespace : Interview exclusive d’Alain SABCA, Techspace Aero, Thales 17 Charmeau (Airbus Safran Launchers) – Enquête de la Commission Alenia Space Belgium sur la prise de contrôle d’Arianespace – Duel Arianespace-SpaceX : c’est Ariane 5 qui gagne ! – Débuts, cette année, des lanceurs chinois de nouvelle génération – Tableau mondial des nouveaux lanceurs en préparation (avec des révélations !) WEI n°84 2016-01 - 1 WALLONIE ESPACE INFOS n°84 janvier-février 2016 3.
  • Pdf?Sfvrsn=920Eb2c6 6, (Accessed 16.08.18)

    Pdf?Sfvrsn=920Eb2c6 6, (Accessed 16.08.18)

    69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. Copyright ©2018 by Mr. Yaroslav Menshenin. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-18.D1.4A.8 Model-Based Concept Framework for Suborbital Human Spaceflight Missions Yaroslav Menshenina, Edward Crawleyb a Skoltech Space Center, Skolkovo Institute of Science and Technology, 3 Nobelya str., Moscow, Russia 121205, [email protected] b Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue 33- 409, Cambridge, MA, USA 02139, [email protected] Abstract Projects of the New Space economy such as SpaceShipTwo and New Shepard are on their way to shifting the paradigms in space tourism and transportation. Being privately financed, they are also changing the way in which highly complex and formerly government-financed systems are now being developed. Looking to the future, we can envision humanity moving to space, an opportunity that will be available to many more of us as a result of these new paradigms. One of the core issues we encounter when we start the development of complex systems such as the suborbital transportation and space tourism systems is: what are the concepts available and how can these concepts be represented using strictly defined ontology and model semantics? In this work we present a model-based concept framework that aims to address this issue. First a concept framework methodology is presented, after which we demonstrate its applicability to suborbital human spaceflight missions – SpaceShipTwo and New Shepard. The analytical conceptual difference between these concepts is demonstrated.
  • A Prototype System for Simulating the Risks of Sub-Orbital Space Flight for Commercial Aviation

    A Prototype System for Simulating the Risks of Sub-Orbital Space Flight for Commercial Aviation

    A Prototype System for Simulating the Risks of Sub-Orbital Space Flight for Commercial Aviation Marco Sarconi School of Computing Science Sir Alwyn Williams Building University of Glasgow G12 8QQ Level 4 Project — March 22, 2013 Abstract Over the coming years there is expected to be an increase in the number of sub-orbital space flights for various purposes such as space tourism and scientific research. It is therefore advisable to analyse the potential risks of sub-orbital space travel on commercial aviation. This report presents research into the risks of sub-orbital debris on commercial aviation as well as the development of a simulation system which integrates live flight data through Automatic Dependent Surveillance-Broadcast and meteorological data. It then uses a mathematical model to calculate a debris field for a given suborbital vehicle and displays a model of the potential impact on aircraft within the vicinity. Education Use Consent I hereby give my permission for this project to be shown to other University of Glasgow students and to be distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but doing so would help future students. Name: Signature: i Acknowledgments I would like to thank Prof. Chris Johnson for his continued support and guidance throughout the year. I would also like to thank the participants who took part in the evaluation. ii Contents 1 Introduction and Background Research 1 1.1 Aims and Motivation . 1 1.2 Sub-Orbital Space Flight . 2 1.2.1 What is Sub-Orbital Space Flight .
  • Largest Usa Landowners

    Largest Usa Landowners

    WWW.LANDREPORT.COM | FALL 2010 The Land Report LARGEST USA LANDOWNERS THE MAGAZINE OF THE AMERICAN LANDOWNER $15 H C N A R L L E B , N E D D LARGEST USA LANDOWNERS A P S C M T T A Y W SPECIAL REPORT , H C N A R L L E B : W O R M O T T O B K R A P O J E M R E V , G N I L L E B M A S , H C N A R L L E B : W O R R E T N E C E W O R N O T N E K SALE OF THE , E N I A R C CENTURY: C M Y H T A K JOHN MALONE BUYS , R E Z N NEW MEXICO’S I E M N 290,100-ACRE A M Y W BELL RANCH : W 2010 LAND REPORT 100 O R P O T LANDREPORT.COM PLUS: LABRADOR RETRIEVERS | BP OIL SPILL | LAND REPORT TOP TEN FALL 2010 | The LandReport 37 The Land Report 1 2 3 10 0 4 3 Brad Kelley 1.7 million acres Ted Turner CONSERVATION 2+ million acres ike many a VISIONARY self-made No.1 Lbillionaire, Brad Kelley shuns publicity. Shuns it so much, in fact, The nation’s that he’s become something of an largest enigma to many of his neighbors, landowner a presence made acquired one even larger by his absence. Kelley’s of Georgia’s enormous holdings SHUTTERSTOCK are spread across shrewd business finest quail Texas, New Mexico, acumen to guide plantations and Florida.
  • Space India 2.0 Commerce, Policy, Security and Governance Perspectives

    Space India 2.0 Commerce, Policy, Security and Governance Perspectives

    Space India 2.0 Commerce, Policy, Security and Governance Perspectives Rajeswari Pillai Rajagopalan Narayan Prasad (Eds.) ISBN: 978-81-86818-28-2 Printed by: Mohit Enterprises © 2017 Observer Research Foundation. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from ORF. CONTENTS Foreword vii K Kasturirangan, former Chairman, ISRO Introduction xi Rajeswari Pillai Rajagopalan and Narayan Prasad I Space Commerce 1. Space 2.0 India: Leapfrogging Indian Space Commerce 1 Narayan Prasad 2. Traditional Space and NewSpace Industry in India: Current Outlook and Perspectives for the Future 11 Narayan Prasad 3. A Review of India’s Commercial Space Efforts 23 K R Sridhara Murthi 4. Exploring the Potential of Satellite Connectivity for Digital India 37 Neha Satak, Madhukara Putty, Prasad H L Bhat 5. Unlocking the Potential of Geospatial Data 51 Arup Dasgupta 6. Developing a Space Start-up Incubator to Build a NewSpace Ecosystem in India 71 Narayan Prasad 7. Electronic Propulsion & Launch Vehicles: Today and Beyond – An Indian Perspective 85 Rohan M Ganapathy, Arun Radhakrishnan and Yashas Karanam iv II Space Policy 8. Privatisation of Space in India and the Need for A Law 103 Kumar Abhijeet 9. SATCOM Policy: Bridging the Present and the Future 119 Ashok GV and Riddhi D’ Souza 10. A Review of India’s Geospatial Policy 141 Ranjana Kaul 11. Formation of PSLV Joint Venture: Legal Issues 151 Malay Adhikari 12. Exploring Space as an Instrument in India’s Foreign Policy & Diplomacy 165 Vidya Sagar Reddy III Space Security 13.
  • Präsentation Über Lastprojekt.De

    Präsentation Über Lastprojekt.De

    Dipl.-Ing. Mathias Herrmann Inhalt: Allgemein Über das Projekt 2 Projekt - Strategische Ausrichtung 3 Ausgangssituation Industrialisierung –Wellenmodell 4 Rohstoffbedarf – Wachstum 5 unerschlossene Rohstoffvorräte? 6 neue Startplätze und Neugründungen 7 Markt, Starts und verbrachte Nutzlast 8 Weltraumindustrie - Markt, Entwicklung 9 chemische Raketen - Nutzlastanteil 10 Juni 2021 Folie 1 Über das Projekt Dipl.-Ing. Mathias Herrmann ➔ PRIVATE INITIATIVE ZUR INGENIEURTECHNISCHEN _____ERARBEITUNG VON PATENTRECHTEN UND DEREN _____VERMARKTUNG IM BEREICH LUFT- UND RAUMFAHRT STAND I.Q 2021: • DYNAMISCHE ENTWICKLUNG IN PRIVATER RAUMFAHRT LASTPROJEKT.DE: • ZIEL: MEHR NUTZLASTANTEIL VON CHEMISCHEN ______RAKETEN BEI STARTS IN DEN ORBIT • PRAXISORIENTIERTE FORSCHUNG UND ENTWICKLUNG • 6 PROVISORISCHE PATENTE ANGEMELDET • ZIELGRUPPE: ZIVILE WELTRAUMWIRTSCHAFT, _HERSTELLER, ANBIETER VON RAKETENSTARTS • OFFEN FÜR INVESTOREN, PARTNER, SPONSOREN • II.Q 2021 INTENSIVE ERARBEITUNG WEITERER SCHRITTE ENDGÜLTIGE PATENTUNTERLAGEN FORTSCHREIBUNG UND ERGÄNZUNG Juni 2021 Lastprojekt – Allgemein Folie 2 Strategische Ausrichtung auf Triebwerke Dipl.-Ing. Mathias Herrmann ➔ im Mittelpunkt Antriebe um günstigere Materialien zu ermöglichen IST-Stand der Technik chem. Raketen 2021 Bedeutung des Antriebes: Nutzlast ca. 1-4% Δm LEO vereinfachend: Auswirkungen des Antriebes WERKSTOFFE TRIEBWERK Mit TREIBSTOFF _ca. 20x _höher als Anteil der Werkstoffe Hülle, Verkleidung… Triebwerk + Tanks usw. ca. 8% ca. 15% . von der Gesamtmasse einer Rakete bestehen Struktur RP1/ H2
  • Futron-Feasibility-Study-Of-A-Florida-Commercial-Spaceport-Sept-2005.Pdf

    Futron-Feasibility-Study-Of-A-Florida-Commercial-Spaceport-Sept-2005.Pdf

    Feasibility Study of a Florida Commercial Spaceport Table of Contents EXECUTIVE SUMMARY ......................................................................................1 INTRODUCTION ..................................................................................................5 PART 1: FEASIBILITY ANALYSIS......................................................................9 SUMMARY ...................................................................................9 INTRODUCTION ..........................................................................11 METHODOLOGY..........................................................................12 SPACEPORT MISSIONS AND VEHICLE TYPES......................................... 12 VEHICLE D EVELOPER INTERVIEWS ..................................................... 12 GOVERNMENT AND OTHER INTERVIEWS ............................................... 12 AWARENESS OF AND SUPPORT FOR A COMMERCIAL SPACEPORT..........13 C OMMERCIAL PERSPECTIVE.............................................................. 13 GOVERNMENT AND OTHER PERSPECTIVES ........................................... 15 INFRASTRUCTURE.......................................................................15 B ASIC R EQUIREMENTS..................................................................... 15 FIRST-TIER C OST ESTIMATES ........................................................... 22 ON-SITE CONSIDERATIONS ............................................................... 24 OFF-SITE CONSIDERATIONS ............................................................
  • Horses for Courses – Spaceport Types

    Horses for Courses – Spaceport Types

    International Space Development Conference, ISDC 2005, Washington DC, May 19-22 2005 Horses for Courses – Spaceport Types Derek Webber Director, Spaceport Associates, Rockville, Maryland 20852,USA There are over 35 operational spaceports in the world today. Most of them are government owned and operated; some are now emerging which are non-Federally-owned. How do these different types of spaceport approach and appeal to the various markets? Can a single type of all-inclusive spaceport cater for the needs of all potential users? This paper provides an update on the status of spaceports today, explores some aspects of competitive advantage, and makes some comparisons and conclusions. There will be a particular focus on the requirements for public space travel. A case will be made that it is probably not a workable plan to attempt to cover all markets with a single spaceport. Instead, it will be important for the management team at a spaceport to focus on those sectors where they can bring decided competitive advantage to bear, and in this way contribute to an eventual segmentation of spaceport types; some markets will be best left to be developed at other spaceports. Each spaceport will concentrate on what it can do best – “horses for courses”. I. Introduction here will be vastly different requirements for the future public space travelers, and their families and friends, T than are normally available at the traditional launch sites built fifty years ago. Indeed, the creation of this emerging kind of facility, the commercial spaceport, is in some ways a very necessary part of the creation of the new space businesses that the twenty-first century offers.
  • Space Cowboys

    Space Cowboys

    JULY 2007 Commercial Markets PUBLICATION 1823 A Reprint from Tierra Grande By Bryan Pope rmchair astronauts with a quarter of a million dollars to spare could soon be paying to go Awhere no men — well, very few men — have gone before. An emerging trend suggests that at least a few pri- vate corporations think there is money to be made in charging civilians a pretty penny for a brief trip to the edge of the earth’s atmosphere. If that sounds like science fiction, think again. Privately funded spaceports flew under most people’s radar until one of the world’s most phenomenally successful businessmen brought them into the mainstream last year, in the most unlikely of places. All Systems Go instead of in Washington. In fact, our economic development corporation is seeking funding to construct a 20-unit apart- lusive Amazon.com founder Jeff Bezos raised eyebrows ment complex.” when he snatched up the 165,000-acre Corn Ranch near Blue Origin may be the most high-profile project in the EVan Horn in Culberson County in 2004. But it wasn’t works, but it’s not the only one. About 18 miles southwest until later, when he announced plans to use the land — mostly of Fort Stockton in Pecos County, a project is under develop- desert — to build a private spaceport project that the entrepre- ment by the Pecos County/West Texas Spaceport Development neur really grabbed headlines. Corporation. Through Blue Origin, Bezos plans to develop New Shepard, According to a report released earlier this year by the FAA, a vertical-takeoff, vertical-landing vehicle capable of carrying a the West Texas Spaceport (also known as Las Escaleras a las small number of astronauts on suborbital, ballistic trajectories Estrellas, or the Stairs to the Stars) has access to more than as high as 325,000 feet.
  • “Horses for Courses” Paper

    “Horses for Courses” Paper

    “Horses for Courses” paper: a 2008 Addendum 30th September, 2008 Derek Webber Spaceport Associates, 5909 Rolston Road, Bethesda, MD 2 1. INTRODUCTION The paper “Horses for Courses- Spaceport Types”, by Derek Webber, was presented at the International Space Development Conference, ISDC 2005, in Washington DC in May 2005. The paper contained some useful tabulations of world and US spaceport data, which have been accessed since that time by numerous analysts. However, some of this data is now 3 years out of date, and requests have been received for an update of the key data tables to reflect changes that have occurred since the initial publication. The author has chosen to issue these updates as a simple addendum rather than to re-issue the original full paper, because the arguments in that original paper remain valid, and it continues to be accessible via the home page of the web-site www.SpaceportAssociates.com. Therefore, this addendum contains only the updated versions of Tables 1, 2 and 4 from the original paper, retaining the numbering of the original paper, but adjusting the attributions to the present date. 2. MAIN SUBSTANCE OF CHANGES Note from the headings that the tables contain data on US and non-US spaceports, and between planned and operational spaceports. Tables 1 and 2 contain both operational and planned spaceport data; Table 4 refers only to operational spaceports. All three tables reflect changes that have happened during the last 3 years. For Table 1, which focuses on US operational and planned spaceports, the main difference is a reflection of the fact that the FAA-AST has now awarded a spaceport license to Oklahoma Spaceport, and it therefore moves its category on the table.
  • The Coastwatcher Publication of the Thames River Composite Squadron Connecticut Wing Civil Air Patrol

    The Coastwatcher Publication of the Thames River Composite Squadron Connecticut Wing Civil Air Patrol

    The flight left Carswell AFB, Texas on 26 March, Missions for America 1949 and returned 94 hours and 1 minute later. Four aerial refuelings were needed and the British Semper vigilans! developed gravity fed looped hose system carried Semper volans! by Boeing B-29M aircraft. The Coastwatcher Publication of the Thames River Composite Squadron Connecticut Wing Civil Air Patrol 300 Tower Rd., Groton, CT http://ct075.org . Nose of Lucky Lady II bearing the insignia of the Lt Col Stephen Rocketto, Editor 43rd Bomb Group and the names of the round-the- [email protected] world crew. Lt Col John deAndrade, Publisher Some Other Lucky Ladies C/CMSgt Michael Hollingsworth, Cadet Reporter Lt David Meers & Maj Roy Bourque, Papparazis Lucky Lady I was a B-29 that attempted a round- Hap Rocketto, Feature Editor the-world trip in 1948. Vol. IX Issue 9.41 03 November, 2015 Lucky Lady III was one of three B-52s which circumnavigated the globe in 1957. Erratum and Addendum And the Bone Lt Col Carl Stidsen, CTWG Historian and Director (External) of Aerospace Education states that the The fastest unofficial time around the world by an Boeing B-50A Superfortress which made the first air breathing aircraft may be held by two North non-stop circumnavigation of the world was the American Rockwell B-1Bs, named Hellion and Lucky Lady II, not the Lady Luck II. He is right. Global Power, which in 1995 made the trip in 36hr 13min. carrying out three practice bombing runs along the way. Lt Col John deAndrade, TRCS Squadron Commander and a Bone pilot recalls crewing Hellion at one point in his career and may have also flown Global Power.