CCSBT-ESC/0809/Info 02

Correction factors derived from acoustic tag data for a juvenile southern bluefin tuna abundance index in southern Western Australia

Alistair J. Hobday Ryo Kawabe Yoshimi Takao Kazushi Miyashita Tomoyuki Itoh Prepared for the CCSBT 5 th Management Procedure Workshop 2-7 September and the 13 th Meeting of the Extended Scientific Committee 8-12 September 2008 Rotorua, New Zealand CCSBT-ESC/0809/Info 02

ElectronicTaggingandTrackinginMarineII. Reviews: Methods and Technologies in Fish Biology and Fisheries (REME ). Correction factors derived from acoustic tag data for a juvenile southern bluefin tuna abundance index in southern Western Australia AlistairJ.Hobday 1,2 RyoKawabe 3 YoshimiTakao 4 KazushiMiyashita 5 TomoyukiItoh 6 1. CSIROMarineandAtmosphericResearch,Hobart,Tasmania,7001,Australia 2. SchoolofZoology,UniversityofTasmania,PrivateBag5,Hobart,Tasmania 7001,Australia 3. InstituteforEastChinaResearch,NagasakiUniversity,Nagasaki,Japan 4. NRIFE,Ibaraki,Japan 5. FieldScienceCenterforNorthernBiosphere,HokkaidoUniversity,Hakodate, Japan 6. NationalResearchInstituteofFarFisheries,FisheriesResearchAgency, Shizuoka,Japan Correspondingauthor: [email protected] June26,2008 Running head :Useofacoustictaggingdataforabundanceindices Keywords :recruitmentindex,abundanceestimates,southernbluefintuna,residence time

1 CCSBT-ESC/0809/Info 02

1 Abstract 2 3 Juvenilesouthernbluefintuna(SBT, Thunnus maccoyii ),migratedownthecoastof 4 WesternAustraliareachingthesoutherncoastatage1.Inthesewatersanacoustic 5 surveyforSBTschoolswasinitiatedtogenerateafisheriesindependentabundance 6 index.Adeclineinthisabundanceindexledtoanacoustictaggingandmonitoring 7 projecttodetermineifachangeinmigrationrouteortimingcouldexplainthedecline. 8 Fiveyearsofacousticmonitoringrevealedinterannualdifferencesinkeyfactorsthat 9 couldimpacttheabundanceindex.Acoustictagdatawereusedtodemonstratethat(i) 10 ahighproportionoffish(~70%)maybetooshallowfordetectionintheacoustic 11 survey,andthatinterannualvariationin(ii)inshoreoffshorefraction(~3070%each 12 year)and(iii)residencetime(12–37days)willimpactcalculationofanindex.These 13 factorsshouldbeincludedinestimatinganabundanceindexforSBT,togetherwitha 14 correctionfor(iv)thefractionofjuvenileSBTthatmigratetosouthernWestern 15 Australia.Collectively,theseresultsillustratehowelectronictaggingdatacanbeused 16 toimproveunderstandingofabundancepatternsnecessaryforsustainable 17 managementofthisexploitedspecies. 18

2 CCSBT-ESC/0809/Info 02

19 Introduction

20 Southernbluefintuna(SBT, Thunnus maccoyii )areaneconomicallyimportant 21 speciesinternationallyandinAustralia,however,theyarecurrentlyathistoricallylow 22 populationlevels(Caton1991;CCSBT2007;Hobdayetal.inreview).SBTspawnin 23 thenortheastIndianOceanbetweenOctoberandFebruary(FarleyandDavis1998). 24 JuvenileSBTmovedownthewestcoastofAustraliaandoccurasage1and2year 25 oldfishinsouthernWesternAustraliaanduntilaboutage5occurfurthereastinthe 26 shelfwatersoftheGreatAustraliaBightduringtheaustralsummer(Caton1991; 27 Cowlingetal.2003;WillisandHobday2007).SBTareahighlyexploitedspecies 28 withinternationalmanagementbytheCommissionfortheConservationofSouthern 29 BluefinTuna(CCSBT)(Polacheck2002;HobdayandHartmann2006;Hobdayetal. 30 inreview).OneofthecontinuingCCSBTresearchprioritieshasbeentodevelopa 31 independentrecruitmentindexforSBT(e.g.CCSBT2007),particularlyfor 32 age1fishinsouthernWesternAustralia.Suchanindexisseenascrucialtodetect 33 potentialrecruitmentfailureyearsbeforesimilarsignalsmightbedetectedinCPUE 34 analysesbasedonhighseasfisheriesdata. 35 36 InsouthernWesternAustralia,ashipbasedacousticsurveywasinitiatedin1995to 37 estimatetherelativeabundanceof1yearoldSBT(ItohandTsuji2004, Figure 1a ), 38 withthegoalofgeneratingafisheryindependentrecruitmentindex.Thesurvey, 39 conductedinJanuaryFebruaryofeachyear,consistedofrepeattransectswithinthe 40 surveyarea.SchoolsofSBTwereidentifiedonthevesselandechosounder 41 imagesbyexperts,andschoolestimated(ItohandTsuji2004).Beginningin 42 about2000,however,theabundanceofjuvenileSBTwithintheacousticsurveyarea 43 declineddramatically,leadingtoverylowabundanceindices( Figure 1b) .Itwas 44 suggestedthateither(i)changesinthemigrationbehaviorofjuvenileSBTor(ii)a 45 realdeclineinthenumberofjuvenilefishwasresponsiblefortheapparentchangein 46 SBTabundance.AcousticmonitoringofSBTusingtagsandmooredreceiverswas 47 initiatedin2001/02toexaminethefirstpossibility;achangeinmigrationbehaviorin 48 southernWesternAustraliahadoccurred. 49 50 TwoalternativemigrationhypotheseswerethatjuvenileSBT(i)werenowmoving 51 inshoreoftheacousticsurveyarea,or(ii)weremovingthroughtheareabeforethe

3 CCSBT-ESC/0809/Info 02

52 surveyhadcommenced.ExaminingtheSBTmigrationtimingandpathwaywasthus 53 consideredcrucialtocorrectlyinterprettheabundanceindicesandassesspopulation 54 trendsofthisexploitedspecies.Keyneedsweretodeterminehowquicklyjuvenile 55 SBTmoveeastalongthesouthernWesternAustraliacoastduringtheaustralsummer, 56 andhowclosetoshorethemovementsoccur,inparticular,wouldtheyavoid 57 detectionintheacousticsurvey(Hobday2003). 58 59 Informationonbehaviorandmovementof3,4and5yearoldSBTinsouthern 60 Australiahasbeensuccessfullyobtainedusinginternalarchivaltags(Gunnetal. 61 1995),however,thesetagsdonotprovidelocationinformationonafinehorizontal 62 scale(<60nauticalmiles)(WelchandEveson1999;Musyletal.2001;Teoetal. 63 2004),andsowerenotsuitedtothisproblem.Analternativeapproachwithfiner 64 resolutionwasrequiredandfundedthroughtheJapanAustraliaRecruitment 65 MonitoringProgram(RMP).Thisapproach,usingacoustictagsandmooredacoustic 66 receiversthatdetecttaggedfish,hadbeendevelopedandtestedinbothWestern 67 Australia(Hobdayetal.2001)andSouthAustralia(Hobday2002)andwas 68 appropriateforSBTmovementstudiesatscalesof1100km(Heupeletal.2006). 69 70 Inthispaper,wesummarizetheresultsfromfiveyearsofacousticmonitoring 71 experiments(200203to200607),anddemonstratehowresultsobtainedusingthis 72 technologycanbeusedtocorrectanabundanceindexforSBT.Beforedescribingthe 73 experimentaldesignoftheacousticexperiment,wefirstdescribehowtheresultsfrom 74 acoustictaggingandmonitoringcanassisttherefinementofanabundanceindex. 75 76 An abundance index for southern bluefin tuna 77 Intheearlyyearsoftheacousticsurvey,whileSBTabundancewashigh,itwas 78 implicitlyassumedthatallfishpassedthroughthesurveyarea,suchthat,

79 Nfish ≈E fish (1)

80 whereN fish ,thefinalabundanceindex,isproportionaltoE fish ,theestimated 81 abundancebasedonthefishthatwereencounteredduringthesurvey( Figure 1b) . 82 Whileitwasrecognizedthatotherfactorscouldalsoimpactontheencounterrateof 83 schools,thesefactorswereassumedtobeconstantoveryears.Multiplereplicatesof 84 thesurveyeachyear(812peryear)alsoallowedconfidenceintervalstobecalculated. 85

4 CCSBT-ESC/0809/Info 02

86 Earlyresultsfromtheacousticmonitoringexperimentshowedthatthefractionoffish 87 encounteredwithinthesurveyareavariedaccordingtoseveralfactorswith 88 interannualvariation,suchthattheestimateoftheabundanceindexcouldbe 89 expressedas,

90 Nfish ≈E fish •D detection •F offshore •T survey /T residence (2)

91 where,D detection istheproportionoffishswimmingatadepthsuchthattheycanbe

92 detectedbytheacousticsurveyinstruments,F offshore isthefractionoffishswimming

93 throughthesurveyarea(comparedwiththefractionswimminginshore),andT residence 94 isthetimeindaysforthefishtopassthroughthesurveyregion.Thetimetocomplete

95 anacoustictransectisT survey .Iffishmovethroughthesurveyareamoreslowlythan 96 thesurveyvessel(longresidencetime),thenfishmaybedoublecountedon 97 subsequenttransects,oranassumptionofrelativestationaritymaybevalid,whileif 98 fishpassthroughthesurveyareamorerapidlythanthesurveyvesselcompletes 99 transects(shortresidencetime),thentheabundanceofSBTmaybeunderestimated. 100 Thispaperwillillustratehoweachofthesefactorswasobtainedfromtheacoustic 101 monitoringofSBT,andthusdemonstratehowtagdatacanbeusedtoadvance 102 sustainablemanagement.Movementpathwaysofindividualfisharenotpresented 103 here,itisthepopulationleveldescriptionsofmovementthatarethefocusand 104 requiredtocorrectlyestimateanabundanceindex. 105 106 Methods

107 InformationonthedistributionandmovementofjuvenileSBTwasgatheredusing 108 acousticreceiversandacoustictags.Wefirstdescribethedatacollection,andthenthe 109 dataanalysesconductedtoallowcorrectionstotheabundanceindex.

110 Data collection

111 Listeningstationsconsistedofamooringanchor(125kgsectionofrailwaytrack), 112 wirecable,VEMCOVR2receiver,timedelectronicrelease,50metersofreleaserope 113 inaPVCcanister,andfloats.VEMCOtemperaturedepthrecorders(TDR)were 114 attachedtoasubsetofreceiversatregularlyspacedintervalstoprovideenvironmental 115 data.Whendeployed,thereceiverswereatadepthof2025meters,justbelowthe 116 subsurfacefloats( Figure 2) .Receiversweredeployedincrossshelflines(numbered 117 13fromwesttoeast),andinclustersatinshorelumps.Inshorelumpsareknownto

5 CCSBT-ESC/0809/Info 02

118 attractSBTforvariableperiodsoftime(WillisandHobday2007,Hobdayand 119 Campbell,inreview). 120 121 Thenumberoflinesandreceiversincreasedfrom1lineof20receivers(Line2,2002 122 03)to2linesof40receivers(Line1and2,200304)andsince200405hasconsisted 123 of70listeningstationsindeployedinthreelinesandthreelumps( Figure 3) .In 124 addition,3stationsweredeployedateachofthreelumpsbetweenthewesternand 125 centrallines(200405to200607).Waterdepthrangedfrom55matthecoastto115 126 matthefurthestoffshorestation(waterdepthwas~170mattheedgeofthisstations’ 127 detectionrange).Waterdepthattheinshorelumpsaveraged5259m( Table 1 ). 128 Stationswereseparatedbyapproximately1500m,whichwastoolargeforcomplete 129 acousticcoveragebythereceivers.Thisspacingdecisionwasbasedonadesireto 130 coverthewidthoftheshelf;atagdetectionrangeofupto450m(forallmodelsof 131 tag)wasexpectedbasedondetectionexperimentsconductedwhilereceiverswere 132 deployed(HobdayandPincockinreview).Stationsweredeployedtotheedgeofthe 133 continentalshelf:validatedtrollingcapturesduringtheacousticsurveyshowedthat 134 age1SBTwererestrictedtotheshelfinthisregionandtime( Figure 4) . 135 136 Theelectronicreleasesoneachlisteningstationwereprogrammedtoactivateaftera 137 specifiedinterval.Atthistimethefloatsandacousticreceiverwouldfloattothe 138 surface,stillattachedtothemooringanchorsviapolypropylenerope( Figure 2) .All 139 partsofthelisteningstationswererecoveredusinganattendingvessel.Receivers 140 weretestedimmediatelyafterrecoverytoensurethatatesttagcouldbedetectedand 141 thattheinternalclockhadnotdrifted.DataweredownloadedusingVEMCOsoftware 142 andresultsanalyzedwithcustomsoftwarewritteninMatlab. 143 144 Acoustictags(V8,V9andV16,VEMCO)wereactivatedandtestedpriorto 145 deployment.Thesetagstransmittedacodedpulseatafrequencyof69kHzatrandom 146 intervalsevery2060secondswithapredictedlifetimeof365days(V8)and700days 147 (V16).ThesameprotocolusedforthecaptureandselectionofSBTforconventional 148 tagging(Williams1983)wasfollowedfortheacoustictagging(Hobdayetal.2001). 149 Inbrief,fishwerecaughtbypolingortrollingatthesternofthevesselandthen 150 carriedtoataggingcradleandlengthtocaudalfork(LCF)measured.Anacoustictag 151 wassurgicallyimplantedinthebellyofeachfish(seeWestandStevens2001)foran

6 CCSBT-ESC/0809/Info 02

152 explanationofthisprocedure),whichwasalsodoubletaggedwithconventional 153 orangetagsoneachsidejustposteriortotheseconddorsalfin.Thetimefromcapture 154 toreleaseforeachfishwasundertwominutesandallfishweretaggedbyasingle 155 experiencedoperator(AH). 156 157 Thelocationoffishtaggingvariedeachyearduetotheavailabilityoffish( Figure 5 ). 158 Thegeneralgoalwastocatchandreleasefishbothinshoreandoffshore(shelfbreak), 159 atlumpsandawayfromlumps,andbetweenthelinesandtothewestofthelines. 160 Groupsof1015fishwerepreferred,althoughindividualandsmallergroupswere 161 releasedwhenmorefishcouldnotbecaptured–itisnoteasytodeterminethe 162 numberoffishthatcanbecapturedinaschoolaheadoftime.Thereleaseswere 163 predominatelybetweenLine1andLine2,withtheexceptionof200607,whereSBT 164 werealsoreleasedmuchfurtherwest(thesewesternfishwereexcludedfromsome 165 analysespresentedhere)( Figure 5 ).Thesewesternreleasesweretotestspecific 166 hypothesesaboutmovementsfromthewestcoasttothesoutherncoast;however,50 167 tagswerestillreleasedbetweenLines1and2whichallowscomparisonswiththe 168 previousyears.Whenacousticallytaggedfishpassedclosetoareceiver,theidentity, 169 dateandtime,andifthetagcontainsapressuresensor,thedepthatthetimewas 170 recordedonthereceiver. 171 172 Data analyses 173 Theacousticdatawereusedtoestimatethefollowingthreefactorsfromequation2. 174 Eachfactorcanbeestimatedforeachyeartheexperimentwasconducted,asoutlined 175 below. 176

177 Estimation of D detection 178 Theacousticsurveyinstruments(sonarandechosounder)havedifficultydetecting 179 SBTthatwerecloserthan10meterstothesurface(Watanabeetal.2004).Thus,the 180 observednumberofSBTshouldbecorrectedforthefractiontooshallowtobe

181 encountered( Ddetection ).Thisdetectionestimatecanrangefrom0%(allSBTwere 182 shallowerthanthedetectiondepth)to100%(allweredeeperthanthedetection 183 depth).ThedepthdistributionofSBTinthesurveyareawasderivedfromalimited 184 setoftagsthatalsohadpressuresensors(VEMCOV16P,accuracy>1m).Each 185 acousticdetectionofsuchtagsatareceiverwasthusaccompaniedbyadepth

7 CCSBT-ESC/0809/Info 02

186 measurement.Aggregationofallthedepthmeasurementsprovidesanestimateofthe 187 totaltimespentateachdepth.Atthistime,limiteduseofV16Ptagsinsouthern

188 WesternAustraliahasoccurred,sotoillustratetheestimationofD detection wealso 189 provideinformationcollectedwiththesametechnologyintheGreatAustraliaBight 190 (WillisandHobday2007). 191

192 Estimation of F offshore 193 ToestimatethefractionofSBTpassingwithintheacousticsurveybox( Figure 1a ), 194 andhencecouldbeencounteredbytheacousticsurveyvessel,weusedthepatternof 195 detectionsatthecrossshelflines.Fishcouldtransitthecrossshelflinesonmorethan 196 oneoccasioniftheyswameastandwest;weusedthetotaldetectionsateachreceiver 197 asanindicationoftheamountoftimeallfishwerespendingatthatdistancefromthe

198 coast.Becausethenumberoflineschangedbetweenyears,theestimatesofF offshore 199 maybebiasedbetweenyears.Inthisexample,weshowdataforalllinestoestimatea

200 valueofF offshore eachyear.Thelinesaredividedintotheinshorehalfandoffshore 201 half. 202

203 Estimation of T residence 204 Residencetimeisimportantasanindicatorofhowlongfishremainedinthearray 205 area.Theresidencetimecalculationscanbebiasedbythenumberoflinesand 206 receiversthatweredeployedinanyyear,andbythelocationoffishreleases.For 207 example,residencetimecanbecalculatedusingLine2alone(usedin5years),Line1 208 andLine2(usedfor4years)orLine1,Line2,andLine3(usedin5years),including 209 orremovingtheinshorelumps.Inthispaper,weuseddetectionsatLine2only,to 210 allowa5yeartimeseriesofresidencetimetobeconstructed.Weusedhalflife 211 (sensu survivalanalysis)asanestimateofresidencetime.Herewedefinehalflifeas 212 thelengthoftimeatwhichhalfthetagsdetectedinthestudyremaininthestudyarea.

213 Thesecondelement(T survey )isnotderivedhere,butcanbeobtainedfromthetimethe 214 surveyvesseltakestocompleteatransectreplicate.Onlyfishreleasedeastof118.2°E 215 wereincludedintheresidencetimeanalysistoensureconsistencybetweenyears. 216 217 Results

8 CCSBT-ESC/0809/Info 02

218 Thedeploymentconfigurationforeachyearisshownin Table 1 ,withexperiments 219 lastingfrom101to177days. Ingeneral,thelengthoftheexperimentincreasedeach 220 year,asthemooringdesignimprovedandinordertoensurethatalltaggedfishhad 221 lefttheareawhentheexperimentconcluded.Between59and130SBTweretagged 222 eachyear.Thenumberoftagsdetectedeachyearwasinpartduetolocationsin 223 whichfishweretagged.In200506,over80%oftaggedfishweredetected;however, 224 theywerealltaggedbetweenLine1andLine2( Figure 2, Figure 5) .Incontrast,a 225 loweroverallpercentagewasdetectedin200607;however,over50%ofthefish 226 weretaggedtothewestofthearrayofreceivers(Figure 5E ). 227 228 Juveniletunaimplantedwiththeacoustictagsrangedfrom4390cminlength,with 229 themeansizeeachyearbetween50.5and60.8cm( Table 2). Infourofthefiveyears 230 therewasnodifferencebetweenthesizeoftaggedanddetectedfish(ttests,p<0.05, 231 Table 2 ).Thefinalyear(200607)showedadifferencebecausesmallfishwere 232 taggedonthewestcoast,andonlyoneofthesefishwassubsequentlydetected.These 233 westcoastfishwerethesamesizeashadbeendetectedinpreviousyears,andsothis 234 differenceislikelyduetomigration,andnotmortality. 235 236 Fishweredetectedthroughouttheexperimentalseason,althoughthedetections 237 sharplydeclinedorceasedbytheendofeachseason.Thetotalnumberofdetections 238 fromalltagseachyearrangedbetween261and28,023( Table 1) ,andformsarobust 239 dataforestimateofthekeyfactors.Thenumberofdetectionsincreasedwiththe 240 numberofstationsthatweredeployed,particularlythethreeyearswhenreceivers 241 weredeployedoninshorelumps. 242

243 Depth distribution - estimating D detection 244 Thedepthdistributioninferredfromtheacoustictagswithpressuresensorsshows 245 thatjuvenileSBT(age1andage2)spendthemajority(>~70%)oftimeshallower 246 than10m( Figure 6) .Thus,approximately30%offishwouldbedetectedinthe 247 sonarbasedacousticsurvey. 248

249 Inshore-offshore pathways – estimating F offshore 250 Thepercentageoffishmovinginshoreoroffshorethroughthesurveyareavaried 251 betweenyears( Table 3) .Insomeyears,themajorityoftunaweredetectedatthe

9 CCSBT-ESC/0809/Info 02

252 inshorehalfofthereceiverline(200203,Line2,68%),whiletheoppositewastrue 253 inotheryears(200506,Line2,30%)( Figure 7) .Therewasalsovariationinthe 254 inshore/offshorefractionbetweenlinesinthesameyear(200506),indicatingspatial 255 variabilityinmovementpathways.Thesedifferenceswerenotconsistentbetween 256 years,suggestingthatsomeothertimevariablefactors,suchasoceanconditions,may 257 beimportant.Thisvariationintheinshoreoffshoredetectionoffishillustrates 258 interannualvariationinhowfishusethesouthernWesternAustraliaregion. 259

260 Residence times – estimating T residence 261 Residencetimeinthemonitoringareavariedbyyear( Figure 8 , Table 3 ).Using 262 detectionoftaggedSBTonlyatLine2toestimatehalflife,thehalflifeinthearray 263 areawasonly11and19daysin200203and200405,respectively.Fortheother 264 threeyears,thehalflifewasbetween30and34days.Themovementsofthefishfrom 265 releaselocationstoLine2arealsoshownin Figure 8 ,toillustratethedetection 266 patterns. 267 268 Discussion

269 Thecalculationofanabundanceindexforjuvenilesouthernbluefintunarequiresthat 270 eitheraconstantfractionoffishoccurwithinthesurveyareaeachyear,orthatthe 271 variationbetweenyearscanbemeasuredandaccountedfor.Evidencegatheredusing 272 acousticmonitoringoftaggedfishshowedthatthefractionoffishwithinthesurvey 273 areavariedbetweenyears,andshouldbeaccountedforwhencalculatingan 274 abundanceindex.Equation2showedhowtheindexmightneedtobeadjustedfor 275 threefactors,theproportionoffishthatcanbedetectedbasedonthedepth 276 distributionbythesurveymethodology,theproportionoffishthatmovethroughthe 277 surveyarea,andthespeedatwhichthefishmovethroughthesurveyarea. 278 279 AcaveatwiththeuseofdepthdataisthatmostofthedetectionsoffishwithV16P 280 tagsoccurredaroundlumps(bothWesternAustraliaandGAB)(WillisandHobday 281 2007).Theacousticsurveytookplaceawayfromlumps(whichareanavigational 282 hazard),andsofutureeffortstocollectinformationonSBTdepthdistributionshould 283 concentrateondatacollectedasfishtransittheopenwatercrossshelflines,asthe 284 depthdistributionmaydifferinopenwatercomparedtoaroundlumps.

10 CCSBT-ESC/0809/Info 02

285 286 Correcting the abundance estimate 287 UnfortunatelytheacousticsurveyinsouthernWesternAustraliawashaltedin2003, 288 inpartduetothecostsofthesurvey,andtherealizationthattherewaspotential 289 variabilityintheestimatedabundanceindexbasedonthecorrectionfactors(Itohetal. 290 2005).Thus,calculationofanimprovedabundanceindexfortheyearsofthese 291 acousticmonitoringexperimentscannotbedemonstrated.Ifinterannualvariationin 292 thecorrectionfactorscanberelatedtosomeadditionalvariables,suchasseasurface 293 temperature,thenposthoccorrectionoftheabundanceindexfortheperiod1995 294 2003maybeattempted.Thisanalysisisunderway,however,explaininginterannual 295 variationislikelytobedifficultwithonlyfiveyearsofdata.Thedramaticdeclinein 296 theabundanceindexcouldbeexplainedbyinshoremovementoffish,asobservedin 297 thefirstyearoftheacousticexperiment(68%offishpassedattheinshorehalfofthe 298 lines),ifthatpatternhadoccurredinsomeofthepreviousyears.However,in 299 subsequentyears,withmorefishbeingdetectedintheoffshorehalfofthelines,the 300 abundanceindexwouldhavebeenexpectedtoincreaseagain.Unfortunately,bythis 301 time,theacousticsurveyhadbeensuspended. 302 303 Eachofthecorrectionfactorswillalsohaveuncertaintyassociatedwiththeestimates, 304 whichwouldalsoneedtobeincludedinestimatinganoverallabundanceindex. 305 Acceptedmethodsforcalculatinguncertaintyforthesetagdatadonotcurrentlyexist, 306 andrepresentachallengeinutilizingdataformanagement.Knownissuesinclude 307 nonindependenceofdetections,detectionprobabilities,anderrorpropagation. 308 309 One additional complicating factor 310 Intheaustralsummerof2006/07,SBTwerealsotaggedonthewestcoastofWestern 311 Australia.ThiswastoexaminetheproportionoffishthatmoveintosouthernWestern 312 Australia.Preliminaryanalysisshowsthatfishthatweretaggedonthewestcoastdid 313 notallmovetothesouthcoast.ThissuggeststhatnotallthejuvenileSBTpopulation 314 isinsouthernAustraliaduringtheaustralsummer.Thesouthwardmovementoffish 315 islikelytobeassistedbytheLeeuwincurrent(e.g.Lenantonetal.1991),whichhas 316 considerableinterannualvariation(Dominguesetal.2007;Waiteetal.2007).Thus,it 317 isreasonabletopresumethattheproportionofSBTmovinginsouthernWestern

11 CCSBT-ESC/0809/Info 02

318 AustraliamayalsovarybetweenyearsandtheequationforestimatingtheN fish ,is 319 suggestedtobebetterrepresentedas;

320 Nfish ≈E fish •D detection •F offshore •T survey /T residence •M pathway (3)

321 whereM pathway isthefractionoffishthatmigratethroughsouthernWesternAustralia. 322 Thisofcourse,furthercomplicatesthegenerationofanabundanceindexforage1 323 SBT.Thus,thenextstepistounderstandthefractionoffishthatmovethrough 324 southernAustralia,fromthewestcoastofAustralia.Thisisamajoruncertainty, 325 whichwillimpactotherpopulationassessmentsforthisspecies.Whiletheacoustic 326 surveytogenerateanabundanceindexhasbeensuspendedindefinitely,theseresults 327 mayalsobeapplicabletoothermorecosteffectivesurveymethodsbeingattempted

328 insouthernWesternAustralia(Itohetal.2005;Itoh2007),andinthecaseofM pathway , 329 totheestimationofSBTabundanceintheGreatAustraliaBight(Cowlingetal.2003; 330 Evesonetal.2007). 331 332 Thepurposeofthispaperhasbeentoillustratehowinformationgatheredusing 333 electronictags,aspartofanacousticmonitoringexperiment,canimproveabundance 334 estimatesneededforsustainablefisheriesmanagement.Theresultspresentedhere 335 indicatethatestimatesofresidencetime,migrationpathways,andhabitatusecanbe 336 derivedfromacoustictagdata.Thesefactorsareinturnimportantincorrectingan 337 abundanceindexforjuvenileSBT.Thevalueoffiveyearsofdataisapparentgiven 338 theinterannualvariationinthesefactors,andeffortmustbemadetocontinuethese 339 timeseriesintothefuture. 340 341 Acknowledgements

342 TheassistanceandcooperationofGeoffCampbellandthecrewofF/VQuadrantover 343 theyearsofthisstudyaregreatlyappreciated.Anumberoffieldassistantsalso 344 assistedwithdeployment,taggingandrecovery,andtheircontributionisgratefully 345 acknowledged.ThisresearchwassupportedbyFAJ,JAMARC,CSIROMarine 346 Research,SchoolofZoology,UniversityofTasmania,AustralianAcousticTagging 347 andMonitoringSystem(AATAMS)afacilitywithintheIntegratedMarineObserving 348 System,andtheAustralianFisheriesManagementAgencyaspartoftheJapan 349 AustraliaSBTRecruitmentMonitoringProgram,andbyaGrantinAidfromthe 350 JapanSocietyforthePromotionofScience(16255010).

12 CCSBT-ESC/0809/Info 02

351 References

352 Caton,A.E.(1991)Reviewofaspectsofsouthernbluefintunabiology,population 353 andfisheries.In:ShomuraRS,MajkowskiJ,LangiS(eds)Proceedingsofthe 354 firstFAOExpertConsultationoninteractionsofPacifictunafisheries. 355 Noumea,NewCaledonia,p296343. 356 CCSBT(2007)ReportoftheTwelfthMeetingoftheScientificCommittee.Available 357 fromhttp://www.ccsbt.org/docs/meeting_r.html 358 Cowling,A.,Hobday,A.J.andGunn,J.(2003)Developmentofafishery 359 independentindexofabundanceforjuvenilesouthernbluefintunaand 360 improvementoftheindexthroughintegrationofenvironmental,archivaltag 361 andaerialsurveydata.CSIROMarineResearch.FRDCFinalReport96/118 362 &99/105. 363 Domingues,C.M.,Maltrud,M.E.,Wjiffels,S.E.,Church,J.A.,andTomczak,M. 364 (2007)SimulatedLagrangianpathwaysbetweentheLeeuwinCurrentSystem 365 andtheupperoceancirculationofthesoutheastIndianOcean. Deep-Sea Res 366 II 54 ,797817. 367 Farley,J.H.,andDavis,T.L.O.(1998)Reproductivedynamicsofsouthernbluefin 368 tuna, Thunnus maccoyii . Fish. Bull.96 ,223236. 369 Gunn,J.S.,Davis,T.L.O.,Polacheck,T.,Betlehem,A.,Sherlock,M.(1995)The 370 applicationofarchivaltagstostudySBTmigration,behaviorandphysiology 371 1995SouthernBluefinTunaRecruitmentMonitoringWorkshopReportNo. 372 RMWS/95/8.CSIROMarineLaboratoriesHobart 373 Eveson,P.,Bravington,M.andFarley,J.(2007)AerialSurvey:updatedindexof 374 abundanceandpreliminaryresultsfromcalibrationexperiment.CCSBT 375 ESC/0709/12.Availablefromhttp://www.ccsbt.org/docs/meeting_r.html 376 Heupel,M.R.,Semmens,J.M.,andHobday,A.J.(2006)Automatedacoustictracking 377 ofaquaticanimals:scales,designanddeploymentoflisteningstationarrays. 378 Mar. Freshw. Res.57 ,113. 379 Hobday,A.J.(2002)AcousticmonitoringofSBTwithintheGAB;exchangerates 380 andresidencetimesattopographicfeatures.SouthernBluefinTuna 381 RecruitmentMonitoringWorkshopReportNo.RMWS/02/03.CSIROMarine 382 Research,Hobart,Australia.

13 CCSBT-ESC/0809/Info 02

383 Hobday,A.J.(2003)Nearshoremigrationofjuvenilesouthernbluefintunain 384 southernWesternAustralia,SouthernBluefinTunaRecruitmentMonitoring 385 WorkshopReport.RMWS/03/15.CSIROMarineResearch,Hobart,Australia. 386 Hobday,A.J.,Davis,T.L.O.,Gunn,J.S.(2001)DeterminationofSBTresidencetime 387 viaacousticmonitoringalongthesouthernWAcoast.SouthernBluefinTuna 388 RecruitmentMonitoringWorkshopReportNo.RMWS/01/05.CSIROMarine 389 Research,Hobart,Australia. 390 Hobday,A.J.,andHartmann,K.(2006)Nearrealtimespatialmanagementbasedon 391 habitatpredictionsforalonglinespecies. Fish. Manage. Ecol.13 , 392 365380. 393 Hobday,A.J.andD.Pincock(inreview)Estimatingdetectionprobabilitiesforlinear 394 acousticmonitoringarrays. Can. J. Fish. Aqu. Sci. 395 Hobday,A.J.andCampbell,G.(inreview)Topographicpreferencesandhabitat 396 partitioningbypelagicfishesinsouthernWesternAustralia. Mar. Freshw. Res . 397 Hobday,A.J.,Flint,N.,Stone,T.,andGunn,J.S.(inreview)Electronictaggingdata 398 supportingflexiblespatialmanagementinanAustralianlonglinefishery.InJ. 399 Nielsen(ed).ElectronicTaggingandTrackinginMarineFisheriesII. 400 Reviews:MethodsandTechnologiesinFishBiologyandFisheries. 401 Itoh,T.,andTsuji,S.(2004)ReviewofAcousticMonitoringSurveyAnalysesof 402 dataforeightyears.SouthernBluefinTunaRecruitmentMonitoring 403 WorkshopReportNo.RMWS/04/03.CSIROMarineResearch,Hobart, 404 Australia. 405 Itoh,T.,Takao,T.,andTsuju,S.(2005)ProposalofRMPsurveysinWAforageone 406 southernbluefintunain2004/2005.SouthernBluefinTunaRecruitment 407 MonitoringWorkshopReportNo.RMWS/05/16.CSIROMarineResearch, 408 Hobart,Australia. 409 Itoh,T.(2007)Someexaminationontherecruitmentindexofage1southernbluefin 410 tunaderivedfromthetrollingsurvey.CCSBTESC/0709/35.Availablefrom 411 http://www.ccsbt.org/docs/pdf/meeting_reports/ccsbt_14/report_of_SC12_pub 412 lic_version.pdf 413 Lenanton,R.C.,Joll,L.,Penn,J.,andJones,K.(1991)TheinfluenceoftheLeeuwin 414 CurrentoncoastalfisheriesofWesternAustralia.J. Royal Soc. West. Aust. 74 , 415 101114.

14 CCSBT-ESC/0809/Info 02

416 Musyl,M.K.,Brill,R.W.,Curran,D.S.,Gunn,J.S.,Hartog,J.R.,Hill,R.D.,Welch, 417 D.W.,Eveson,J.P.,Boggs,C.H.,andBrainard,R.E.(2001)Abilityofarchival 418 tagstoprovideestimatesofgeographicalpositionbasedonlightintensity.In 419 SibertJ.R.,NielsenJ.L.(eds)ElectronicTaggingandTrackinginMarine 420 Fisheries.KluwerAcademicPublishers,London,p343367 421 Polacheck,T.(2002)Experimentalcatchesandtheprecautionaryapproach:the 422 SouthernBluefinTunadispute. Mar. Pol.26 ,283294. 423 Watanabe,K.,Takao,Y.,Sawada,K.,Abe,K.(2004)Acousticsurveyofpelagic 424 fishesusingasidescansonar,preliminarilyoperatedforthecomingSBT 425 survey.SouthernBluefinTunaRecruitmentMonitoringWorkshopReportNo. 426 RMWS/04/04.CSIROMarineResearch,Hobart,Australia. 427 Teo,S.L.H.,Boustany,A.,Blackwell,S.,Walli,A.,WengK.C.,andBlock,B.A. 428 (2004)Validationofgeolocationestimatesbasedonlightlevelandseasurface 429 temperaturefromelectronictags. Mar. Ecol. Prog. Ser.283 ,8198. 430 Waite,A.M.,Thompson,P.A.,Pesant,S.,Feng,M.,Beckley,L.E.,Domingues,C.M., 431 Gaughan,D.,Hanson,C.E.,Holl,C.M.,Koslow,T.,Meuleners,M.,Montoya, 432 J.P.,Moore,T.,Muhling,B.A.,Paterson,H.,Rennie,S.,Strzelecki,J,.and 433 Twomeya,L.(2007)TheLeeuwinCurrentanditseddies:Anintroductory 434 overview. Deep-Sea Res. II 54 ,789796. 435 Welch,D.W.,andEveson,J.P.(1999)Anassessmentoflightbasedgeoposition 436 estimatesfromarchivaltags. Can J Fish Aquat Sci 56 ,13171327. 437 West,G.J.,andStevens,J.D.(2001)ArchivalTaggingOfSchoolShark,Galeorhinus 438 Galeus,inAustralia:InitialResults. Env. Biol. Fish.60 ,283298. 439 Williams,K.(1983)BignumbersofSBFtunataggedoffEsperance. Australian 440 Fisheries July:2627. 441 Willis,J.,andHobday,A.J.(2007)Influenceofonmovementofsouthern 442 bluefintuna( Thunnus maccoyii )intheGreatAustralianBight. Mar. Freshw. 443 Res.58 ,699–708. 444

15 CCSBT-ESC/0809/Info 02

445 Table 1 .Summaryoftheexperimentsfortheacousticexperimentinsouthern 446 WesternAustralia.IL=inshorelumps.See Figure 3 forlocationsofthelines. 447 Year Numberoflines Tags Experiment Lengthof Tags Total (receivers) deployed startdate experiment detected detections (days) (%) 200203 1(20) 73 Dec3,2002 101 32.9 261 200304 2(40) 59 Dec3,2003 117 49.2 443 200405 3(61)+3IL(9) 79 Dec4,2004 102 69.6 28,023 200506 3(61)+3IL(9) 81 Dec2,2005 160 84.0 5,214 200607 3(61)+3IL(9) 130 Dec1,2006 177 48.5 18,514 448

16 CCSBT-ESC/0809/Info 02

449 Table 2 .Summaryofthesizeofthetaggedanddetectedsouthernbluefintunain 450 southernWesternAustraliaoverfiveyearsofacousticexperiments(N=no,Y=yes). 451 Year Acoustictags Meansizeof Meansize Differencebetween deployed allfish ofallfish taggedanddetected (n) tagged detected sizes(ttest,p<0.05) (cm) (cm) 200203 73 60.8 59.8 N 200304 59 57.8 55.6 N 200405 79 51.4 53.5 N 200506 81 49.3 49.6 N 200607 130 50.5 57.9 Y 452

17 CCSBT-ESC/0809/Info 02

453 Table 3 .Thepercentageoftaggedsouthernbluefintunadetectedintheoffshorehalf 454 ofeachlineofreceivers.Percentagesless(greater)than50%,indicatethatfishwere 455 passingusingapredominatelyinshore(offshore)pathway.Residencetime,basedon 456 detectionsatLine2andreleaseseastof118.2°E,isshowninthefinalcolumn, 457 togetherwiththenumberofdetectedtagsandindividualdetectionsonwhichthe 458 residencetimewasbased. 459 Year Line Line Line Averageof Movement Residencetime 1 2 3 alllines pathway (days) (%) (%) (%) (%) (ntags,npings) 200203 32 32.0 Inshore 11(n=19&226) 200304 42 45 43.5 Inshore 34(n=24&221) 200405 39 27 6 24.0 Inshore 19(n=27&575) 200506 21 70 73 54.6 Offshore 30(n=27&2118) 200607 44 38 61 48.0 ~Equal 34(n=23&438) Average 36.5 42.4 46.7 40.4 25.6days 460

18 CCSBT-ESC/0809/Info 02

461 Figure Legends 462 463 Figurelegendsarerepeatedoneachfiguretoaidthereviewprocess 464 465 Figure 1 . A.Shipbasedacousticsurveyareaforsouthernbluefintuna(bluepolygon) 466 insouthernWesternAustraliaandseasurfacetemperatureforanexamplesummer, 467 showingtheinfluenceoftheLeeuwinCurrent(warmwaterfromthewest). B. 468 Abundanceindexforjuvenilesouthernbluefintunainthesurveyarea,derivedfrom 469 theshipbasedacousticsurvey.Theyear(e.g.1996)referstotheaustralsummer(e.g. 470 1995/96). 471 472 Figure 2 .Configurationoflisteningstationmooringsduringthesubsurface 473 deploymentperiod(left)andreadyforrecovery(right). 474 475 Figure 3 .Locationsoflisteningstationsinthesouthernbluefintunaacoustic 476 monitoringexperimentinsouthernWesternAustralia.Theacousticsurveyareais 477 insidethebluepolygon,thedashedlinerepresentstheouterboundaryofthesurveyin 478 theyears200203.Theyearsinwhichlisteningstationsweredeployedattheselines 479 andinshorelumpsisdescribedinthetext. 480 481 Figure 4 .Locationsofsouthernbluefintunadetectedbytrollingintheacoustic 482 survey(19952003).Thesizeofthemarkerreferstothenumberofindividualfish 483 capturedbytrollingatalocation.Thelocationofthe200mcontourisshown. 484 485 Figure 5 .Releaselocationsforacousticallytaggedsouthernbluefintuna(redstars), 486 togetherwiththelocationofreceiversforthatyear A.200203(n=73tags). B.2003 487 04(n=59tags). C. 200405(n=79tags). D. 200506(n=81tags). E.200607(n= 488 130tags,but50tagseastof118.2°E). 489 490 Figure 6. Estimationofthedepthdistributionofsouthernbluefintunaderivedfrom 491 acoustictagswithapressuresensor. A.AsinglefishinsouthernWesternAustralia. B. 492 DepthdistributionforSBTbasedonacoustictagsintheGreatAustralianBight(from 493 WillisandHobday2007). 494

19 CCSBT-ESC/0809/Info 02

495 Figure 7. Cumulativefrequencyplotsofdetectionofacousticallytaggedsouthern 496 bluefintunaacrosseachlineofreceivers. A.Line1,deployedforfouryears. B. Line 497 2,deployedforfiveyears. C.Line3,deployedforthreeyears.The1:1lineat45 498 degreesshowsthecrossshelfdistributionthatwouldbeobservediffishpassedthe 499 crossshelflineatrandomdistancesacrossthecontinentalshelf.Forexample, 500 consider2005forLine3:only10%ofdetectionsweremadeoffshoreofstation50, 501 thus90%areinshore.Seetextforfullinterpretation. 502 503 Figure 8 .ResidencetimeandmovementsofSBTdetectedintheacousticmonitoring 504 study.Lefthandcolumnshowsthenumberoffishremainingtobedetectedasa 505 functionoftimesinceeachfishwasreleased. A. 200203, B. 200304, C. 200405, D. 506 200506and E. 200607.Thehalflifeisindicatedbytheverticalblackline(numbers 507 providedin Table 3) .Therighthandcolumnindicatesthetracksoffishfromtheir 508 releasepoint(circles),whenonlyLine2detections(crossshelfline)andreleaseseast 509 of118.2°Eareused. F.200203, G.200304, H.200405, I.200506and J.200607. 510 Theacousticsurveyboxisindicatedbythebluepolygon.1degreeoflongitude 511 representsapproximately100kmatthislatitude. 512

20 CCSBT-ESC/0809/Info 02

513 A.

514 515 516 B.

9000

8000

7000

6000

5000

4000 Biomass Biomass (t) 3000

2000

1000

0 1996 1997 1998 1999 2000 2001 2002 2003 517 Year 518 519 Figure 1 . A.Shipbasedacousticsurveyareaforsouthernbluefintuna(bluepolygon) 520 insouthernWesternAustraliaandseasurfacetemperatureforanexamplesummer, 521 showingtheinfluenceoftheLeeuwinCurrent(warmwaterfromthewest). B. 522 Abundanceindexforjuvenilesouthernbluefintunainthesurveyarea,derivedfrom 523 theshipbasedacousticsurvey.Theyear(e.g.1996)referstotheaustralsummer(e.g. 524 1995/96).

21 CCSBT-ESC/0809/Info 02

525 526

527 528 529 Figure 2 .Configurationoflisteningstationmooringsduringthesubsurface 530 deploymentperiod(left)andreadyforrecovery(right). 531

22 CCSBT-ESC/0809/Info 02

532 533

534 535 Figure 3 .Locationsoflisteningstationsinthesouthernbluefintunaacoustic 536 monitoringexperimentinsouthernWesternAustralia.Theacousticsurveyareais 537 insidethebluepolygon,thedashedlinerepresentstheouterboundaryofthesurveyin 538 theyears200203.Theyearsinwhichlisteningstationsweredeployedattheselines 539 andinshorelumpsisdescribedinthetext. 540

23 CCSBT-ESC/0809/Info 02

541

-34.3

-34.4

-34.5

-34.6

-34.7

-34.8

Latitude -34.9

-35 < 5 5-10 -35.1 10-15 > 15 -35.2

-35.3

118.5 119 119.5 120 120.5 121 121.5 542 Longitude 543 Figure 4 .Locationsofsouthernbluefintunadetectedbytrollingintheacoustic 544 survey(19952003).Thesizeofthemarkerreferstothenumberofindividualfish 545 capturedbytrollingatalocation.Thelocationofthe200mcontourisshown.

24 CCSBT-ESC/0809/Info 02

546

-33.5 -33.5 A. B.

-34 -34

-34.5 -34.5 Latitude Latitude

-35 -35

-35.5 -35.5 117 118 119 120 121 122 117 118 119 120 121 122 547 Longitude Longitude

-33.5 -33.5 C. D.

-34 -34

-34.5 -34.5 Latitude Latitude

-35 -35

-35.5 -35.5 117 118 119 120 121 122 117 118 119 120 121 122 548 Longitude Longitude

-32 E. -32.5

-33

-33.5

Latitude -34 Bremer Bay -34.5

Albany -35

-35.5 115 116 117 118 119 120 121 122 549 Longitude 550 551 Figure 5 .Releaselocationsforacousticallytaggedsouthernbluefintuna(redstars), 552 togetherwiththelocationofreceiversforthatyearA.200203(n=73tags). B.2003 553 04(n=59tags). C. 200405(n=79tags). D. 200506(n=81tags). E.200607(n= 554 130tags,but50tagseastof118.2°E). 555

25 CCSBT-ESC/0809/Info 02

556 557 A. B.

558 559 560 Figure 6. Estimationofthedepthdistributionofsouthernbluefintunaderivedfrom 561 acoustictagswithapressuresensor. A.AsinglefishinsouthernWesternAustralia. B. 562 DepthdistributionforSBTbasedonacoustictagsintheGreatAustralianBight(from 563 WillisandHobday2007). 564

26 CCSBT-ESC/0809/Info 02

565 A. B. C.

566 567 568 Figure 7. Cumulativefrequencyplotsofdetectionofacousticallytaggedsouthern 569 bluefintunaacrosseachlineofreceivers. A.Line1,deployedforfouryears. B. Line 570 2,deployedforfiveyears. C.Line3,deployedforthreeyears.The1:1lineat45 571 degreesshowsthecrossshelfdistributionthatwouldbeobservediffishpassedthe 572 crossshelflineatrandomdistancesacrossthecontinentalshelf.Forexample, 573 consider2005forLine3:only10%ofdetectionsweremadeoffshoreofstation50, 574 thus90%areinshore.Seetextforfullinterpretation. 575

27 CCSBT-ESC/0809/Info 02

A. F.

60 -33.8

-34 50 -34.2 40 -34.4

30 -34.6 Latitude 20 -34.8 Tags remaining Tags

10 -35 -35.2 0 0 5 10 15 20 25 30 35 40 117.5 118 118.5 119 119.5 120 120.5 121 Days since fish tagged Longitude B. G.

60 -33.8

-34 50 -34.2 40 -34.4 30 -34.6 Latitude 20 -34.8 Tags remaining Tags -35 10 -35.2 0 0 10 20 30 40 50 60 70 80 117.5 118 118.5 119 119.5 120 120.5 121 Days since fish tagged Longitude C. H. 80 -33.8 -34

60 -34.2

-34.4

40 -34.6 Latitude -34.8 Tags remaining Tags 20 -35

-35.2 0 0 10 20 30 40 50 60 117.5 118 118.5 119 119.5 120 120.5 121 Days since fish tagged Longitude D. I. 80 -33.8

-34

60 -34.2

-34.4 40 -34.6 Latitude -34.8 Tags remaining Tags 20 -35

-35.2 0 0 10 20 30 40 50 60 70 80 90 100 117.5 118 118.5 119 119.5 120 120.5 121 Days since fish tagged Longitude E. J. 50 -33.8

-34 40 -34.2

30 -34.4

-34.6

20 Latitude -34.8 Tags remaining Tags 10 -35

-35.2 0 0 20 40 60 80 100 120 140 160 117.5 118 118.5 119 119.5 120 120.5 121 Days since fish tagged Longitude

576 577 Figure 8 .ResidencetimeandmovementsofSBTdetectedintheacousticmonitoring 578 study.Lefthandcolumnshowsthenumberoffishremainingtobedetectedasa 579 functionoftimesinceeachfishwasreleased. A. 200203, B. 200304, C. 200405, D. 580 200506and E. 200607.Thehalflifeisindicatedbytheverticalblackline(numbers 581 providedin Table 3) .Therighthandcolumnindicatesthetracksoffishfromtheir 582 releasepoint(circles),whenonlyLine2detections(crossshelfline)andreleaseseast 583 of118.2°Eareused. F.200203, G.200304, H.200405, I.200506and J.200607. 584 Theacousticsurveyboxisindicatedbythebluepolygon.1degreeoflongitude 585 representsapproximately100kmatthislatitude.

28