Synthèse, Réactivité Électrochimique Et Structure Électronique De 1-R-Métallatranes (M=Si,Sn) Yu Wang
Total Page:16
File Type:pdf, Size:1020Kb
Synthèse, réactivité électrochimique et structure électronique de 1-R-métallatranes (M=Si,Sn) Yu Wang To cite this version: Yu Wang. Synthèse, réactivité électrochimique et structure électronique de 1-R-métallatranes (M=Si,Sn). Autre. Université Rennes 1, 2012. Français. NNT : 2012REN1S149. tel-00806250 HAL Id: tel-00806250 https://tel.archives-ouvertes.fr/tel-00806250 Submitted on 29 Mar 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : ANNÉE 2012 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale : Science de la Matière (sdlm) présentée par Yu WANG Préparée à l’unité de recherche UMR CNRS 6226 ISCR Chimie et Photonique Moléculaire UFR Structure et Propriétés de la Matière Thèse soutenue à Rennes Synthesis, le 30 Novembre 2012 electrochemical devant le jury composé de : Christa GROGGER reactivity and Professeur Université Technique de Graz, Autriche/ rapporteur electronic structure Mohamed MELLAH Maître de conférence-HDR of 1-R-metallatranes Université Paris sud / rapporteur Floris CHEVALLIER (M = Si, Sn) Maître de conférence-HDR Université Rennes1 / membre Viatcheslav JOUIKOV Professeur Université Rennes1 / directeur de thèse Acknowledgement During these three years, I received plenty of help from many people. I know I can‟t mention all of them here but I still would like to express my sincere gratitude to very persons who supported me at all times or through any condition throughout my thesis. First and foremost, I am extremely grateful to my thesis supervisor Pr. Viatcheslav Jouikov, who not only chose me for this thesis but also gave me a lot of valuable guidance and consistent encouragement, which I received throughout the research work. Special thanks are due to Pr. Christa GROGGER and Dr. Mohamed MELLAH for accepting to be the reporters of my thesis and for the careful review and many suggestions that they provided on the original manuscript. I would like to thank Dr. Floris CHEVALLIER for being the member of my jury and providing many useful advices on my manuscript. I would like to offer special thanks to laboratory “Chimie et Photonique Moléculaires” UMR 6226 for providing me very good working conditions and help at all time. I would like to thank my boyfriend Mr. Jan Recho for being with me through all three years during my thesis and offering me encouragement and help anytime. I want to tell him „without you I couldn‟t have achieved it‟. Also very sincere thanks to my mum Mrs. Liu Ying who always supported my decision and accompanied me during the last three months of my thesis by taking very good care of my life. I am so lucky to have you as my family. I am even luckier to have my friends by my side with no conditions. First I would like to thank one of my best friends Lena Driehaus for helping me, jogging with me every day, laughing or crying with me and preparing an extraordinary „french-chinese pot‟ for me after my viva. I want to thank the couple Liu Ming and Bai Xiao for helping me to find all the solutions I needed to get used to the software LYX that I used for writing my thesis, as well as Yi Xiaohui for drawing the crystal figure for my thesis. Grateful thanks to my colleagues in the laboratory Aline Vanryckeghem, Nada Marquise, Aude Sourdon, Nicolas Richy and Jonathan Daniel for helping the little foreigner from China to improve my poor French with „nice‟ jokes and expressions. It is such a pleasure working with you as well as having coffee in the „fume club‟. Summary Metallatranes (M = Si, Ge, Sn) have been studied intensively during 50 years and have many appli- cations in various domains namely physics, biology, medicine and so on. However their electrochemical properties were poorly studied up to date. In the present work, new metallatranes have been synthe- sized and characterized using dierent approaches and techniques (organic synthesis, cyclic voltammetry, preparative electrolysis, EPR, spectroelectrochemistry, cyclic voltammetry coupled with EPR, NMR, GC- MS). Several novel structures of metallatranes have been obtained and validated by XRD. Electrochemical measurements show that the electrooxidation of metallatranes occurs via electrochemically reversible one- electron transfer resulting in the corresponding cation radicals (CRs), detected by cyclic voltammetry, UV-vis spectroscopy and real-time EPR spectroscopy. The spin delocalization in these paramagnetic species has been characterized and supported by DFT calculations. We focused on the electronic prop- erties of metallatranes and on various bonding systems between pentacoordinated silicon and N atom including the substituents. We also considered the issue of non-coordinating, non-nucleophilic supporting salts for electrochemistry as they provide good ionic conductivity in the solvents of low polarity and allow carrying out voltammetry and EPR experiments on unstable electrogenerated electrophilic and radical species. Résumé Les métallatranes (M=Si, Ge, Sn) ont fait l'objet d'un intérêt important de la communauté scien- tique durant les 50 dernières années et ont des applications dans de nombreux domaines, de la physique à la biologie en passant par la médecine, etc. Cependant, leurs propriétés électrochimiques n'ont été étudiées que de façon très incomplète à ce jour. Dans le travail présenté ici, nous avons réalisé la synthèse de nouveaux métallatranes et les avons caractérisés, et ce par plusieurs approches et techniques diérentes (synthèse organique, voltammétrie cyclique, électrolyse préparative, EPR, spectroélectrochimie, voltam- métrie cyclique couplée à un EPR, RMN, GC-MS). Plusieurs nouveaux métallatranes ont été obtenus, et leurs structures validées par diraction RX. Les mesures électrochimiques montrent que l'électrooxidation des métallatranes a lieu via des transferts électroniques réversibles, et les cations-radicaux (CRs) qui résultent de leur oxydation ont été détectés par voltammétrie cyclique, spectroscopie UV-visible, et spec- troscopie EPR en temps réel. La délocalisation de spin dans ces espèces paramagnétiques a été caractérisée et soutenue par des calculs de DFT. Nous avons concentré nos eorts sur les propriétés électroniques des métallatranes et la nature des diverses liaisons entre l'atome de silicium penta-coordonné des silatranes d'une part, l'atome d'azote de la structure atrane, et les atomes de diérents substituants d'autre part. Nous avons également étudié le problème posé par les sels du fond pour l'électrochimie, qui doivent être non-coordinants et non-nucléophiles, et doivent fournir une bonne conductivité ionique dans des solvants peu polaires. Ils permettent ainsi de mener des expériences de voltammétrie et de la RPE sur des espèces électrogénérées instables, notamment électrophiles ou des radicaux libres. Key words 1. Silatranes 5. Cyclic voltammetry 2. Hypervalent silicon species 6. DFT calculations 3. Cation radicals 7. EPR spectroscopy 4. Electrochemistry 8. Non-cooridating electrolyte 1 Contents 1 Glossary 3 2 Introduction 5 3 Bibliography 9 3.1 Silatranes, their structure and specific intramolecular bonding and their elec- trooxidation . .9 3.1.1 Transannular bonds to Si . 11 3.1.2 Electrooxidation of silatranes . 13 3.2 Electrooxidation of germatranes . 16 3.3 Stannatranes . 21 3.4 Radical cations of metallatranes (theoretical considerations) . 23 3.5 Supporting electrolytes . 25 4 Experimental Section 27 4.1 Solvents, supporting electrolytes . 27 4.2 NMR spectroscopy . 27 4.3 Gas chromatography (GC-MS) . 27 4.4 X-ray crystallography (XRD) . 27 4.5 Electrochemical techniques . 27 4.5.1 Cyclic voltammetry and chronoamperometry . 28 4.5.2 Electrolyses . 28 4.5.3 Electron Paramagnetic Resonance (EPR) spectroscopy . 28 4.6 Syntheses of silatranes and related products . 29 4.6.1 Silatranes . 29 4.6.2 Bis-(silatranyl)alkanes . 33 4.6.3 Bi-silatranes . 35 4.7 Electrosynthesis of di-stannatrane . 41 5 Results and discussion 43 5.1 Simple 1-R-silatranes . 46 5.1.1 Introduction . 46 5.1.2 Structure . 47 5.1.3 Cyclic voltammetry . 50 5.1.4 EPR spectroscopy . 57 5.1.5 UV-vis spectroscopy . 61 5.1.6 DFT calculations . 62 1 5.2 Bis-(silatranyl)alkanes . 63 5.2.1 Cyclic voltammetry . 64 5.2.2 DFT calculations . 65 5.2.3 6 center-8 electron hypervalent bonding . 68 5.3 Bi-silatranes . 68 5.3.1 Structure . 69 5.3.2 DFT calculations . 73 5.3.3 Cyclic voltammetry of bi-silatranes and of the model tris(1,3-dihydroxy- 2-propyl)- amine . 74 5.4 1-R-Stannatranes . 78 5.4.1 Cyclic voltammetry . 78 5.4.2 EPR-spectroelectrochemistry . 81 5.4.3 DFT calculations . 82 5.5 Distannatrane from electroreduction of halostannatranes . 86 5.5.1 Cyclic voltammetry of electroreduction of halostannatranes . 86 5.5.2 Electroreduction of halostannatranes at transition metal cathodes . 90 5.5.3 Oxidation of distannatrane . 93 5.6 New non-coordinating fluoride encapsulating silsesquioxane-based supporting electrolyte . 95 6 Conclusion 103 2 1 Glossary The abbreviations commonly used in the present manuscript: 3c-4e: