(12) United States Patent (10) Patent No.: US 8,557,894 B2 Gil Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 8,557,894 B2 Gil Et Al US008557894B2 (12) United States Patent (10) Patent No.: US 8,557,894 B2 Gil et al. (45) Date of Patent: Oct. 15, 2013 (54) WATER-TRIGGERED COLORING OR (56) References Cited COLOR CHANGING INDICATOR U.S. PATENT DOCUMENTS (75) Inventors: JunMo Gil, Deajeon (KR); Xuedong Song, Alpharetta, GA (US) 4,252,845. A * 2/1981 Griffiths et al. ............... 427 273 s s 5,478,382 A 12/1995 Miller et al. (73) Assignee: Kimberly-Clark Worldwide, Inc., 388853 A. 1338 Pvies-Smithi et al. et al. Neenah, WI (US) 2007, OO17413 A1 1/2007 Kwan et al. 2009/0275908 A1* 1 1/2009 Song ............................. 604.361 (*) Notice: Subject to any disclaimer, the term of this k . patent is extended or adjusted under 35 cited by examiner U.S.C. 154(b) by 792 days. Primary Examiner — Doris Lee (21) Appl. No.: 12/640,604 (74) Attorney, Agent, or Firm — Denise L. Stoker; Vincent T. Kung (22) Filed: Dec. 17, 2009 (65) Prior Publication Data (57) ABSTRACT US 2011 FO1528.05 A1 Jun. 23, 2011 An ink formulation that includes a reversible color-develop s ing complex formed from a dye precursor molecule having a (51) Int. Cl. triarylmethane derivative structure modified with a leaving C09D II/00 (2006.01) group (L) that disassociates from said dye precursor when (52) U.S. Cl. subjected to environmental conditions of either a neutral or USPC ..... 523/160; 604/361; 428/304.4; 428/411.1; acidic pH value is described. Also the invention pertains to 428/523; 428/532; 427/8: 524/378: 524/384; diagnostic indicators or absorbent personal care products that 524/186; 523/161 have the ink formulation applied to at least a part of the (58) Field of Classification Search product. USPC .......................................................... 523,160 See application file for complete search history. 25 Claims, 2 Drawing Sheets U.S. Patent Oct. 15, 2013 Sheet 1 of 2 US 8,557,894 B2 coloress of one CC or color appearing or changing to another Color R - , alky, halogen, akoxy, amid, alkylatino group substitutes lar leaving group such as Oh, OR, NR2 F.G. 1 U.S. Patent Oct. 15, 2013 Sheet 2 of 2 US 8,557,894 B2 US 8,557,894 B2 1. 2 WATER-TRIGGERED COLORING OR product, it may also be desirable to have a color indicator that COLOR CHANGING INDICATOR can be applied in liquid form at room temperature. When the color indicator is in a liquid form at room temperature, the FIELD OF INVENTION color indicator can be printed (just like an ink composition) onto the desired component of a product. The ink form can The present invention relates to certain colorant systems make easier demonstration to provide more attractive graphic that can be triggered by the presence of an aqueous Substance. by being adjusted into current printing methods, such as ink In particular, the invention pertains to a colorant or dye com jet, flexographic or gravure methods. plex that can be activated or deactivated by pH conditions so Examples of how color indicators are already incorporated as to provide a durable, visually observable signal. 10 into consumer products include diapers that have wetness sensors. Some of the wetness sensors used in diapers change BACKGROUND color to indicate wetness while others lose color in response to wetness (i.e. the color fades or disappears when it is dis Many products, including consumer and professional Solved by water). The concept of incorporating a color-chang products, can be used more effectively by an end user if they 15 ing composition into a wearable article (Such as a disposable include a feature that informs a particular condition or state of diaper) is known in the art. For example, U.S. Pat. No. 7,159, use for the products. For instance, in the area of consumer 532 issued to Klofta et al. (hereinafter “the 532 patent”) is absorbent products, especially in the diaper, feminine directed to wetness indicating compositions having improved hygiene, or papertissue markets, manufacturers have recently colorant retention and durability for use with wearable investigated various ways of providing a wetness sensitive articles. The wetness indicating compositions of the 532 indicator that can give a signal to the consumers or end-users patent have a first binding agent and a second binding agent. and allows them to change or replace the absorbent products The first binding agent immobilizes a colorant when the colo in a timely manner. These color based indicators can provide rant is in its initial color state and the second binding agent more satisfaction and enhance the consumer's experience of immobilizes the colorant when the colorant is in its final color the products by relaying real time informing about wetness 25 state. The component materials used in the examples pro conditions without any additional equipments, such as elec vided in the 532 patent are solid at room temperature as tronic devices. Such wetness sensing technology can improve indicated by the description that they need to be melted in levels of hygiene and care, especially for persons who cannot order to combine them. While the wetness indicating compo easily communicate to caregivers such as newborn babies or sitions of the 532 patent are capable of changing color in incapacitated patients. For instance, the signal can prevent a 30 response to a stimulus, they are not capable of being applied baby's or patient’s skin from overexposure to moisture which to an article in liquid form at room temperature. may cause a number of problems such as rashes. While the color-changing compositions known in the art Many kinds of wetness indicating technologies have been provide certain benefits, there remains a need for a film described in the literature for consumer products, but none of forming composition that can be applied to a substrate. There the currently existing approaches is ideal. An example of a 35 also remains a need for a composition that is durable, has visual wetness indicator is a color indicator. Color indicators good retention and that shows rapid and dramatic color can either indicate a change in condition or a degree of use change when the composition is used in a product. When the through a change from “no color” to “color” (or vice versa) or purpose of the composition is to detect the presence of wet through a change from one color to a different color. ness, there remains a need for a composition that is water Exemplary conditions that could be monitored using a 40 resistant and water-insoluble. Further, there remains a need color indicator include physical conditions such as the pres for a composition that can be applied, such as by printing, at ence of moisture and chemical conditions such as a change in room temperature so that the composition can be applied to a pH. Exemplary consumer products that could be more effec Substrate without heating. tive and deliver more benefits to end users by incorporating a suitable color indicator include absorbent articles, facial tis 45 SUMMARY OF THE INVENTION Sues, bath tissue, paper towels, household cleaning items and personal cleaning wipes. Exemplary professional products The present invention relates to color-developing complex that could be more effective and deliver more benefits to end that involves a triaryl-methane-based dye precursor deriva users by incorporating a Suitable colorindicator include prod tive in a reaction system that can be adapted for and incorpo ucts for medical use, safety garments, industrial cleaning 50 rated into various absorbent products. When formulated into products and nonwoven materials. a wetness-indicating ink, the color-developing system is not For instance, certain adhesive-based wetness indicators only printable on various substrates to provide different types give very poor color contrast, and the indicator colors also can of graphic patterns using pH-changing mechanism, but also suffer from dye leaching off of its substrate. Other water can provide rapid and dramatic color change upon wetting dissolved-dye-based wetness indicators suffer from low sen 55 without dye leaching. In contrast to previous wetness-indi sitivity and again low color contrast. Given these shortcom cating materials that are limited to changing from colored to ings, workers in the colorant indicator area would welcome a colorless or from one color to another, the present colorant new technical approach to generate durable and highly visu system are colorless or near colorless when first applied to a ally-contrasting colorants. Color indicators are well known film substrate of an absorbent article. Under predetermined and are available in various forms. Desirable performance 60 pH conditions, the indicator colorant system can be triggered attributes include durability and good retention (i.e. the color from the colorless undeveloped or un-reacted State to appear indicator remains where intended and does not bleed or leach Vividly. Although development of a colorless-to-color-ap out into other components of the product within which it is pearing wetness indicator has been a great technical chal being used). Depending on the product application, it may lenge, the present invention can offer the consumer a more also be desirable to have the structure in which the color 65 powerful visual impact with a broadened arrange of potential indicator is used be wettable, but water insoluble. For pur dramatic signals and patterns which can change from a col poses of applying the color indicator to a component of a orless appearance to bright colored appearance. Moreover, US 8,557,894 B2 3 4 this technology enables manufacturers to offer or use a more shadow (in contrast to a background color or pattern) to being varied and wider pallet of novel colors than those appearing or nearly invisible to the human naked eye.
Recommended publications
  • Preparation and Ultra-Violet Absorption Studies of Leucocyanides of the Triarylmethane Dyes
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1960 Preparation and ultra-violet absorption studies of leucocyanides of the triarylmethane dyes Arthur Katzakian Jr. University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Chemistry Commons Recommended Citation Katzakian, Arthur Jr.. (1960). Preparation and ultra-violet absorption studies of leucocyanides of the triarylmethane dyes. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/ 1471 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1..J H.t:£1ArtATluN AN D Ul.il h A-VluLB~' AJ3 5v!·. r'1'10.14 SliUDI .:; ..) A Theeis Submi ·ttea to the .Fo. oul r.y of the College of the h.toific f or the Degre t1 of .Mt.. ater of Soieuoe in the Depo.rtment of Ohemi stry by Arthur Ku... tzukil-ln , J1· • ACK NOW.L EDGE ME NT The writer wishes to express his appr e cia tion to the membe1·s of the f C~.c ul ty of t he Chemistry De pe:.rtment of the College of the Pacific f or t heix- e.o sistance during the period of study and es pecially t o expresb his gr a titude to Dr·. Hugh Wl:idman and Dr . Emerson Cobb f or their guidance aHd criticisms in t his wor k .
    [Show full text]
  • The Analysis of Ballpoint Inks with APCI-MS After Fading with Light, Hydrogen Peroxide and Sodium Hypochlorite Bleach
    The Analysis of Ballpoint Inks with APCI-MS after Fading with Light, Hydrogen Peroxide and Sodium Hypochlorite Bleach by Claire Williamson A thesis submitted in partial fulfilment for the requirements for the degree of Doctor of Philosophy at the University of Central Lancashire September 2015 Table of Contents Table of Figures ............................................................................................. iv Acknowledgments ......................................................................................... xii Abstract ........................................................................................................ xiv Introduction ..................................................................................... 1 1.1 Forensic Science ................................................................................... 1 1.1.1 Document Analysis .......................................................................... 1 1.2 History of Writing Ink ................................................................................. 4 1.2.1 Ballpoint Pen Ink Composition ............................................................ 5 1.3 Ink Aging ................................................................................................. 11 1.3.1 Dye Degradation ............................................................................... 12 1.3.2 Ink Dating .......................................................................................... 15 1.4 Ink Analysis ............................................................................................
    [Show full text]
  • Research Article Fenton Oxidation of Methyl Violet in Aqueous Solution
    Hindawi Publishing Corporation Journal of Chemistry Volume 2013, Article ID 509097, 6 pages http://dx.doi.org/10.1155/2013/509097 Research Article Fenton Oxidation of Methyl Violet in Aqueous Solution Saeedeh Hashemian, Masoumah Tabatabaee, and Margan Gafari Chemistry Department, Islamic Azad University, Yazd Branch, P.O. Box 89195/155, Yazd, Iran Correspondence should be addressed to Saeedeh Hashemian; [email protected] Received 13 June 2012; Revised 14 August 2012; Accepted 18 August 2012 Academic Editor: Alvin A. Holder Copyright © 2013 Saeedeh Hashemian et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this study, oxidative discoloration of methyl violet (MV) dye in aqueous solution has been studied using Fenton (Fe /H O ) process. e parameters such as concentration of Fe , H O , MV,temperature, and Cl and SO ions that affected of discoloration2+ 2 2 in Fenton process were investigated. e rate of degradation2+ is dependent on initial concentration− 2− of Fe ion, initial concentration 2 2 4 of H O , and pH of media. Discoloration of MV was increased by increasing the temperature of reaction.2+ Optimized condition was determined and it was found that the obtained efficiency was about 95.5 aer 15 minutes of reaction at pH 3. TOC of dye sample,2 2 before and aer the oxidation process, was determined. TOC removal indicates partial and signi�cant mineralization of MV dye. e results of experiments showed that degradation of MV dye in Fenton% oxidation can be described with a pseudo-irst- order kinetic model.
    [Show full text]
  • A Study on Equilibrium and Kinetics of Carbocation-To-Carbinol Conversion
    Indian Journalof Chemistry Vol.39A, July 2000, pp.703-708 A study on equilibrium and kinetics of carbocation-to-carbinol conversion for di- and tri- arylmethane dye cations in aqueous solutions: Relative stabilities of dye carbocations and mechanism of dye carbinol formation Susanta K Sen Gupta', Sangeeta Mishra & V Radha Rani Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India Received 17 August 1999; revised 7 April 2000 Arylmethane dye cations form a structurally interesting set of stable carbocations. A detailed study on rate-equilib­ ria of carbinol formation from two diarylmethane and nine triarylmethane dye carbocations in aqueous solutions has been carried out using spectrophotometric measurements. The conclusions reached are : (i) The stability order found (auramine O>crystal violet = methyl violet > victoria blue R > victoria pure blue BO = ethyl violet > pararosaniline > brilliant green > malachite green > carbocation form of Michler's hydrol > methyl green), seems to be determined by an interplay of dye carbocation / carbinol conformation and stereoelectronic effects of substituents; and (ii) carbinol formation is general base catalysed and occurs by the rate determining attack of a HzD molecule on the dye carbocation centre via two kinetic pathways one mediated by another H 0 molecule and the other by a OR ion. 2 Rate-equilibrium parameters and structure-reactivity libriJ.lmof arylmethane dye carbocation-to-carbinol con­ correlations for carbocation-to-carbinol conversion pro­ version in aqueous media was reported excepting the vide a valuable basis for the analysis of mechanisms of instances of crystal violet and malachite greenH•9 and of reactions involving carbocation intermediates.
    [Show full text]
  • Persone - Girecursor 7
    TOMMAND DUEUS010078083B2 TO AWARMI UN (12 ) United States Patent ( 10 ) Patent No. : US 10 ,078 , 083 B2 Hong et al. ( 45 ) Date of Patent: " Sep . 18 , 2018 ( 54 ) DETECTING TARGETS USING MASS TAGS ( 58 ) Field of Classification Search AND MASS SPECTROMETRY CPC . .. .. .. GOWN 33 /6848 ; GOIN 27/ 62 See application file for complete search history. (71 ) Applicant : Ventana Medical Systems, Inc . , Tucson , AZ (US ) ( 56 ) References Cited ( 72 ) Inventors : Rui Hong , Oro Valley , AZ (US ); Hong U . S . PATENT DOCUMENTS Wang , Oro Valley , AZ (US ) ; Mark Lefever, Oro Valley , AZ (US ) ; Jan 6 ,027 , 890 A 2 / 2000 Ness et al . Froehlich , Oro Valley , AZ (US ) ; 6 ,218 ,530 B1 4 / 2001 Rothschild et al. Christopher Bieniarz , Tucson , AZ (Continued ) (US ) ; Brian Daniel Kelly , Tucson , AZ (US ) ; Phillip Miller , Tucson , AZ (US ) FOREIGN PATENT DOCUMENTS EP 0933355 AL 8 / 1999 ( 73 ) Assignee : Ventana Medical Systems, Inc ., EP 1038034 B1 10/ 2004 Tucson , AZ (US ) (Continued ) ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 OTHER PUBLICATIONS U . S . C . 154 ( b ) by 0 days . Molecular Probes. Tyramide signal amplification kits. Product Infor This patent is subject to a terminal dis mation , Molecular Probes , Inc. Dec . 2005 ; pp . 1 - 6 . * claimer . ( Continued ) (21 ) Appl . No. : 14 /981 , 181 Primary Examiner — Shafiqul Haq ( 74 ) Attorney, Agent, or Firm — Thomas M . Finetti; (22 ) Filed : Dec . 28, 2015 Charney IP Law LLC (65 ) Prior Publication Data ( 57 ) ABSTRACT US 2016 /0139143 A1 May 19 , 2016 Particular disclosed embodiments disclosed herein concern using a one or more various mass tags, which can be Related U .
    [Show full text]
  • Eco-Structured Biosorptive Removal of Basic Fuchsin Using Pistachio Nutshells: a Definitive Screening Design—Based Approach
    applied sciences Article Eco-Structured Biosorptive Removal of Basic Fuchsin Using Pistachio Nutshells: A Definitive Screening Design—Based Approach Marwa El-Azazy * , Ahmed S. El-Shafie , Aya Ashraf and Ahmed A. Issa Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; aelshafi[email protected] (A.S.E.-S.); [email protected] (A.A.); [email protected] (A.A.I.) * Correspondence: [email protected]; Tel.: +974-4403-4675; Fax: +974-4403-4651 Received: 22 October 2019; Accepted: 7 November 2019; Published: 13 November 2019 Abstract: Biosorptive removal of basic fuchsin (BF) from wastewater samples was achieved using the recycled agro-wastes of pistachio nut shells (PNS). Seven adsorbents were developed; raw shells (RPNS) and the thermally activated biomasses at six different temperatures (250–500 ◦C). Two measures were implemented to assess the performance of utilized adsorbents; %removal (%R) and adsorption capacity (qe). RPNS proved to be the best among the tested adsorbents. A smart approach, definitive-screening design (DSD) was operated to test the impact of independent variables on the adsorption capacity of RPNS. pH, adsorbent dose (AD), dye concentration (DC), and stirring time (ST), were the tested variables. Analysis of variance (ANOVA), control, and quality charts helped establishing regression model. Characterization was performed using Fourier- transform infrared (FT-IR)/Raman spectroscopies together with thermogravimetric analysis (TGA) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The surface area and other textural properties were determined using the Brunauer Emmett-Teller (BET) analysis. Removal of 99.71% of BF with an adsorption capacity of 118.2 mg/g could be achieved using a factorial blend of pH 12, 100 mg/50 mL of RPNS, and 250 ppm BF for 20 min.
    [Show full text]
  • Determination of Pararosaniline Hydrochloride in Workplace Air
    Environ Monit Assess (2019) 191: 444 https://doi.org/10.1007/s10661-019-7568-z Determination of pararosaniline hydrochloride in workplace air J. Kowalska & A. Jeżewska Received: 12 December 2018 /Accepted: 27 May 2019 /Published online: 17 June 2019 # The Author(s) 2019 Abstract Pararosaniline hydrochloride (CPR) is a dye chromatographic column at a temperature of 23 °C and used for colouring paper, leather and natural and artifi- the mobile phase of methanol:0.1% phosphoric acid(V) cial fibres. It is also used in analytical and microbiolog- (95:5, v/v) at flow rate of 0.6 mL/min makes it possible ical laboratories. It is a carcinogenic substance of cate- to determine the content of pararosaniline hydrochloride gory 1B. In analytical chemistry, it is used for detecting in the presence of aniline, nitrobenzene and 4- the following among others: bromates, formaldehyde, tolylamine. Limit of detection and limit of quantification ozone, sulphite and sulfur dioxide. CPR is a dye com- were 0.17 ng/mL and 0.51 ng/mL, respectively. monly used in microbiology for staining preparations, for staining bacteria, antibodies or other organisms. In Keywords 4,4′-(4-iminocyclohexa-2,5- Poland, about 800 employees were exposed to this dienylidenemethylene)dianiline hydrochloride . Basic substance. The lack of methods for the determination Red 9 monohydrochloride . Pararosaniline of pararosaniline hydrochloride in workplace air makes hydrochloride . Diamant fuchsine . Carcinogens . it impossible to assess the occupational exposure of Occupational exposure . Analysis of air. workers to this substance. For this reason, a determina- Chromatography. Validation tion method has been developed, which allows for the determination of pararosaniline hydrochloride in the air.
    [Show full text]
  • WO 2016/048829 Al 31 March 2016 (31.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/048829 Al 31 March 2016 (31.03.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, G 21/00 (2006.01) G01D 21/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, G0 35/00 (2006.01) A61J 1/00 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 15/050964 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 18 September 2015 (18.09.201 5) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/054,725 24 September 2014 (24.09.2014) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: GOOD START GENETICS, INC.
    [Show full text]
  • Magenta and CI Basic Red 9 Are of Briliant Hue, Exhibit High Tinctorial Strength, Are Relatively Inexpensive and May Be Applied to a Wide Range of Substrates
    MAGENTA AND ei BAsie RED 9 These substances were considered by a previous Working Group, in 1973 (lARe, 1974a). Since that time, new data have become available, and these have been incorporated into the monograph and taken into consideration in the evaluation. Magenta is a mixture of several closely related homologues in varyng proportions, with zero (CI Basic Red 9), one (magenta 1) and two (magenta II) methyl functions on a 4,4',4"- triaminotriarylmethane structure in the form of their hydrochloride salts. Small amounts of magenta III (with three methyl functions) may be present in magenta. The term 'basic fuchsin' has been used as a synonym for magenta, but also for Ci Basic Red 9 and magenta I. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Synonyms, structural and molecular data Magenta 1 Chem. Abstr. Sem Reg. No.: 632-99-5; replaces 8053-09-6 Chem. Abstr. Name: 4-(( 4-Aminophenyl)( 4-imino-2,5-cyclohexadien- 1 -ylidene )methyl)- 2-methylbenzenamine, monohydrochloride Colour Index No.: 42510 Synonyms: Basic fuchsin; basic fuchsine; basic magenta; Basic Violet 14; CI Basic Violet 14; Ci Basic Violet 14, monohydrochloride; fuchsin; fuchsine; rosaniline; rosaniline chloride; rosaniline hydrochloride; rosanilinium chloride NH H~-\C~Q .HCINH2 CH3 C20H19N3.HCI MoL. wt: 337.85 Magenta II Chem. Abstr. Sem Reg. No.: 26261-57-4 -215- 216 IAC MONOGRAHS VOLUME 57 Chem. Abstr. Name: 4-( (4-Aminophenyl)( 4-imino-3-methyl-2,5-cyclohexadien- 1- ylidene )methyll-2-methylbenzenamine, monohydrochloride Synonym: Dimethyl fuchsin NH ~CH3 H2N~ y/e-\ .HeiNH2 CH3 C2iH2iN3.HCI MoL. wt: 351.9 Magenta III Chem.
    [Show full text]
  • Certain Dyes As Pharmacologically Active Substances in Fish Farming and Other Aquaculture Products Eric Verdon French Agency for Food
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Food and Drug Administration Papers U.S. Department of Health and Human Services 2017 Certain Dyes as Pharmacologically Active Substances in Fish Farming and Other Aquaculture Products Eric Verdon French Agency for Food Wendy C. Andersen U.S. Food and Drug Administration Follow this and additional works at: http://digitalcommons.unl.edu/usfda Part of the Dietetics and Clinical Nutrition Commons, Health and Medical Administration Commons, Health Services Administration Commons, Pharmaceutical Preparations Commons, and the Pharmacy Administration, Policy and Regulation Commons Verdon, Eric and Andersen, Wendy C., "Certain Dyes as Pharmacologically Active Substances in Fish Farming and Other Aquaculture Products" (2017). Food and Drug Administration Papers. 13. http://digitalcommons.unl.edu/usfda/13 This Article is brought to you for free and open access by the U.S. Department of Health and Human Services at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Food and Drug Administration Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. k 497 9 Certain Dyes as Pharmacologically Active Substances in Fish Farming and Other Aquaculture Products Eric Verdon1 and Wendy C. Andersen2 1Laboratory of Fougeres at Anses, EU Reference Laboratory for Antimicrobial and Dye Residues in Food, French Agency for Food, Environmental and Occupational Health Safety, Fougères, France 2Animal Drugs Research Center, U.S. Food and Drug Administration, Denver, Colorado, USA 9.1 Introduction The last 40 years have brought enormous changes to the aquaculture industry. k The farming of fish and of seafood products has been continuously increasing k from 3.9% by weight in 1970 to 36% in 2006 according to the World Health Orga- nization (WHO) and Food and Agriculture Organization (FAO) of the United Nations.1 The global trend of aquaculture development gaining importance in total fish supply has remained uninterrupted.
    [Show full text]
  • Sede Amministrativa: Università Degli Studi Di Padova Dipartimento Di Scienze Chimiche SCUOLA DI DOTTORATO DI RICERCA in SCIENZ
    Sede Amministrativa: Università degli Studi di Padova Dipartimento di Scienze Chimiche SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE MOLECOLARI INDIRIZZO: SCIENZE CHIMICHE CICLO XXIII AGING OF CULTURAL HERITAGE MATERIALS: A PHYSICO-CHEMICAL APPROACH TO CONSERVATION SCIENCE. STUDIES ON PAPER, PARCHMENT, PIGMENTS AND DYES Direttore della Scuola: Ch.mo Prof. Maurizio Casarin Coordinatore d’indirizzo: Ch.mo Prof. Maurizio Casarin Supervisore: Ch.ma Prof.ssa Marina Brustolon Dottoranda : Daria Confortin One day the Son of the Merchant came to the Prince, and said boldly: "Comrade, my studies are over. I am now setting out on my travels to seek my fortunes on the sea. I have come to bid you good-bye." -The Kingdom of cards, Rabindranath Tagore- i INDEX CONTENTS pag. ABSTRACT (English) 1 ABSTRACT (Italiano) 7 CHAPTER ONE: COLORANTS AND COLORIMETRY 13 A brief history of pigments and dyes 13 Color spaces and color measurements 16 CHAPTER TWO: DEGRADATION INDUCED BY LIGHT OR COMMON GASEOUS POLLUTANTS 25 Mechanisms of photo-induced fading 25 Effects of common pollutants. Ozone and nitrogen dioxide 33 CHAPTER THREE: WRITING MATERIALS 37 INTRODUCTION 37 1) Paper 37 1.1) Cellulose, hemicelluloses and lignin 38 1.2) Degradation of paper 40 2) Parchment 41 2.1) Collagen 42 2.2) Degradation of collagen 43 3) NMR-MOUSE analysis of paper and parchment 43 EXPERIMENTAL 45 1) Sample preparation 45 2) NMR-MOUSE analysis 46 RESULTS AND DISCUSSION 47 1) NMR-MOUSE analysis of lignin paper 47 2) NMR-MOUSE analysis of samples of historical paper (XV century) 48 3) NMR-MOUSE
    [Show full text]
  • Peer-Review Article
    REVIEW ARTICLE bioresources.com CELLULOSIC SUBSTRATES FOR REMOVAL OF POLLUTANTS FROM AQUEOUS SYSTEMS: A REVIEW. 2. DYES Martin A. Hubbe,a,* Keith R. Beck,b W. Gilbert O’Neal,c and Yogesh Ch. Sharma d Dyes used in the coloration of textiles, paper, and other products are highly visible, sometimes toxic, and sometimes resistant to biological breakdown; thus it is important to minimize their release into aqueous environments. This review article considers how biosorption of dyes onto cellulose-related materials has the potential to address such concerns. Numerous publications have described how a variety of biomass-derived substrates can be used to absorb different classes of dyestuff from dilute aqueous solutions. Progress also has been achieved in understanding the thermodynamics, kinetics, and chemical factors that control the uptake of dyes. Important questions remain to be more fully investigated, such as those involving the full life-cycle of cellulosic substrates that are used for the collection of dyes. Also, more work needs to be done in order to establish whether biosorption should be implemented as a separate unit operation, or whether it ought to be integrated with other water treatment technologies, including the enzymatic breakdown of chromophores. Keywords: Cellulose; Biomass; Biosorption; Remediation; Pollutants; Adsorption; Textile dyes; Basic dyes; Direct dyes; Reactive dyes; Wastewater treatment Contact information: a: Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005;
    [Show full text]