NASA's Exploration Campaign
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Project Selene: AIAA Lunar Base Camp
Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location . -
Reusable Suborbital Market Characterization
Reusable Suborbital Market Characterization Prepared by The Tauri Group for Space Florida March 2011 Introduction Purpose: Define and characterize the markets reusable suborbital vehicles will address Goals Define market categories Identify market drivers Characterize current activities Provide basis for future market forecasting (Note that this study is not a forecast) Benefits Shared understanding improves quality and productivity of industry discourse A consistent taxonomy enables communications across the community, with Congress, press, and investors Accessible information helps industry participants assess opportunities, plan and coordinate activities, seek funding, and budget Proprietary www.taurigroup.com 2 Agenda Methodology Suborbital spaceflight attributes and vehicles Value proposition Characterization and analysis of markets Commercial human spaceflight Basic and applied research Aerospace technology test and demonstration Remote sensing Education Media & PR Point-to-point transportation Conclusions Proprietary www.taurigroup.com 3 Methodology Literature review and data Analysis and findings collection Vehicles Articles, reports, and publications Payload types Available launch and research Markets datasets Opportunities Applicable payloads Challenges Initial customers Users Interviews Economic buyers Researchers Launch service providers Funding agencies Potential commercial customers Users Proprietary www.taurigroup.com 4 Reusable Suborbital Vehicles Industry catalyzed by Ansari X -
NASA Flight Opportunities Space Technology Mission Directorate
National Aeronautics and Space Administration Flight Opportunities Space Technology Mission Directorate (STMD) NASA’s Flight Opportunities program strives to advance the operational readiness of innovative space technologies while also stimulating the development and utilization of the U.S. commercial spaceflight industry, particularly for the suborbital and small How to launch vehicle markets. Since its initiation in 2010, the program has provided affordable Access Flight access to relevant space-like environments for over 100 payloads across a variety of Opportunities flight platforms. There are currently two paths for accessing flight test opportunities: Space Technology Research, Development, Demonstration, and Infusion (REDDI) External researchers can compete for flight funding through the REDDI NASA Research Announcement (NRA). Awardees receive a grant allowing them to directly purchase flights from U.S. commercial flight vendors that best meet their needs. The solicitation is biannual. Suborbital Reusable High-Altitude Balloon Parabolic Aircraft Launch Vehicles (sRLV) Systems These platforms enable NASA Internal Call for sRLVs enable a wide variety of These systems facilitate impact investigation of short-term Payloads experiments, such as testing studies on extended exposure exposure to reduced gravity, This path facilitates algorithms for landing or to cold, atmosphere, and with typical missions flying suborbital flight hazard avoidance, or evaluating radiation. In addition, high approximately 40 parabolas demonstrations for the response of systems to altitude balloons enable testing providing several seconds of technologies under microgravity. of sensors and instruments for reduced gravity during the flight. development by NASA and a variety of applications. other government agencies. Typical parabolic vehicles include Typical vehicles include Blue Zero G’s G-FORCE ONE. -
Astronomy News KW RASC FRIDAY JANUARY 8 2021
Astronomy News KW RASC FRIDAY JANUARY 8 2021 JIM FAIRLES What to expect for spaceflight and astronomy in 2021 https://astronomy.com/news/2021/01/what-to-expect-for- spaceflight-and-astronomy-in-2021 By Corey S. Powell | Published: Monday, January 4, 2021 Whatever craziness may be happening on Earth, the coming year promises to be a spectacular one across the solar system. 2020 - It was the worst of times, it was the best of times. First landing on the lunar farside, two impressive successes in gathering samples from asteroids, the first new pieces of the Moon brought home in 44 years, close-up explorations of the Sun, and major advances in low-cost reusable rockets. First Visit to Jupiter's Trojan Asteroids First Visit to Jupiter's Trojan Asteroids In October, NASA is set to launch the Lucy spacecraft. Over its 12-year primary mission, Lucy will visit eight different asteroids. One target lies in the asteroid belt. The other seven are so-called Trojan asteroids that share an orbit with Jupiter, trapped in points of stability 60 degrees ahead of or behind the planet as it goes around the sun. These objects have been trapped in their locations for billions of years, probably since the time of the formation of the solar system. They contain preserved samples of water-rich and carbon-rich material in the outer solar system; some of that material formed Jupiter, while other bits moved inward to contribute to Earth's life-sustaining composition. As a whimsical aside: When meteorites strike carbon-rich asteroids, they create tiny carbon crystals. -
Concept for a Crewed Lunar Lander Operating from the Lunar Orbiting Platform-Gateway
69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018. Copyright © 2018 by Lockheed Martin Corporation. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-18.A5.1.4x46653 Concept for a Crewed Lunar Lander Operating from the Lunar Orbiting Platform-Gateway Timothy Cichana*, Stephen A. Baileyb, Adam Burchc, Nickolas W. Kirbyd aSpace Exploration Architect, P.O. Box 179, MS H3005, Lockheed Martin Space, Denver, Colorado, U.S.A. 80201, [email protected] bPresident, 8100 Shaffer Parkway, Unit 130, Deep Space Systems, Inc., Littleton, Colorado, 80127-4124, [email protected] cDesign Engineer / Graphic Artist, 8341 Sangre de Christo Rd, Deep Space Systems, Inc., Littleton, Colorado, 80127, [email protected] dSystems Engineer, Advanced Programs, P.O. Box 179, MS H3005, Lockheed Martin Space, Denver, Colorado, U.S.A. 80201, [email protected] * Corresponding Author Abstract Lockheed Martin is working with NASA on the development of the Lunar Orbiting Platform – Gateway, or Gateway. Positioned in the vicinity of the Moon, the Gateway allows astronauts to demonstrate operations beyond Low Earth Orbit for months at a time. The Gateway is evolvable, flexible, modular, and is a precursor and mission demonstrator directly on the path to Mars. Mars Base Camp is Lockheed Martin's vision for sending humans to Mars. Operations from an orbital base camp will build on a strong foundation of today's technologies and emphasize scientific exploration as mission cornerstones. Key aspects of Mars Base Camp include utilizing liquid oxygen and hydrogen as the basis for a nascent water-based economy and the development of a reusable lander/ascent vehicle. -
Tidal Tomography to Probe the Moon's Mantle Structure Using
Tidal Tomography to Probe the Moon’s Mantle Structure Using Lunar Surface Gravimetry Kieran A. Carroll1, Harriet Lau2, 1: Gedex Systems Inc., [email protected] 2: Department of Earth and Planetary Sciences, Harvard University, [email protected] Lunar Tides Gravimetry of the Lunar Interior VEGA Instrument through the Moon's PulSE • Gedex has developed a low cost compact space gravimeter instrument , VEGA (Vector (GLIMPSE) Investigation Gravimeter/Accelerometer) Moon • Currently this is the only available gravimeter that is suitable for use in space Earth GLIMPSE Investigation: • Proposed under NASA’s Lunar Surface Instrument and Technology Payloads • ca. 1972 MIT developed a space gravimeter (LSITP) program. instrument for use on the Moon, for Apollo 17. That instrument is long-ago out of • To fly a VEGA instrument to the Moon on a commercial lunar lander, via NASA’s production and obsolete. Commercial Lunar Payload Services (CLPS) program. VEGA under test in thermal- GLIMPSE Objectives: VEGA Space Gravimeter Information vacuum chamber at Gedex • Prove the principle of measuring time-varying lunar surface gravity to probe the lunar • Measures absolute gravity vector, with no • Just as the Moon and the Sun exert tidal forces on the Earth, the Earth exerts tidal deep interior using the Tidal Tomography technique. bias forces on the Moon. • Determine constraints on parameters defining the Lunar mantle structure using time- • Accuracy on the Moon: • Tidal stresses in the Moon are proportional to the gravity gradient tensor field at the varying gravity measurements at a location on the surface of the Moon, over the • Magnitude: Effective noise of 8 micro- Moon’s centre, multiplies by the distance from the Moon’s centre. -
Intuitive Machines 3700 Bay Area Blvd., Suite 100 Houston, TX 77058 Phone: (281)280-3703 Web: Intuitivemachines.Com
Intuitive Machines 3700 Bay Area Blvd., Suite 100 Houston, TX 77058 Phone: (281)280-3703 Web: intuitivemachines.com For Immediate Release Contact: Josh Marshall April 13, 2020 Communications Director [email protected] Launch Date and Landing Site Selected for 2021 Moon Mission Intuitive Machines (IM) engineers selected an area in Oceanus Procellarum near Vallis Schröteri as the landing site for its upcoming IM-1 lunar mission with an anticipated launch date in October 2021. Figure 1: View of the landing site indicated by a large red dot. Vallis Schröteri, also known as Schröter’s Valley, is the largest valley on the Moon (comparable in size to the Grand Canyon) and is surrounded by Oceanus Procellarum, the largest lunar maria on the Moon. Oceanus Procellarum, also called the Ocean of Storms, covers over 10 percent of the entire Moon and has a diverse array of geological features. NASA considered a site near Vallis Schröteri for Apollo 18; now, IM is taking up the baton to conduct the initial survey. Nova-C, the first lander wholly developed by a private company, will deliver commercial cargo and five NASA-provided payloads to the lunar surface. These payloads will conduct scientific research and technology demonstrations as part of NASA’s Commercial Lunar Payload Services (CLPS) program, in preparation for sending astronauts back to the Moon in 2024. Figure 2: a) Mosaic map of Vallis Schröteri and surrounding Oceanus Procellarum. The map covers an area of 24 – 27N, 48 – 54W. b) Digital Terrain Model (DTM) map of the same area with elevation given in meters. -
Espinsights the Global Space Activity Monitor
ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory .................................................................................. -
Workshop Report
WORKSHOP REPORT July 2019 This report was compiled by Andrew Petro, Anna Schonwald, Chris Britt, Renee Weber, Jeff Sheehy, Allison Zuniga, and Lee Mason. Contents Page EXECUTIVE SUMMARY AND RECOMMENDATIONS 2 WORKSHOP SUMMARY 5 Workshop Purpose and Scope 5 Background and Objectives 5 Workshop Agenda 6 Overview of Lunar Day/Night Environmental Conditions 7 Lessons Learned From Missions That Have Survived Lunar Night 8 Science Perspective 9 Exploration Perspective 10 Evolving Requirements from Survival to Continuous Operations for Science, 11 Exploration, and Commercial Activities Power Generation, Storage and Distribution - State of the Art, Potential 13 Solutions, and Technology Gaps Thermal Management Systems, Strategies, and Component Design Features - 16 State of the Art, Potential Solutions, and Technology Gaps The Economic Business Case for Creating Lunar Infrastructure Services and 18 Lunar Markets International Space University Summer Project “Lunar Night Survival” 20 Open Discussion Summary 21 APPENDIX A: Workshop Organizing Committee and Participants 23 APPENDIX B: Poster Session Participants 28 1 Survive and Operate Through the Lunar Night WORKSHOP REPORT June 2019 EXECUTIVE SUMMARY AND RECOMMENDATIONS The lunar day/night cycle, which at most locations on the Moon, includes fourteen Earth days of continuous sunlight followed by fourteen days of continuous darkness and extreme cold presents one of the most demanding environmental challenge that will be faced in the exploration of the solar system. Due to the lack of a moderating atmosphere, temperatures on the lunar surface can range from as high as +120 C during the day to as low as -180 C during the night. Permanently shadowed regions can be even colder. -
20190331 NSSC.Xlsx
Active International Space Act Agreements by Signature Date (as of March 31, 2019) Execution NASA (Signature) Expiration No. Installation(s) Partner Name Country Title/Purpose Type of Agreement Activity Description Date Date 1 Kennedy Space Government of Spain Spain (SP) Agreement on Space Cooperation Umbrella/Framework Authorization for, in case of an emergency, manned 7/11/1991 12/31/2100 Center (KSC) Between the United States of Agreement (UM/FW) space vehicles of the United States to overfly, enter, America and the Kingdom of and depart Spanish air space and use the runways, Spain taxiways, and other installations at the Moron de la Frontera, Rota, and Zaragoza bases; also, agreement to negotiate agreements in promising areas for joint efforts to strengthen cooperation in space science and technology. Dip notes entering the agreement into force were exchange on Sept 3, 1991, and May 12, 1994. The science and technology portion of this agreement was implemented by agreement SP0027 of 12/02/1991 with INTA and agreement SP0028 of 07/03/1992 with CDTI. 2 All NASA Centers National Institute for Spain (SP) Agreement on Cooperative Umbrella/Framework Broad agreement between NASA and the National 12/2/1991 12/31/2100 Aerospace Technology Activities Between NASA and the Agreement (UM/FW) Institute for Aerospace Technology of Spain (INTA) to (INTA) National Institute For Aerospace consider cooperation in a variety of fields in Space Technology of Spain Science, Earth Science, Aeronautics Research, and Exploration Systems. The agreement also establishes a group to discuss potential cooperative projects in the identified areas. The agreement is automatically extended each year. -
Artzeinu Weekly Israel News Update
Artzeinu ○ www.artzeinu.org ○ Vol. 20 No. 655 ○ December 12, 2020 Israel and Morocco to Following the arrival of a preliminary poverty and food insecurity NGO Latet, batch of Pfizer’s vaccines, Prime Minister unprecedented poverty in Israel with the p normalize relations Benjamin Netanyahu said Wednesday, percentage of households living in Israel and Morocco have agreed to “On the eve of Hanukkah, we’ve brought economic distress rising from 24.1% to normalize ties, The Jerusalem Post a great light to Israel.” 38.6% over the past year. The number of families living below the poverty line rose reports. Netanyahu said. “I’m asking that every from 20.1% last year (582,000) to 29.3% Morocco will become the fourth Arab Israeli citizen be vaccinated, and to do so, this year (850,000). country to normalize relations with Israel have requested to set an example and be in just four months, following the UAE, the first person being vaccinated in The report also found that the middle Bahrain and Sudan. US President Donald Israel.” class in Israel shrank by 15.5% in Israel due to the Covid-19 crisis and only 25% Trump announced the deal on Thursday. At a rate of 60,000 shots a day, it would of Israeli households are doing fine As part of the agreement, President take some five months to vaccinate all of economically now. Trump agreed to recognize Morocco's Israel’s 9 million citizens, provided there sovereignty over the Western Sahara, was a steady supply of shots — which is Latet said that more people have fallen where there has been a decades-old not a given. -
Rockets Vie in Simulated Lunar Landing Contest 17 September 2009, by JOHN ANTCZAK , Associated Press
Rockets vie in simulated lunar landing contest 17 September 2009, By JOHN ANTCZAK , Associated Press first privately developed manned rocket to reach space and prototype for a fleet of space tourism rockets. The remotely controlled Xombie is competing for second-place in the first level of the competition, which requires a flight from one pad to another and back within two hours and 15 minutes. Each flight must rise 164 feet and last 90 seconds. How close the rocket lands to the pad's center is also a factor. Level 2 requires 180-second flights and a rocky moonlike landing pad. The energy used is equivalent to that needed for a real descent from lunar orbit to the surface of the moon and a return This image provided by the X Prize Foundation shows a to orbit, said Peter Diamandis, founder of the X rocket built by Armadillo Aerospace fueling up in the Prize. Northrop Grumman Lunar Lander Challenge at Caddo Mills, Texas, Saturday Sept. 12, 2009. The rocket qualified for a $1 million prize with flights from a launch The Xombie made one 93-second flight and landed pad to a landing pad with a simulated lunar surface and within 8 inches of the pad's center, according to then back to the starting point. The craft had to rise to a Tom Dietz, a competition spokesman. certain height and stay aloft for 180 seconds on each flight. The challenge is funded by NASA and presented David Masten, president and chief executive of by the X Prize Foundation.(AP Photo/X Prize Masten Space Systems, said the first leg of the Foundation, Willaim Pomerantz) flight was perfect but an internal engine leak was detected during an inspection before the return flight.