On the Higher Frobenius Allen Yuan

Total Page:16

File Type:pdf, Size:1020Kb

On the Higher Frobenius Allen Yuan On the Higher Frobenius by Allen Yuan Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2020 © Massachusetts Institute of Technology 2020. All rights reserved. Author.............................................................. Department of Mathematics April 30, 2020 Certified by . Jacob Lurie Professor of Mathematics Thesis Supervisor Accepted by. Davesh Maulik Chairman, Department Committee on Graduate Theses 2 On the Higher Frobenius by Allen Yuan Submitted to the Department of Mathematics on April 30, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Given a homotopy invariant of a space, one can ask how much of the space can be recovered from that invariant. This question was first addressed in work of Quillen and Sullivan on rational homotopy theory in the 1960’s and in work of Dwyer- Hopkins and Mandell on p-adic homotopy theory in the 1990’s. In this thesis, we describe a way to unify these ideas and recover a space in its entirety, rather than up to an approximation. The approach is centered around the study of the higher Frobenius map. First defined by Nikolaus and Scholze, the higher Frobenius map generalizes to E1-ring spectra the classical Frobenius endomorphism for rings in characteristic p. Our main result is that there is an action of the circle group on (a certain subcategory of) p-complete E1-rings whose monodromy is the higher Frobenius. Using this circle action, we give a fully faithful model for a simply connected finite complex X in terms of Frobenius-fixed E1-rings. Thesis Supervisor: Jacob Lurie Title: Professor of Mathematics 3 4 Acknowledgments First and foremost, I would like to thank my advisor, Jacob Lurie. His mathematics has continually inspired me and shaped my thinking; equally importantly, this thesis would not exist without his unending patience, intellectual generosity, and constant support throughout my time in graduate school. Special thanks goes also to Haynes Miller, for taking a confused undergraduate into the Kan seminar and spending countless hours in his office teaching me. Thank you to all my teachers and mentors throughout the years; while there’s no way to properly acknowledge all of them here, particular thanks are due to Yum-Tong Siu, Joe Harris, Peter Kronheimer for starting me off right, Emily Riehl, Hiro Tanaka, and Eric Peterson for going above and beyond, Ken Ono for his energetic support, and Mike Hopkins for his kindness, insights, and advice. My journey would not be without my wonderful friends, colleagues, and collab- orators; thanks to Hood Chatham, Andy Senger, Peter Haine, Robert Burklund, Elden Elmanto, Gijs Heuts, Lukas Brantner, Akhil Mathew, Amol Aggarwal, Carl Lian, and many many others. I’m especially grateful to Arpon Raksit for always showing me how to do things the right way, and to Jeremy Hahn for his friend- ship, mentorship and fruitful collaboration. And to Kevin, Joy, Julia, Spencer, and Stella – thanks for all the good times, and may this just be the beginning. The material in this thesis additionally benefitted from conversations with Clark Barwick and Denis Nardin, and was built on the beautiful ideas of Thomas Nikolaus, whom I would like to heartily thank for his generosity and encourage- ment. This work was also supported in part by the NSF under Grant DGE- 1122374. I would like to thank my parents for their love, nurturing, and support, and for all the things that one only appreciates years later. Thank you as well to Susu, for always caring for and challenging me. Finally, to In Young – your unconditional love and encouragement pulls me through the hurdles. You are amazing and thank you for everything. 5 6 Contents 1 Introduction 9 1.1 Summary of results . 10 1.2 Outline of thesis . 11 1.3 Organization . 20 2 Equivariant Stable Homotopy Theory 23 2.1 Global equivariance . 23 2.2 Formal constructions around Glo+ ................... 27 2.3 Borel equivariant spectra and proper Tate constructions . 29 3 The Integral Frobenius Action 33 3.1 The E1-Frobenius . 34 3.2 Generalized Frobenius and canonical maps . 35 3.3 Global algebras . 38 3.4 Borel global algebras . 43 4 Partial Algebraic K-theory 51 4.1 Partial K-theory via the S∙-construction . 52 4.2 Partial K-theory via the Q-construction . 58 5 The Partial K-theory of Fp 63 5.1 Computing partial K-theory . 64 5.2 The partial K-theory of Fp ....................... 70 6 The p-complete Frobenius and the Action of B Z≥0 79 6.1 Fp-stable E1-rings . 80 6.2 The action of B Z≥0 on Fp-stable E1-rings . 84 7 1 6.3 Perfect E1-rings and the action of S ................. 86 7 Integral Models for Spaces 89 7.1 p-adic homotopy theory over the sphere . 89 7.2 Integral models for spaces . 94 7.3 Further extensions and questions . 96 A Generalities on Producing Actions 99 8 Chapter 1 Introduction In algebra, one often studies questions over the integers by separately understand- ing them over Q and after completion at each prime p. The analog of this idea in topology, due to Sullivan [44], is that any space X can be approximated by ^ its rationalization XQ and its p-completions Xp . These approximations, in turn, can be understood in terms of their algebras of cochains. Work of Sullivan (and Quillen in a dual setting) shows that for sufficiently nice X, the rationalization XQ is captured completely by a commutative differential graded algebra (cdga) which is quasi-isomorphic to C*(X; Q). More precisely: Theorem 1.0.1 (Sullivan [43], Quillen [36]). The assignment X 7! C*(X; Q) de- termines a fully faithful functor from the 1-category of simply connected rational spaces of finite type to the 1-category CAlgQ of rational cdgas. In the p-adic case, Mandell proves an analogous result with cdgas over Q re- placed by E1-algebras over Fp: * Theorem 1.0.2 (Mandell [31]). The assignment X 7! C (X; Fp) determines a fully faithful functor from the 1-category of simply connected p-complete spaces 1 CAlg of finite type to the -category Fp of E1-algebras over Fp. The next natural question is whether a similar cochain model for spaces exists integrally. Warning 1.0.3. Mandell [32] shows that the assignment X 7! C*(X; Z) deter- mines a functor from spaces to E1-algebras over Z that is faithful but not full. 9 Let us illustrate the difficulty in producing such an integral model: Sullivan showed that any sufficiently nice space X can be recovered from its rationalization and p-completions together with the additional data of maps ^ XQ ! (Xp )Q for each prime p via a homotopy pullback square Y ^ X Xp p Y ^ XQ (Xp )Q: p One might hope to construct the desired integral model for spaces by assembling ^ the above cochain models, for XQ and each Xp , via an analogous procedure. * However, it is unclear how this assembly would work. The E1-algebras C (X; Q) * and C (X; Fp) are defined over fields of different characteristic, so there isno obvious way to compare them. 1.1 Summary of results In this paper, we give an integral cochain model for spaces. We accomplish this by producing a Frobenius action on certain E1-ring spectra and modeling spaces in terms of the fixed points of this action. We now state our main theorems informally, with more precise statements to follow later in this introduction. Theorem A (Frobenius Action). For each prime p, the Nikolaus–Scholze Frobenius determines an action of the monoidal category B Z≥0 on (a certain subcategory of) p-complete E1-rings. We may then consider the homotopy fixed points for this Frobenius action, which we call p-Frobenius fixed E1-rings. We will explain that a p-Frobenius fixed E1-ring is the data of an E1-ring A equipped with a particular sequence of homotopies, the first of which is a trivialization of its Frobenius endomorphism (cf. Warning 1.2.5). 10 We use this notion to give a new p-adic model for a space X, which we will assume to be a simply connected finite complex. Theorem B (p-adic Model). Let p be a prime. Then: ^ X • The E1-algebra (Sp ) of cochains on X with values in the p-complete sphere is naturally a p-Frobenius fixed E1-ring. ^ ^ X • The data of the space Xp is captured completely by (Sp ) as a p-Frobenius fixed E1-ring. These p-adic models are more amenable to assembly into an integral model. In X particular, Theorem B implies that the E1-ring S of sphere-valued cochains on X (i.e., its Spanier-Whitehead dual) is what we will call Frobenius fixed, meaning that for each prime p, its p-completion is p-Frobenius fixed. These Frobenius fixed E1-rings are our integral model for spaces. Theorem C (Integral Model). The data of the space X is captured completely by X its Spanier-Whitehead dual S as a Frobenius fixed E1-ring. We now proceed to a more detailed outline of the paper. 1.2 Outline of thesis 1.2.1 Integral models for spaces and the Frobenius Let p be a prime and X be a simply connected p-complete space of finite type. * Mandell’s theorem (Theorem 1.0.2) asserts that the functor X 7! C (X; Fp) is fully faithful, so X can be recovered as the mapping space X ' CAlg (C*(X; ); ): Fp Fp Fp * On the other hand, the assignment X 7! C (X; Fp) fails to be fully faithful: one has that CAlg (C*(X; ); ) ' CAlg (︀C*(X; ); )︀h Z Fp Fp Fp Fp Fp Fp ' CAlg (C*(X; ); )h Z ' Xh Z 'LX Fp Fp Fp CAlg with Z acting on Fp by Frobenius [31].
Recommended publications
  • A Surface of Maximal Canonical Degree 11
    A SURFACE OF MAXIMAL CANONICAL DEGREE SAI-KEE YEUNG Abstract. It is known since the 70's from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a min- imal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface. 1. Introduction 1.1. Let M be a minimal surface of general type. Assume that the space of canonical 0 0 sections H (M; KM ) of M is non-trivial. Let N = dimCH (M; KM ) = pg, where pg is the geometric genus. The canonical map is defined to be in general a rational N−1 map ΦKM : M 99K P . For a surface, this is the most natural rational mapping to study if it is non-trivial. Assume that ΦKM is generically finite with degree d. It is well-known from the work of Beauville [B], that d := deg ΦKM 6 36: We call such degree the canonical degree of the surface, and regard it 0 if the canonical mapping does not exist or is not generically finite. The following open problem is an immediate consequence of the work of [B] and is implicitly hinted there. Problem What is the optimal canonical degree of a minimal surface of general type? Is there a minimal surface of general type with canonical degree 36? Though the problem is natural and well-known, the answer remains elusive since the 70's.
    [Show full text]
  • ON the CONSTRUCTION of NEW TOPOLOGICAL SPACES from EXISTING ONES Consider a Function F
    ON THE CONSTRUCTION OF NEW TOPOLOGICAL SPACES FROM EXISTING ONES EMILY RIEHL Abstract. In this note, we introduce a guiding principle to define topologies for a wide variety of spaces built from existing topological spaces. The topolo- gies so-constructed will have a universal property taking one of two forms. If the topology is the coarsest so that a certain condition holds, we will give an elementary characterization of all continuous functions taking values in this new space. Alternatively, if the topology is the finest so that a certain condi- tion holds, we will characterize all continuous functions whose domain is the new space. Consider a function f : X ! Y between a pair of sets. If Y is a topological space, we could define a topology on X by asking that it is the coarsest topology so that f is continuous. (The finest topology making f continuous is the discrete topology.) Explicitly, a subbasis of open sets of X is given by the preimages of open sets of Y . With this definition, a function W ! X, where W is some other space, is continuous if and only if the composite function W ! Y is continuous. On the other hand, if X is assumed to be a topological space, we could define a topology on Y by asking that it is the finest topology so that f is continuous. (The coarsest topology making f continuous is the indiscrete topology.) Explicitly, a subset of Y is open if and only if its preimage in X is open. With this definition, a function Y ! Z, where Z is some other space, is continuous if and only if the composite function X ! Z is continuous.
    [Show full text]
  • Canonical Maps
    Canonical maps Jean-Pierre Marquis∗ D´epartement de philosophie Universit´ede Montr´eal Montr´eal,Canada [email protected] Abstract Categorical foundations and set-theoretical foundations are sometimes presented as alternative foundational schemes. So far, the literature has mostly focused on the weaknesses of the categorical foundations. We want here to concentrate on what we take to be one of its strengths: the explicit identification of so-called canonical maps and their role in mathematics. Canonical maps play a central role in contemporary mathematics and although some are easily defined by set-theoretical tools, they all appear systematically in a categorical framework. The key element here is the systematic nature of these maps in a categorical framework and I suggest that, from that point of view, one can see an architectonic of mathematics emerging clearly. Moreover, they force us to reconsider the nature of mathematical knowledge itself. Thus, to understand certain fundamental aspects of mathematics, category theory is necessary (at least, in the present state of mathematics). 1 Introduction The foundational status of category theory has been challenged as soon as it has been proposed as such1. The literature on the subject is roughly split in two camps: those who argue against category theory by exhibiting some of its shortcomings and those who argue that it does not fall prey to these shortcom- ings2. Detractors argue that it supposedly falls short of some basic desiderata that any foundational framework ought to satisfy: either logical, epistemologi- cal, ontological or psychological. To put it bluntly, it is sometimes claimed that ∗The author gratefully acknowledge the financial support of the SSHRC of Canada while this work was done.
    [Show full text]
  • University of Cape Town Department of Mathematics and Applied Mathematics Faculty of Science
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University University of Cape Town Department of Mathematics and Applied Mathematics Faculty of Science Convexity in quasi-metricTown spaces Cape ofby Olivier Olela Otafudu May 2012 University A thesis presented for the degree of Doctor of Philosophy prepared under the supervision of Professor Hans-Peter Albert KÄunzi. Abstract Over the last ¯fty years much progress has been made in the investigation of the hyperconvex hull of a metric space. In particular, Dress, Espinola, Isbell, Jawhari, Khamsi, Kirk, Misane, Pouzet published several articles concerning hyperconvex metric spaces. The principal aim of this thesis is to investigateTown the existence of an injective hull in the categories of T0-quasi-metric spaces and of T0-ultra-quasi- metric spaces with nonexpansive maps. Here several results obtained by others for the hyperconvex hull of a metric space haveCape been generalized by us in the case of quasi-metric spaces. In particular we haveof obtained some original results for the q-hyperconvex hull of a T0-quasi-metric space; for instance the q-hyperconvex hull of any totally bounded T0-quasi-metric space is joincompact. Also a construction of the ultra-quasi-metrically injective (= u-injective) hull of a T0-ultra-quasi- metric space is provided.
    [Show full text]
  • Algebra & Number Theory
    Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale
    [Show full text]
  • The Canonical Map and the Canonical Ring of Algebraic Curves
    The canonical map and the canonical ring of algebraic curves. Vicente Lorenzo Garc´ıa The canonical map and the canonical ring of algebraic curves. Introduction. LisMath Seminar. Basic tools. Examples. Max Vicente Lorenzo Garc´ıa Noether's Theorem. Enriques- Petri's Theorem. November 8th, 2017 Hyperelliptic case. 1 / 34 Outline The canonical map and the canonical ring of algebraic curves. Vicente Introduction. Lorenzo Garc´ıa Introduction. Basic tools. Basic tools. Examples. Examples. Max Noether's Theorem. Max Noether's Theorem. Enriques- Petri's Theorem. Hyperelliptic Enriques-Petri's Theorem. case. Hyperelliptic case. 2 / 34 Outline The canonical map and the canonical ring of algebraic curves. Vicente Introduction. Lorenzo Garc´ıa Introduction. Basic tools. Basic tools. Examples. Examples. Max Noether's Theorem. Max Noether's Theorem. Enriques- Petri's Theorem. Hyperelliptic Enriques-Petri's Theorem. case. Hyperelliptic case. 3 / 34 The canonical map and the canonical ring of algebraic curves. Vicente Lorenzo Garc´ıa Definition Introduction. We will use the word curve to mean a complete, nonsingular, one dimensional scheme C Basic tools. over the complex numbers C. Examples. Max Noether's Definition Theorem. The canonical sheaf ΩC of a curve C is the sheaf of sections of its cotangent bundle. Enriques- Petri's Theorem. Hyperelliptic case. 4 / 34 The canonical map and the canonical ring of algebraic curves. Vicente Theorem (Serre's Duality) Lorenzo Garc´ıa Let L be an invertible sheaf on a curve C. Then there is a perfect pairing 0 −1 1 Introduction. H (C; ΩC ⊗ L ) × H (C; L) ! K: Basic tools. 1 0 −1 Examples.
    [Show full text]
  • A Whirlwind Tour of the World of (∞,1)-Categories
    Contemporary Mathematics A Whirlwind Tour of the World of (1; 1)-categories Omar Antol´ınCamarena Abstract. This introduction to higher category theory is intended to a give the reader an intuition for what (1; 1)-categories are, when they are an appro- priate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references. Contents 1. Introduction 2 2. The idea of higher category theory 3 2.1. The homotopy hypothesis and the problem with strictness 5 2.2. The 3-type of S2 8 2.3. Shapes for cells 10 2.4. What does (higher) category theory do for us? 11 3. Models of (1; 1)-categories 12 3.1. Topological or simplicial categories 12 3.2. Quasi-categories 13 3.3. Segal categories and complete Segal spaces 16 3.4. Relative categories 17 3.5. A1-categories 18 3.6. Models of subclasses of (1; 1)-categories 20 3.6.1. Model categories 20 3.6.2. Derivators 21 3.6.3. dg-categories, A1-categories 22 4. The comparison problem 22 4.1. Axiomatization 24 5. Basic (1; 1)-category theory 25 5.1. Equivalences 25 5.1.1. Further results for quasi-categories 26 5.2. Limits and colimits 26 5.3. Adjunctions, monads and comonads 28 2010 Mathematics Subject Classification. Primary 18-01.
    [Show full text]
  • Curriculum Vitæ — Clark Barwick Massachusetts Institute of Technology Department of Mathematics, E17-332 77 Massachusetts Avenue Cambridge, MA 02139-4307
    Curriculum Vitæ — Clark Barwick Massachusetts Institute of Technology Department of Mathematics, E17-332 77 Massachusetts Avenue Cambridge, MA 02139-4307 Web http://www.math.mit.edu/∼clarkbar/ Email [email protected] or [email protected] Citizenship United States Employment History 2013– Massachusetts Institute of Technology (Cambridge, MA, USA). Cecil and Ida Green Career Development Assistant Professor of Mathematics. 2010–13 Massachusetts Institute of Technology (Cambridge, MA, USA). Assistant Professor. 2008–10 Harvard University (Cambridge, MA, USA). Benjamin Peirce Lec- turer. 2007–08 Institute for Advanced Study (Princeton, NJ, USA). Visitor, Term I; Member, Term II. New connections of representation theory to al- gebraic geometry and physics. Project leader: R. Bezrukavnikov. 2006–07 Matematisk Institutt, Universitetet i Oslo (Oslo, Norway). YFF Postdoctoral fellow. Geometry and arithmetic of structured ring spec- tra. Project leader: J. Rognes. 2005–06 Mathematisches Institut Göttingen (Göttingen, Germany). DFG Postdoctoral fellow. Homotopical algebraic geometry. Project leader: Yu. Tschinkel. Education 2005 University of Pennsylvania (Philadelphia, PA, USA). Ph.D, Math- ematics. Thesis advisor: Tony Pantev. 2001 University of North Carolina at Chapel Hill (Chapel Hill, NC, USA). B.S., Mathematics. 1 Papers in progress 22. Algebraic K-theory of Thom spectra (with J. Shah). In progress. 21. Equivariant higher categories and equivariant higher algebra (with E. Dotto, S. Glasman, D. Nardin, and J. Shah). In progress. 20. Higher plethories and chromatic redshift. In progress. 19. On the algebraic K-theory of algebraic K-theory. In progress. 18. Spectral Mackey functors and equivariant algebraic K-theory (III). In progress. 17. Cyclonic and cyclotomic spectra (with S. Glasman). In progress.
    [Show full text]
  • The Topology of Path Component Spaces
    The topology of path component spaces Jeremy Brazas October 26, 2012 Abstract The path component space of a topological space X is the quotient space of X whose points are the path components of X. This paper contains a general study of the topological properties of path component spaces including their relationship to the zeroth dimensional shape group. Path component spaces are simple-to-describe and well-known objects but only recently have recieved more attention. This is primarily due to increased qtop interest and application of the quasitopological fundamental group π1 (X; x0) of a space X with basepoint x0 and its variants; See e.g. [2, 3, 5, 7, 8, 9]. Recall qtop π1 (X; x0) is the path component space of the space Ω(X; x0) of loops based at x0 X with the compact-open topology. The author claims little originality here but2 knows of no general treatment of path component spaces. 1 Path component spaces Definition 1. The path component space of a topological space X, is the quotient space π0(X) obtained by identifying each path component of X to a point. If x X, let [x] denote the path component of x in X. Let qX : X π0(X), q(x) = [x2] denote the canonical quotient map. We also write [A] for the! image qX(A) of a set A X. Note that if f : X Y is a map, then f ([x]) [ f (x)]. Thus f determines a well-defined⊂ function f !: π (X) π (Y) given by⊆f ([x]) = [ f (x)].
    [Show full text]
  • Clark Barwick
    Curriculum Vitæ — Clark Barwick Massachusetts Institute of Technology Department of Mathematics, E17-332 77 Massachusetts Avenue Cambridge, MA 02139-4307 Web http://www.math.mit.edu/∼clarkbar/ Email [email protected] or [email protected] Citizenship United States Employment History 2015– Massachusetts Institute of Technology (Cambridge, MA, USA). Cecil and Ida Green Career Development Associate Professor of Mathematics. 2013–15 Massachusetts Institute of Technology (Cambridge, MA, USA). Cecil and Ida Green Career Development Assistant Professor of Mathematics. 2010–13 Massachusetts Institute of Technology (Cambridge, MA, USA). Assistant Professor. 2008–10 Harvard University (Cambridge, MA, USA). Benjamin Peirce Lecturer. 2007–08 Institute for Advanced Study (Princeton, NJ, USA). Visitor, Term I; Member, Term II. New connections of representation theory to algebraic geometry and physics. Project leader: R. Bezrukavnikov. 2006–07 Matematisk Institutt, Universitetet i Oslo (Oslo, Norway). YFF Postdoctoral fellow. Geometry and arithmetic of structured ring spectra. Project leader: J. Rognes. 2005–06 Mathematisches Institut Göttingen (Göttingen, Germany). DFG Postdoctoral fellow. Homotopical algebraic geometry. Project leader: Yu. Tschinkel. 1 Education 2005 University of Pennsylvania (Philadelphia, PA, USA). Ph.D, Mathematics. Thesis advisor: Tony Pantev. 2001 University of North Carolina at Chapel Hill (Chapel Hill, NC, USA). B.S., Mathematics. Papers in progress 23. Higher Mackey functors and Grothendieck–Verdier duality. In progress. 22. Algebraic K-theory of Thom spectra (with J. Shah). In progress. 21. Equivariant higher categories and equivariant higher algebra (with E. Dotto, S. Glasman, D. Nardin, and J. Shah). In progress. 20. Higher plethories and chromatic redshift. In progress. 19. On the algebraic K-theory of algebraic K-theory.
    [Show full text]
  • Convergence of Quotients of Af Algebras in Quantum Propinquity by Convergence of Ideals
    CONVERGENCE OF QUOTIENTS OF AF ALGEBRAS IN QUANTUM PROPINQUITY BY CONVERGENCE OF IDEALS KONRAD AGUILAR ABSTRACT. We provide conditions for when quotients of AF algebras are quasi- Leibniz quantum compact metric spaces building from our previous work with F. Latrémolière. Given a C*-algebra, the ideal space may be equipped with natural topologies. Next, we impart criteria for when convergence of ideals of an AF al- gebra can provide convergence of quotients in quantum propinquity, while intro- ducing a metric on the ideal space of a C*-algebra. We then apply these findings to a certain class of ideals of the Boca-Mundici AF algebra by providing a continuous map from this class of ideals equipped with various topologies including the Ja- cobson and Fell topologies to the space of quotients with the quantum propinquity topology. Lastly, we introduce new Leibniz Lip-norms on any unital AF algebra motivated by Rieffel’s work on Leibniz seminorms and best approximations. CONTENTS 1. Introduction1 2. Quantum Metric Geometry and AF algebras4 3. Convergence of AF algebras with Quantum Propinquity 10 4. Metric on Ideal Space of C*-Inductive Limits 18 5. Metric on Ideal Space of C*-Inductive Limits: AF case 27 6. Convergence of Quotients of AF algebras with Quantum Propinquity 39 6.1. The Boca-Mundici AF algebra 43 7. Leibniz Lip-norms for Unital AF algebras 56 Acknowledgements 59 References 59 1. INTRODUCTION The Gromov-Hausdorff propinquity [29, 26, 24, 28, 27], a family of noncommu- tative analogues of the Gromov-Hausdorff distance, provides a new framework to study the geometry of classes of C*-algebras, opening new avenues of research in noncommutative geometry by work of Latrémolière building off notions intro- duced by Rieffel [37, 45].
    [Show full text]
  • CHAPTER 2 RING FUNDAMENTALS 2.1 Basic Definitions and Properties
    page 1 of Chapter 2 CHAPTER 2 RING FUNDAMENTALS 2.1 Basic Definitions and Properties 2.1.1 Definitions and Comments A ring R is an abelian group with a multiplication operation (a, b) → ab that is associative and satisfies the distributive laws: a(b+c)=ab+ac and (a + b)c = ab + ac for all a, b, c ∈ R. We will always assume that R has at least two elements,including a multiplicative identity 1 R satisfying a1R =1Ra = a for all a in R. The multiplicative identity is often written simply as 1,and the additive identity as 0. If a, b,and c are arbitrary elements of R,the following properties are derived quickly from the definition of a ring; we sketch the technique in each case. (1) a0=0a =0 [a0+a0=a(0+0)=a0; 0a +0a =(0+0)a =0a] (2) (−a)b = a(−b)=−(ab)[0=0b =(a+(−a))b = ab+(−a)b,so ( −a)b = −(ab); similarly, 0=a0=a(b +(−b)) = ab + a(−b), so a(−b)=−(ab)] (3) (−1)(−1) = 1 [take a =1,b= −1 in (2)] (4) (−a)(−b)=ab [replace b by −b in (2)] (5) a(b − c)=ab − ac [a(b +(−c)) = ab + a(−c)=ab +(−(ac)) = ab − ac] (6) (a − b)c = ac − bc [(a +(−b))c = ac +(−b)c)=ac − (bc)=ac − bc] (7) 1 = 0 [If 1 = 0 then for all a we have a = a1=a0 = 0,so R = {0},contradicting the assumption that R has at least two elements] (8) The multiplicative identity is unique [If 1 is another multiplicative identity then 1=11 =1] 2.1.2 Definitions and Comments If a and b are nonzero but ab = 0,we say that a and b are zero divisors;ifa ∈ R and for some b ∈ R we have ab = ba = 1,we say that a is a unit or that a is invertible.
    [Show full text]