bioRxiv preprint doi: https://doi.org/10.1101/2021.03.07.434278; this version posted March 12, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. In vitro neuronal networks show bidirectional axonal conduction with antidromic action potentials effectively depolarizing the soma Mateus JC1,2,3, Lopes CDF1,2, Aroso M1,2, Costa AR1,4, Gerós A1,2,5, Pereira A1,4, Meneses J6,7, Faria P6, Neto E1,2, Lamghari M1,2, Sousa MM1,4, Aguiar P1,2* 1i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal 2INEB- Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal 3ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal 4IBMC- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal 5FEUP – Faculdade de Engenharia da Universidade do Porto, Porto, Portugal 6CDRSP-IPL - Centre for Rapid and Sustainable Product Development – Instituto Politécnico de Leiria, Marinha Grande, Portugal 7IBEB - Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal *Corresponding author:
[email protected] ABSTRACT Recent technological advances are revealing the complex physiology of the axon and challenging long-standing assumptions. Namely, while most action potential (AP) initiation occurs at the axon initial segment in central nervous system neurons, initiation in distal parts of the axon has been shown to occur in both physiological and pathological conditions. However, such ectopic action potential (EAP) activity has not been reported yet in studies using in vitro neuronal networks and its functional role, if exists, is still not clear.