Leuconostoc Bacteriocins and Their Application in Genome Editing

Total Page:16

File Type:pdf, Size:1020Kb

Leuconostoc Bacteriocins and Their Application in Genome Editing View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Leuconostoc bacteriocins and their application in genome editing Xing Wan Division of Microbiology and Biotechnology Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Academic Dissertation in Microbiology To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki for public examination in Room 2402, Biocentre 3, Viikinkaari 1, University of Helsinki, on 9th June 2017, at 12 o’clock noon. Helsinki 2017 Supervisor: Dr. Timo Takala Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Co-supervisor: Professor Per Saris Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Reviewers: Dr. Morten Kjos Faculty of Chemistry, Biotechnology and Food Science Norwegian University of Life Sciences, Norway Dr. Elina Säde Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki, Finland Opponent: Professor Mikael Skurnik Department of Bacteriology and Immunology The Haartman Institute University of Helsinki Custos: Professor Per Saris Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland ISBN 978-951-51-3203-1 (paperback) ISBN 978-951-51-3204-8 (PDF) ISSN 2342-5423 (Print) ISSN 2342-5431 (Online) Cover page photo: Leucocins A, B and C on Leuconostoc pseudomesenteroides CIP103316 indicator lawn (photo by Xing Wan) Hansaprint Oy Turenki 2017 2 TABLE OF CONTENTS List of original publications...........................................................................................4 Abbreviations ...............................................................................................................5 ABSTRACT .................................................................................................................6 TIIVISTELMÄ (abstract in Finnish) .............................................................................7 INTRODUCTION ........................................................................................................8 1 Lactic acid bacteria...........................................................................................8 1.1 The genus of Leuconostoc ...............................................................................8 1.2 Leuconostocs in food production .....................................................................9 2 LAB bacteriocins and how to find them .......................................................... 10 2.1 Classification of bacteriocins......................................................................... 11 2.2 Class II: unmodified bacteriocins .................................................................. 13 2.2.1 Class IIa pediocin-like ........................................................................... 13 2.2.2 Class IIb two-peptide ............................................................................. 16 2.2.3 Class IIc circular .................................................................................... 17 2.2.4 Class IId single, linear, non pediocin-like ............................................... 18 2.2.5 Regulation mechanism ........................................................................... 19 2.2.6 Bacteriocin spontaneous resistance......................................................... 21 2.3 Leuconostoc bacteriocins .............................................................................. 22 3 Heterologous expression of class II bacteriocins from LAB ............................. 25 3.1 Expression of native bacteriocin genes .......................................................... 25 3.2 Optimisation of bacteriocin production .......................................................... 25 4 LAB bacteriocin applications.......................................................................... 26 5 LAB genome editing ...................................................................................... 27 AIMS OF THE STUDY.............................................................................................. 29 MATERIALS AND METHODS ................................................................................. 30 RESULTS AND DISCUSSION .................................................................................. 33 1 Genetic characterisation of leucocins (I, II, unpublished)................................. 33 2 Heterologous expression of functional proteins (I, II, III, unpublished) ............ 35 2.1 Overexpression of leucocins (I, II, unpublished) ............................................ 35 2.2 Heterologous expression of other functional proteins (I, III, unpublished) ...... 37 3 Using bacteriocin targeting mechanism in genome editing (III, unpublished) ... 38 CONCLUSIONS AND FUTURE PROSPECTS.......................................................... 41 Acknowledgements ..................................................................................................... 42 References .................................................................................................................. 43 3 List of original publications I Wan, X., Li, R., Saris, P.E.J. and Takala, T.M., 2013. Genetic characterisation and heterologous expression of leucocin C, a class IIa bacteriocin from Leuconostoc carnosum 4010. Applied Microbiology and Biotechnology, 97:3509-3518. II Wan, X., Saris, P.E.J. and Takala, T.M., 2015. Genetic characterization and expression of leucocin B, a class IId bacteriocin from Leuconostoc carnosum 4010. Research in Microbiology, 166:494-503. III Wan, X., Usvalampi, A.M., Saris, P.E.J. and Takala, T.M., 2016. A counterselection method for Lactococcus lactis genome editing based on class IIa bacteriocin sensitivity. Applied Microbiology and Biotechnology, 100:9661- 9669. The author’s contribution in articles: I Wan, X participated in the design of the study, performed all the experiments together with the co-authors, participated in data analysis and result interpretation, and was responsible for writing the manuscript together with the co-authors. II Wan, X participated in the design of the study, performed all the experiments, participated in data analysis and result interpretation, and was responsible for writing the manuscript together with the co-authors. III Wan, X participated in the design of the study, performed majority of the experiments (except constructing H1-H2-pUCori fragments for integration plasmids), analysed the data, interpreted the results, and wrote the manuscript together with the co-authors. The publications are referred to in the following text by their roman numerals. 4 Abbreviations 3CS three-component regulatory system aa amino acid ABC ATP-binding cassette AMP antimicrobial peptide bp base pair(s) C-terminal carboxyterminal Da Dalton, atomic mass unit DCO double crossover DNA deoxyribonucleic acid e.g. exempli gratia, for example Erm erythromycin et al. et alii, and others FOA 5’-fluoroorotic acid Gram- Gram-negative bacteria Gram+ Gram-positive bacteria GG double-glycine i.e. id est, in other words kb kilobase pair(s) kDa kilodalton LAB lactic acid bacteria Man-PTS mannose-phosphotransferase system MRSA methicillin-resistant Staphylococcus aureus N-terminal aminoterminal o/n overnight ORF open reading frame PCR polymerase chain reaction SCO single crossover SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis SS signal sequence ssp. subspecies 5 ABSTRACT Leuconostocs are lactic acid bacteria used as starters in food fermentations. They can also be spoilage bacteria, especially in vacuum packed meat products. Many Leuconostocs produce antimicrobial peptides, also known as bacteriocins. Leuconostoc bacteriocins are usually small, less than 10 kDa non-modified peptides, which are secreted by dedicated transporters. These bacteriocins kill many different bacteria, including strains of Enterococcus, Listeria, and Staphylococcus genera. Sensitivity to bacteriocins is usually dependent on a specific receptor on the target cell membrane. On Listeria cell membrane, mannose-phosphotransferase system Man-PTS has been shown to be the target for bacteriocins leucocins A and C from Leuconostoc. These class IIa bacteriocins bind to the subunit IIC (MptC) of Man-PTS and open the transporter, which leads to cell leakage and eventually cell death. Bacteriocin producers express specific immunity proteins, which protect the producer cells by blocking the transporter pore. In this doctoral dissertation, the bacteriocins produced by Leuconostoc carnosum 4010 were studied. The strain 4010 is a commercial protective culture for vacuum packaged meat products. The strain produces two antilisterial bacteriocins, leucocins A and C. In this study, the strain was found to produce a third bacteriocin, leucocin B, which is active against some Leuconostoc and Weissella strains. Genes required for the production of the three leucocins were characterised. The leucocin genes were arranged in operons on two native plasmids. A single ABC-transporter was found in the strain 4010 and was believed to carry out the bacteriocin secretion for all three leucocins. Immediately downstream of the leucocin genes lcnA, lebB, and lecC, putative immunity genes lcnB, lebI, and lecI were found. The immunity
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Health Canada's Proposal to Enable the Use of Leuconostoc Carnosum
    Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Notice of Proposal – Lists of Permitted Food Additives Reference Number: [NOP/AVP-0016] April 12, 2016 Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch 1 Health Canada’s Proposal to Enable the Use of Leuconostoc carnosum 4010 as an Antimicrobial Preservative in Certain Vacuum-Packed Non-Shelf-Stable Meat and Poultry Products Summary Food additives are regulated in Canada under Marketing Authorizations (MAs) issued by the Minister of Health and the Food and Drug Regulations. Approved food additives and their permitted conditions of use are set out in the Lists of Permitted Food Additives that are incorporated by reference in the MAs and published on Health Canada’s website. A petitioner can request that Health Canada approve a new additive or a new condition of use for an already approved food additive by filing a food additive submission with the Department's Food Directorate. Health Canada uses this premarket approval process to determine whether the scientific data support the safety of food additives when used under specified conditions in foods sold in Canada. Health Canada received a food additive submission seeking approval for the use of the bacterium Leuconostoc carnosum 4010 as an antimicrobial preservative at a maximum level of use consistent with Good Manufacturing Practice in certain vacuum-packed non-shelf-stable meat and poultry products, namely: bologna, cervelat, frankfurters, mortadella, and wieners.
    [Show full text]
  • Leuconostoc Bacteriocins and Their Application in Genome Editing
    Leuconostoc bacteriocins and their application in genome editing Xing Wan Division of Microbiology and Biotechnology Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Academic Dissertation in Microbiology To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki for public examination in Room 2402, Biocentre 3, Viikinkaari 1, University of Helsinki, on 9th June 2017, at 12 o’clock noon. Helsinki 2017 Supervisor: Dr. Timo Takala Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Co-supervisor: Professor Per Saris Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland Reviewers: Dr. Morten Kjos Faculty of Chemistry, Biotechnology and Food Science Norwegian University of Life Sciences, Norway Dr. Elina Säde Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki, Finland Opponent: Professor Mikael Skurnik Department of Bacteriology and Immunology The Haartman Institute University of Helsinki Custos: Professor Per Saris Department of Food and Environmental Sciences Faculty of Agriculture and Forestry University of Helsinki, Finland ISBN 978-951-51-3203-1 (paperback) ISBN 978-951-51-3204-8 (PDF) ISSN 2342-5423 (Print) ISSN 2342-5431 (Online) Cover page photo: Leucocins A, B and C on Leuconostoc pseudomesenteroides CIP103316 indicator lawn (photo by Xing Wan)
    [Show full text]
  • Food Microbiology Changes in the Microbial Communities in Vacuum
    Food Microbiology 77 (2019) 26–37 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Changes in the microbial communities in vacuum-packaged smoked bacon during storage T ∗ Xinfu Lia,b,d, Cong Lia,b,d, Hua Yea,b, Zhouping Wanga,b, Xiang Wud, Yanqing Hand, Baocai Xub,c,d, a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China b School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China c School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China d State Key Laboratory of Meat Processing and Quality Control, Yurun Group, Nanjing, 211806, China ARTICLE INFO ABSTRACT Keywords: This study aimed to gain deeper insights into the microbiota composition and population dynamics, monitor the Microbial communities dominant bacterial populations and identify the specific spoilage microorganisms (SSOs) of vacuum-packed Smoked bacon bacon during refrigerated storage using both culture-independent and dependent methods. High-throughout High-throughput sequencing (HTS) sequencing (HTS) showed that the microbial composition changed greatly with the prolongation of storage time. The diversity of microbiota was abundant at the initial stage then experienced a continuous decrease. Lactic acid bacteria (LAB) mainly Leuconostoc and Lactobacillus dominated the microbial population after seven days of storage. A total of 26 isolates were identified from different growth media using traditional cultivation isolation and identification method. Leuconostoc mesenteroides and Leuconostoc carnosum were the most prevalent species since day 15, while Lactobacillus sakei and Lactobacillus curvatus were only found on day 45, suggesting that they could be responsible for the spoilage of bacon.
    [Show full text]
  • Food Fermentations: Microorganisms with Technological Beneficial Use Inventory of Species - 2012/03/15
    Food fermentations: Microorganisms with technological beneficial use Inventory of Species - 2012/03/15 Documented DanishList Kingdom QPS Phylum Family Genus Taxonomy Food Usage Reference Food Usage Type Strain Reference Taxonomy Reuter, G., 1963. Vergleichende Untersuchunge über die Rabiu, B.A., 2001. Synthesis and fermentation properties of Bifidobacterium Bifidus-Flora im Säuglings- und Erwachsenenstuhl. 1963 Monera Actinobacteria Bifidobacteriaceae Bifidobacterium Dairy novel galacto-oligosaccharides by beta-galactosidases from Y Y ATCC 15703 adolescentis Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Bifidobacterium species. Appl Environ Microbiol. 67, 2526-30. Abt. 1, Orig. Reihe A191 486–507. Mitsuoka, T., 1969. Comparative studies on bifidobacteria Biavati, B., Mattarelli, P., Crociani, F., 1992. Identification of Bifidobacterium animalis isolated from the alimentary tract of man and animals. Zentralbl. 1969 Monera Actinobacteria Bifidobacteriaceae Bifidobacterium Dairy bifidobacteria from fermented milk products. Microbiologica 15, Y Y ATCC 25527 subsp animalis Bakteriol. Parasitenkd. Infektionskr. Hyg. 7-13. Abt. 1, Orig. Reihe A210 52–64. Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Biavati, B., Mattarelli, P., Crociani, F., 1992. Identification of Bifidobacterium animalis Dasen, G., Wenger, S., Teuber, M., 1997. Bifidobacterium lactis 1980 Monera Actinobacteria Bifidobacteriaceae Bifidobacterium Dairy bifidobacteria from fermented milk products. Microbiologica 15, Y Y DSM 10140 subsp lactis sp.nov., a moderately oxygen tolerant species isolated from 7-13. fermented milk. Syst. Appl. Microbiol. 20, 57–64. Ventling, B.L., Mistry, V.V., 1993. Growth characteristics of Orla-Jensen, S., 1924. La classification des bactéries lactiques. 1924 Monera Actinobacteria Bifidobacteriaceae Bifidobacterium Bifidobacterium bifidum Dairy bifidobacteria in ultrafiltered milk. J Dairy Sci. 76, 962-71. Y Y ATCC 29521 Lait 4, 468–474.
    [Show full text]
  • Microbial Diversity Analyses in a Changing Landscape
    FACULTY OF SCIENCES Microbial diversity analyses in a changing landscape Lactic acid bacteria in food fermentations as a test case MSc. Isabel Snauwaert Doctor (Ph.D.) in Sciences, Biochemistry and Biotechnology (Ghent University) Dissertation submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Bioengineering Sciences (Vrije Universiteit Brussel) Promotors: Prof. dr. Peter Vandamme (Ghent University) Prof. dr. ir. Luc De Vuyst (Vrije Universiteit Brussel) Prof. dr. Anita Van Landschoot (Ghent University) I feel more microbe than man Snauwaert, I. | Microbial diversity analyses in a changing landscape: Lactic acid bacteria in food fermentations as a test case ©2014, Isabel Snauwaert ISBN-number: 978-9-4619724-0-8 All rights reserved. No part of this thesis protected by this copyright notice may be reproduced or utilised in any form or by any means, electronic or mechanical, including photocopying, recordinghttp://www.universitypress.be or by any information storage or retrieval system without written permission of the author. Printed by University Press | Joint Ph.D. thesis, Faculty of Sciences, Ghent University, Ghent, Belgium Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium th Publicly defended in Ghent, Belgium, November 25 , 2014 Author’sThis Ph.D. email work address: was supported by FWO-Flanders, BOF project, and the Vrije Universiteit Brussel (SRP, IRP, and IOF projects). [email protected] ExaminationProf. dr. Savvas SAVVIDES Committee (Chairman) L-Probe: Laboratory for Protein Biochemistry and Biomolecular Engineering FacultyProf. of Sciences, dr. Peter Ghent VANDAMME University, Ghent, Belgium (Promotor UGent) LM-UGent: Laboratory of Microbiology Faculty ofProf. Sciences, dr. ir. Ghent Luc DE University, VUYST Ghent, Belgium (Promotor VUB) IMDO: Research Group of Industrial Microbiology and Food Biotechnology Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Prof.
    [Show full text]
  • Fundamental Food Microbiology, Third Edition
    Third Edition FUNDAMENTAL FOOD MICROBIOLOGY Bibek Ray CRC PRESS Boca Raton London New York Washington, D.C. This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Cover Image: Microscope with easy phase contrast, dark field, and bright light facilities (M 4002 D). (Courtesy of Swift Instrument International, S.A.) Library of Congress Cataloging-in-Publication Data Ray, Bibek Fundamental food microbiology / Bibek Ray. --3rd ed. p. cm. Includes bibliographical references and index. ISBN 0-8493-1610-3 1. Food--Microbiology. I. Title QR115.R39 2003 664d.001d579--dc22 2003055738 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W.
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Panoramic View on Genome Diversity and Evolution of Lactic Acid Bacteria
    博士論文 Panoramic View on Genome Diversity and Evolution of Lactic Acid Bacteria (乳酸菌ゲノムの多様性と進化に関する俯瞰的解析 ) Yasuhiro Tanizawa 谷澤 靖洋 Abstract Lactic acid bacteria (LAB) have long been associated with human culture and industrially exploited in production and preservation of food and feed for centuries. They are isolated across the world from nutrient rich environments, such as dairy products, fermented foods, plants, and animal intestines. From a taxonomic point of view, they are distributed into over 30 genera from six families under the order Lactobacillales. Among them, the genus Lactobacillus is the largest and highly heterogeneous group comprising nearly 200 species and subspecies. Recent advance of genome sequencing technologies has realized access to enormous genomic data. Particularly in the field of microbiology, genome sequences for a variety of organisms, not limited for model organisms or human pathogens, have become available, which gave rise to new opportunities for investigating diverse species. As of April 2016, NCBI Assembly Database stores more than 700 genomes for the genus Lactobacillus, marking the largest number except for model microorganisms and pathogenic bacteria. In particular, they include genomic data of 179 Lactobacillus spp. covering over 90% of its known species. The ecological characteristics of LAB and its wealth of genomic data make this microorganism particularly attractive for revealing the diversity of microbial world and their evolutionary background. This work contains three research projects. The first two address case analyses of LAB that exhibit atypical characteristics: L. hokkaidonensis and the genus Fructobacillus. The last one addresses the development of a genome archive and annotation pipeline specialized for LAB. Psychrotolerant LAB: Lactobacillus hokkaidonensis Lactobacillus hokkaidonensis is an obligate heterofermentative LAB, which was isolated from Timothy grass silage in Hokkaido, a subarctic region of Japan.
    [Show full text]
  • Hcm 431 Advanced Food and Beverage Production
    COURSE GUIDE HCM 431 ADVANCED FOOD AND BEVERAGE PRODUCTION Course Team Dr. I.A. Akeredolu (Course Developer /Writer)- Yaba College of Technology, Lagos Dr. J.C.Okafor (Course Editor) - The Federal Polytechnic, Ilaro Dr. (Mrs.) A. O. Fagbemi (Programme Leader) - NOUN Mr. S. O. Israel-Cookey (Course Coordinator) - NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA HCM 431 COURSE GUIDE National Open University of Nigeria Headquarters University Village Plot 91, Cadastral Zone, Nnamdi Azikiwe Express way Jabi, Abuja Lagos Office 14/16 Ahmadu Bello Way Victoria Island, Lagos e-mail: [email protected] website: www.nouedu.net Published by National Open University of Nigeria Printed 2013 Reprinted 2015 ISBN: 978-058-926-0 All Rights Reserved i i HCM 431 COURSE GUIDE CONTENTS PAGE Introduction .......................................................................... iv Course Aims ...................................................................... iv Course Objectives ................................................................. iv Working through this Course ................................................ iv Course Materials ................................................................... v Study Units ........................................................................... v Assessment ........................................................................ vi Tutor – Marked Assessment (TMA) ....................................... vi Final Examination and Grading .............................................. vi Getting the Best from
    [Show full text]
  • Iafp European Symposium on Food Safety
    IAFP EUROPEAN SYMPOSIUM ON FOOD SAFETY ©Freesurf69 | Dreamstime.com ©Gelia | Dreamstime.com 25–27 APRIL 2018 Stockholm, Sweden PROGRAMME HELD AT THE BREWERY CONFERENCE CENTRE STOCKHOLM ORGANIZED BY WWW.FOODPROTECTION.ORG 01 SPONSORS → EXHIBITORS 2018 SUPPORTERS 02 TABLE OF CONTENTS Organising Committee and Local Organising Committee ..................................................................................................................... 2 Programme-at-a-Glance ...................................................................................................................................................................... 3 Wednesday Programme ........................................................................................................................................................................ 6 Thursday Programme ......................................................................................................................................................................... 10 Friday Programme .............................................................................................................................................................................. 14 Speaker Biographies .......................................................................................................................................................................... 17 Symposium Abstracts........................................................................................................................................................................
    [Show full text]
  • GRAS Notice 937, Staphylococcus Carnosus DSM 25010
    GRAS Notice (GRN) No. 937 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory CHR...._HANSEN RECclVED AP~ 2 8 2020 Chr. Hansen, Inc. OFFICE Of~PODADDITIVE SAFETY ' 9015 West Maple Street Milwaukee, WI 53214 - 4298 Division of Biotechnology and GRAS Notice Review U.S.A. Center for Food Safety & Applied Nutrition (HFS-255) U.S. Food & Drug Administration Phone : 414 - 607 - 5700 Fax : 414 - 607 - 5959 Reference: Staphylococcus carnosus DSM 25010 April 20, 2020 Dear Sir or Madam, tOFPICH OF FOOD ADD ITIVE SAFE o~Or'rootrA'OOT'IWE:S: - In accordance with the Federal Register (81 Fed. Reg. 159 (17 August 2016)] issuance on Generally Recognized as Safe (GRAS) notifications (21 CFR Part 170), Chr. Hansen is pleased to submit a notice that we have concluded, through scientific procedures that Staphylococcus carnosus (S. carnosus) DSM 25010 is generally recognized as safe and is not subject to the pre-market approval requirements for use to enhance the quality of packed bacon throughout shelf-life by improving color (red) stability. The culture preparation is recommended to be used at levels that will result in a final concentration up to and including 9.0 log Colony Forming Unit (CFU/g) on the finished food product. We also request that a copy of the notification be shared with the United States Department of Agriculture's Food Safety (USDA) and Inspection Service (FSIS), regarding the use of S. carnosus DSM 25010 as a safe and suitable ingredient in cured meat products including but not limited to cured ham and bacon.
    [Show full text]