The Mean Value Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Directional Derivative the Derivative of a Real Valued Function (Scalar field) with Respect to a Vector
Math 253 The Directional Derivative The derivative of a real valued function (scalar field) with respect to a vector. f(x + h) f(x) What is the vector space analog to the usual derivative in one variable? f 0(x) = lim − ? h 0 h ! x -2 0 2 5 Suppose f is a real valued function (a mapping f : Rn R). ! (e.g. f(x; y) = x2 y2). − 0 Unlike the case with plane figures, functions grow in a variety of z ways at each point on a surface (or n{dimensional structure). We'll be interested in examining the way (f) changes as we move -5 from a point X~ to a nearby point in a particular direction. -2 0 y 2 Figure 1: f(x; y) = x2 y2 − The Directional Derivative x -2 0 2 5 We'll be interested in examining the way (f) changes as we move ~ in a particular direction 0 from a point X to a nearby point . z -5 -2 0 y 2 Figure 2: f(x; y) = x2 y2 − y If we give the direction by using a second vector, say ~u, then for →u X→ + h any real number h, the vector X~ + h~u represents a change in X→ position from X~ along a line through X~ parallel to ~u. →u →u h x Figure 3: Change in position along line parallel to ~u The Directional Derivative x -2 0 2 5 We'll be interested in examining the way (f) changes as we move ~ in a particular direction 0 from a point X to a nearby point . -
Cauchy Integral Theorem
Cauchy’s Theorems I Ang M.S. Augustin-Louis Cauchy October 26, 2012 1789 – 1857 References Murray R. Spiegel Complex V ariables with introduction to conformal mapping and its applications Dennis G. Zill , P. D. Shanahan A F irst Course in Complex Analysis with Applications J. H. Mathews , R. W. Howell Complex Analysis F or Mathematics and Engineerng 1 Summary • Cauchy Integral Theorem Let f be analytic in a simply connected domain D. If C is a simple closed contour that lies in D , and there is no singular point inside the contour, then ˆ f (z) dz = 0 C • Cauchy Integral Formula (For simple pole) If there is a singular point z0 inside the contour, then ˛ f(z) dz = 2πj f(z0) z − z0 • Generalized Cauchy Integral Formula (For pole with any order) ˛ f(z) 2πj (n−1) n dz = f (z0) (z − z0) (n − 1)! • Cauchy Inequality M · n! f (n)(z ) ≤ 0 rn • Gauss Mean Value Theorem ˆ 2π ( ) 1 jθ f(z0) = f z0 + re dθ 2π 0 1 2 Related Mathematics Review 2.1 Stoke’s Theorem ¨ ˛ r × F¯ · dS = F¯ · dr Σ @Σ (The proof is skipped) ¯ Consider F = (FX ;FY ;FZ ) 0 1 x^ y^ z^ B @ @ @ C r × F¯ = det B C @ @x @y @z A FX FY FZ Let FZ = 0 0 1 x^ y^ z^ B @ @ @ C r × F¯ = det B C @ @x @y @z A FX FY 0 dS =ndS ^ , for dS = dxdy , n^ =z ^ . By z^ · z^ = 1 , consider z^ component only for r × F¯ 0 1 x^ y^ z^ ( ) B @ @ @ C @F @F r × F¯ = det B C = Y − X z^ @ @x @y @z A @x @y FX FY 0 i.e. -
Infinitesimal and Tangent to Polylogarithmic Complexes For
AIMS Mathematics, 4(4): 1248–1257. DOI:10.3934/math.2019.4.1248 Received: 11 June 2019 Accepted: 11 August 2019 http://www.aimspress.com/journal/Math Published: 02 September 2019 Research article Infinitesimal and tangent to polylogarithmic complexes for higher weight Raziuddin Siddiqui* Department of Mathematical Sciences, Institute of Business Administration, Karachi, Pakistan * Correspondence: Email: [email protected]; Tel: +92-213-810-4700 Abstract: Motivic and polylogarithmic complexes have deep connections with K-theory. This article gives morphisms (different from Goncharov’s generalized maps) between |-vector spaces of Cathelineau’s infinitesimal complex for weight n. Our morphisms guarantee that the sequence of infinitesimal polylogs is a complex. We are also introducing a variant of Cathelineau’s complex with the derivation map for higher weight n and suggesting the definition of tangent group TBn(|). These tangent groups develop the tangent to Goncharov’s complex for weight n. Keywords: polylogarithm; infinitesimal complex; five term relation; tangent complex Mathematics Subject Classification: 11G55, 19D, 18G 1. Introduction The classical polylogarithms represented by Lin are one valued functions on a complex plane (see [11]). They are called generalization of natural logarithms, which can be represented by an infinite series (power series): X1 zk Li (z) = = − ln(1 − z) 1 k k=1 X1 zk Li (z) = 2 k2 k=1 : : X1 zk Li (z) = for z 2 ¼; jzj < 1 n kn k=1 The other versions of polylogarithms are Infinitesimal (see [8]) and Tangential (see [9]). We will discuss group theoretic form of infinitesimal and tangential polylogarithms in x 2.3, 2.4 and 2.5 below. -
1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem
Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary In Section 1, we go over the Mean Value Theorem and its applications. In Section 2, we will recap what we have covered so far this term. Topics Page 1 Mean Value Theorem 1 1.1 Applications of the Mean Value Theorem . .1 2 Midterm Review 5 2.1 Proof Techniques . .5 2.2 Sequences . .6 2.3 Series . .7 2.4 Continuity and Differentiability of Functions . .9 1 Mean Value Theorem The Mean Value Theorem is the following result: Theorem 1.1 (Mean Value Theorem). Let f be a continuous function on [a; b], which is differentiable on (a; b). Then, there exists some value c 2 (a; b) such that f(b) − f(a) f 0(c) = b − a Intuitively, the Mean Value Theorem is quite trivial. Say we want to drive to San Francisco, which is 380 miles from Caltech according to Google Map. If we start driving at 8am and arrive at 12pm, we know that we were driving over the speed limit at least once during the drive. This is exactly what the Mean Value Theorem tells us. Since the distance travelled is a continuous function of time, we know that there is a point in time when our speed was ≥ 380=4 >>> speed limit. As we can see from this example, the Mean Value Theorem is usually not a tough theorem to understand. The tricky thing is realizing when you should try to use it. Roughly speaking, we use the Mean Value Theorem when we want to turn the information about a function into information about its derivative, or vice-versa. -
Circles Project
Circles Project C. Sormani, MTTI, Lehman College, CUNY MAT631, Fall 2009, Project X BACKGROUND: General Axioms, Half planes, Isosceles Triangles, Perpendicular Lines, Con- gruent Triangles, Parallel Postulate and Similar Triangles. DEFN: A circle of radius R about a point P in a plane is the collection of all points, X, in the plane such that the distance from X to P is R. That is, C(P; R) = fX : d(X; P ) = Rg: Note that a circle is a well defined notion in any metric space. We say P is the center and R is the radius. If d(P; Q) < R then we say Q is an interior point of the circle, and if d(P; Q) > R then Q is an exterior point of the circle. DEFN: The diameter of a circle C(P; R) is a line segment AB such that A; B 2 C(P; R) and the center P 2 AB. The length AB is also called the diameter. THEOREM: The diameter of a circle C(P; R) has length 2R. PROOF: Complete this proof using the definition of a line segment and the betweenness axioms. DEFN: If A; B 2 C(P; R) but P2 = AB then AB is called a chord. THEOREM: A chord of a circle C(P; R) has length < 2R unless it is the diameter. PROOF: Complete this proof using axioms and the above theorem. DEFN: A line L is said to be a tangent line to a circle, if L \ C(P; R) is a single point, Q. The point Q is called the point of contact and L is said to be tangent to the circle at Q. -
2. the Tangent Line
2. The Tangent Line The tangent line to a circle at a point P on its circumference is the line perpendicular to the radius of the circle at P. In Figure 1, The line T is the tangent line which is Tangent Line perpendicular to the radius of the circle at the point P. T Figure 1: A Tangent Line to a Circle While the tangent line to a circle has the property that it is perpendicular to the radius at the point of tangency, it is not this property which generalizes to other curves. We shall make an observation about the tangent line to the circle which is carried over to other curves, and may be used as its defining property. Let us look at a specific example. Let the equation of the circle in Figure 1 be x22 + y = 25. We may easily determine the equation of the tangent line to this circle at the point P(3,4). First, we observe that the radius is a segment of the line passing through the origin (0, 0) and P(3,4), and its equation is (why?). Since the tangent line is perpendicular to this line, its slope is -3/4 and passes through P(3, 4), using the point-slope formula, its equation is found to be Let us compute y-values on both the tangent line and the circle for x-values near the point P(3, 4). Note that near P, we can solve for the y-value on the upper half of the circle which is found to be When x = 3.01, we find the y-value on the tangent line is y = -3/4(3.01) + 25/4 = 3.9925, while the corresponding value on the circle is (Note that the tangent line lie above the circle, so its y-value was expected to be a larger.) In Table 1, we indicate other corresponding values as we vary x near P. -
MATH 25B Professor: Bena Tshishiku Michele Tienni Lowell House
MATH 25B Professor: Bena Tshishiku Michele Tienni Lowell House Cambridge, MA 02138 [email protected] Please note that these notes are not official and they are not to be considered as a sub- stitute for your notes. Specifically, you should not cite these notes in any of the work submitted for the class (problem sets, exams). The author does not guarantee the accu- racy of the content of this document. If you find a typo (which will probably happen) feel free to email me. Contents 1. January 225 1.1. Functions5 1.2. Limits6 2. January 247 2.1. Theorems about limits7 2.2. Continuity8 3. January 26 10 3.1. Continuity theorems 10 4. January 29 – Notes by Kim 12 4.1. Least Upper Bound property (the secret sauce of R) 12 4.2. Proof of the intermediate value theorem 13 4.3. Proof of the boundedness theorem 13 5. January 31 – Notes by Natalia 14 5.1. Generalizing the boundedness theorem 14 5.2. Subsets of Rn 14 5.3. Compactness 15 6. February 2 16 6.1. Onion ring theorem 16 6.2. Proof of Theorem 6.5 17 6.3. Compactness of closed rectangles 17 6.4. Further applications of compactness 17 7. February 5 19 7.1. Derivatives 19 7.2. Computing derivatives 20 8. February 7 22 8.1. Chain rule 22 Date: April 25, 2018. 1 8.2. Meaning of f 0 23 9. February 9 25 9.1. Polynomial approximation 25 9.2. Derivative magic wands 26 9.3. Taylor’s Theorem 27 9.4. -
Continuous Functions, Smooth Functions and the Derivative C 2012 Yonatan Katznelson
ucsc supplementary notes ams/econ 11a Continuous Functions, Smooth Functions and the Derivative c 2012 Yonatan Katznelson 1. Continuous functions One of the things that economists like to do with mathematical models is to extrapolate the general behavior of an economic system, e.g., forecast future trends, from theoretical assumptions about the variables and functional relations involved. In other words, they would like to be able to tell what's going to happen next, based on what just happened; they would like to be able to make long term predictions; and they would like to be able to locate the extreme values of the functions they are studying, to name a few popular applications. Because of this, it is convenient to work with continuous functions. Definition 1. (i) The function y = f(x) is continuous at the point x0 if f(x0) is defined and (1.1) lim f(x) = f(x0): x!x0 (ii) The function f(x) is continuous in the interval (a; b) = fxja < x < bg, if f(x) is continuous at every point in that interval. Less formally, a function is continuous in the interval (a; b) if the graph of that function is a continuous (i.e., unbroken) line over that interval. Continuous functions are preferable to discontinuous functions for modeling economic behavior because continuous functions are more predictable. Imagine a function modeling the price of a stock over time. If that function were discontinuous at the point t0, then it would be impossible to use our knowledge of the function up to t0 to predict what will happen to the price of the stock after time t0. -
The Mean Value Theorem) – Be Able to Precisely State the Mean Value Theorem and Rolle’S Theorem
Math 220 { Test 3 Information The test will be given during your lecture period on Wednesday (April 27, 2016). No books, notes, scratch paper, calculators or other electronic devices are allowed. Bring a Student ID. It may be helpful to look at • http://www.math.illinois.edu/~murphyrf/teaching/M220-S2016/ { Volumes worksheet, quizzes 8, 9, 10, 11 and 12, and Daily Assignments for a summary of each lecture • https://compass2g.illinois.edu/ { Homework solutions • http://www.math.illinois.edu/~murphyrf/teaching/M220/ { Tests and quizzes in my previous courses • Section 3.10 (Linear Approximation and Differentials) { Be able to use a tangent line (or differentials) in order to approximate the value of a function near the point of tangency. • Section 4.2 (The Mean Value Theorem) { Be able to precisely state The Mean Value Theorem and Rolle's Theorem. { Be able to decide when functions satisfy the conditions of these theorems. If a function does satisfy the conditions, then be able to find the value of c guaranteed by the theorems. { Be able to use The Mean Value Theorem, Rolle's Theorem, or earlier important the- orems such as The Intermediate Value Theorem to prove some other fact. In the homework these often involved roots, solutions, x-intercepts, or intersection points. • Section 4.8 (Newton's Method) { Understand the graphical basis for Newton's Method (that is, use the point where the tangent line crosses the x-axis as your next estimate for a root of a function). { Be able to apply Newton's Method to approximate roots, solutions, x-intercepts, or intersection points. -
1101 Calculus I Lecture 2.1: the Tangent and Velocity Problems
Calculus Lecture 2.1: The Tangent and Velocity Problems Page 1 1101 Calculus I Lecture 2.1: The Tangent and Velocity Problems The Tangent Problem A good way to think of what the tangent line to a curve is that it is a straight line which approximates the curve well in the region where it touches the curve. A more precise definition will be developed later. Recall, straight lines have equations y = mx + b (slope m, y-intercept b), or, more useful in this case, y − y0 = m(x − x0) (slope m, and passes through the point (x0, y0)). Your text has a fairly simple example. I will do something more complex instead. Example Find the tangent line to the parabola y = −3x2 + 12x − 8 at the point P (3, 1). Our solution involves finding the equation of a straight line, which is y − y0 = m(x − x0). We already know the tangent line should touch the curve, so it will pass through the point P (3, 1). This means x0 = 3 and y0 = 1. We now need to determine the slope of the tangent line, m. But we need two points to determine the slope of a line, and we only know one. We only know that the tangent line passes through the point P (3, 1). We proceed by approximations. We choose a point on the parabola that is nearby (3,1) and use it to approximate the slope of the tangent line. Let’s draw a sketch. Choose a point close to P (3, 1), say Q(4, −8). -
A Brief Summary of Math 125 the Derivative of a Function F Is Another
A Brief Summary of Math 125 The derivative of a function f is another function f 0 defined by f(v) − f(x) f(x + h) − f(x) f 0(x) = lim or (equivalently) f 0(x) = lim v!x v − x h!0 h for each value of x in the domain of f for which the limit exists. The number f 0(c) represents the slope of the graph y = f(x) at the point (c; f(c)). It also represents the rate of change of y with respect to x when x is near c. This interpretation of the derivative leads to applications that involve related rates, that is, related quantities that change with time. An equation for the tangent line to the curve y = f(x) when x = c is y − f(c) = f 0(c)(x − c). The normal line to the curve is the line that is perpendicular to the tangent line. Using the definition of the derivative, it is possible to establish the following derivative formulas. Other useful techniques involve implicit differentiation and logarithmic differentiation. d d d 1 xr = rxr−1; r 6= 0 sin x = cos x arcsin x = p dx dx dx 1 − x2 d 1 d d 1 ln jxj = cos x = − sin x arccos x = −p dx x dx dx 1 − x2 d d d 1 ex = ex tan x = sec2 x arctan x = dx dx dx 1 + x2 d 1 d d 1 log jxj = ; a > 0 cot x = − csc2 x arccot x = − dx a (ln a)x dx dx 1 + x2 d d d 1 ax = (ln a) ax; a > 0 sec x = sec x tan x arcsec x = p dx dx dx jxj x2 − 1 d d 1 csc x = − csc x cot x arccsc x = − p dx dx jxj x2 − 1 d product rule: F (x)G(x) = F (x)G0(x) + G(x)F 0(x) dx d F (x) G(x)F 0(x) − F (x)G0(x) d quotient rule: = chain rule: F G(x) = F 0G(x) G0(x) dx G(x) (G(x))2 dx Mean Value Theorem: If f is continuous on [a; b] and differentiable on (a; b), then there exists a number f(b) − f(a) c in (a; b) such that f 0(c) = . -
Secant Lines TEACHER NOTES
TEACHER NOTES Secant Lines About the Lesson In this activity, students will observe the slopes of the secant and tangent line as a point on the function approaches the point of tangency. As a result, students will: • Determine the average rate of change for an interval. • Determine the average rate of change on a closed interval. • Approximate the instantaneous rate of change using the slope of the secant line. Tech Tips: Vocabulary • This activity includes screen • secant line captures taken from the TI-84 • tangent line Plus CE. It is also appropriate for use with the rest of the TI-84 Teacher Preparation and Notes Plus family. Slight variations to • Students are introduced to many initial calculus concepts in this these directions may be activity. Students develop the concept that the slope of the required if using other calculator tangent line representing the instantaneous rate of change of a models. function at a given value of x and that the instantaneous rate of • Watch for additional Tech Tips change of a function can be estimated by the slope of the secant throughout the activity for the line. This estimation gets better the closer point gets to point of specific technology you are tangency. using. (Note: This is only true if Y1(x) is differentiable at point P.) • Access free tutorials at http://education.ti.com/calculato Activity Materials rs/pd/US/Online- • Compatible TI Technologies: Learning/Tutorials • Any required calculator files can TI-84 Plus* be distributed to students via TI-84 Plus Silver Edition* handheld-to-handheld transfer. TI-84 Plus C Silver Edition TI-84 Plus CE Lesson Files: * with the latest operating system (2.55MP) featuring MathPrint TM functionality.