Interdisciplinary, Globally Leading Polymer Science and Engineering

Total Page:16

File Type:pdf, Size:1020Kb

Interdisciplinary, Globally Leading Polymer Science and Engineering Interdisciplinary, Globally-Leading Polymer Science and Engineering A National Science Foundation Sponsored Workshop co-sponsored by AFOSR, ARO, DOE/BES, NASA, NIH/NIBIB, NIST and ONR Workshop Chair: • Christopher K. Ober, Chair (Cornell University, Materials Science and Engineering) Co-organizers: • Stephen Z. D. Cheng (University of Akron, Polymer Science) • Paula T. Hammond (Massachusetts Institute of Technology, Chemical Engineering) • Murugappan Muthukumar (University of Massachusetts, Polymer Science and Engineering) • Elsa Reichmanis (Bell Laboratories, Alcatel-Lucent, Materials Research) • Karen L. Wooley (Washington University in St. Louis, Chemistry and Radiology). NSF Headquarters Arlington, Virginia August 15 - 17, 2007 3 List of Invited Participants Eric Amis (NIST) Stuart Rowan (Case Western) Kristi Anseth, (U Colorado at Boulder) Tim Swager (MIT) Lynden Archer (Cornell) Ned Thomas (MIT) Shenda Baker (Harvey Mudd) Dave Tirrell (Caltech) Anna Balazs (Pittsburgh) Marek Urban (Southern Mississippi) Zhenan Bao (Stanford) Zhen-Gang Wang (Caltech) Frank Bates (U Minnesota) Uli Wiesner (Cornell) Brian Benicewicz (RPI) Karen Winey (UPenn) Kurt Binder (U Mainz) Shu Yang (UPenn) William Brittain (Bausch & Lomb) Ken Carter (UMass Amherst) Federal Agency Participants Ralph Colby (Penn State) Monica Olvera de la Cruz Paul Armistead (ONR) (Northwestern) Kathryn Beers (OSTP) Joseph DeSimone (UNC Chapel Hill) David Brant (NSF) Barry Farmer (AFRL) Kenneth Caster (ARO) Richard Friend (Cambridge) John Connell (NASA) Mary Galvin (Air Products) Lori Henderson (NIH/NIBIB) Jan Genzer (North Carolina State) Richard Kelley (DOE/BES) Sharon Glotzer (U Michigan) Freddy Khoury (NSF) Peter Green (U Michigan) Douglas Kiserow (ARO) Barney Grubbs (Dartmouth) Charles Lee (AFOSR) Kathleen Havelka (Lubrizol Corp) Andrew Lovinger (NSF) Craig Hawker (UC Santa Barbara) Michael Meador (NASA) Anne Hiltner (Case Western) Tyrone Mitchell (NSF) Catherine Hunt (Rohm&Haas) Arthur Snow (ONR) Kristi Kiick (U Delaware) Chad Snyder (NIST) Sanat Kumar (Columbia) Robert Wellek (NSF) Christopher Li (Drexel ) Eric Lin (NIST) Student Participants Tim Lodge (U Minnesota) Lon Mathias (Southern Mississippi) Michelle Chavis (Cornell) Kris Matyjaszewski (Carnegie Mellon) Nelson Felix (Cornell) Jimmy Mays (U Tennessee Knoxville) Jodie Lutkenhaus (MIT) LaRuth McAfee (Case Western) Ryan Murphy (UMass Amherst) Scott Milner (Exxon Mobil) Renee Smith (MIT) George Newkome (U of Akron) Brooke Van Horn (U Washington in St. Christine Ortiz (MIT) Louis) Michael Owen (Dow Corning, retired) Bryan Van Horn (U of Akron) Rick Register (Princeton) Tom Russell (UMass Amherst) Rachel Segalman (UC Berkeley) Sam Stupp (Northwestern) Doug Robello (Kodak) 4 Preface The Workshop on Interdisciplinary, Globally-Leading Polymer Science and Engineering began with a phone call from Dr. Andrew Lovinger (Director of the Polymers Program at NSF) to discuss a follow-up to the 1997 Workshop on Macromolecular Science and Engineering (MMSE). The resulting 1997 report had a major international impact on new directions in polymer research. Given the importance of polymer science and engineering, it seemed timely to consider the many changes that have occurred since that last event. The purpose of the new workshop would be to explore emerging research opportunities and areas that are ripe for innovation in the field of polymer science and engineering over the next decade and to examine the critical issues of competitiveness, education, and diversity in the polymer community. As a result of this call, I was asked to chair the workshop and to assemble an organizing committee. Consulting with the polymer community via e-mail postings, the committee identified six topics for the workshop: Polymer Synthesis and New Polymeric Materials; Complex Polymer Systems; Modeling and Theory of Polymers; Processing and Assembly; Characterization; and Technology and Societal Applications of Polymers. We felt that these themes broadly reflected the key areas of polymer science and engineering and that important future advances in research and education will require contributions from or consideration of each area. We also decided that the workshop should reflect important technological areas with enormous potential for societal benefit and for this reason the plenary talks would be aimed at these key areas. It was thought that such a focus would help to guide the discussion of scientific and technical questions in the breakout sessions and lead to a stronger report. Each working group was instructed to consider for the report not only a specific science and technology area, but also to address issues related to competitiveness, diversity, and education. As in the prior workshop report, the content of the recommendations made by each discussion group varies; some emphasize research directions and others educational issues or funding procedures. What follows represents much thinking and hard work on the part of the workshop participants and co-organizers. Many thanks to everyone who took part in the workshop, including the sponsors from the funding agencies and in particular Dr. Lovinger (NSF), who catalyzed this effort. All the plenary speakers did a marvelous job of meeting our impossible demand to provide short but stimulating talks on a focused topic with plenty of time for discussion. I would also like to thank NSF Director Dr. Arden L. Bement for welcoming the workshop participants and Dr. Kathryn L. Beers (Assistant Director for Physical Sciences and Engineering, Office of Science and Technology Policy, Executive Office of the President) for her opening remarks. Another important contribution was made by the panel, moderated by Dr. Elsa Reichmanis, with Dr. Kathryn Beers (OSTP), Prof. Stephen Cheng (University of Akron), Dr. Mary Galvin (Air Products), Prof. Peter Green (University of Michigan, and immediate past President of the Materials Research Society), Prof. Anne Hiltner (Case Western Reserve University and Director of an NSF Science & Technology Center), and Dr. Catherine Hunt (Rohm & Haas, President of the American Chemical Society) who discussed the issues of education and competitiveness with respect to the scientific enterprise. I thank them for their thoughtful and helpful contributions. Of particular note, and I think representative of the importance of this workshop, was the presence of the current and past presidents of the American Chemical Society (Hunt and Reichmanis), the past president of the Materials Research Society (Green) and a representative of OSTP (Beers). 5 I especially want to thank my co-organizers Dean Stephen Z. D. Cheng, Prof. Paula T. Hammond, Prof. Murugappan Muthukumar, Dr. Elsa Reichmanis, and Prof. Karen L. Wooley, who began this effort many, many months before the workshop was held and who worked long hours on their sections of the report. I also want to acknowledge and thank the student participants in the workshop who brought a special freshness and excitement to the proceedings. I cannot thank all parties enough, since this report has taken considerable effort by many people. It is my personal hope that this document provides inspiration to those interested in research and education in polymers. Christopher Ober Ithaca, NY Dec. 27, 2007 6 Table of Contents List of Invited Participants...............................................................................................................................4 Preface ....................................................................................................................................5 Table of Contents ....................................................................................................................................7 Executive Summary ..................................................................................................................................10 Crosscutting Recommendations and Goals ............................................................................................11 Working Group Recommendations........................................................................................................13 Polymer Syntheses and New Polymeric Materials................................................................................13 Complex Polymer Systems ....................................................................................................................13 Processing and Assembly......................................................................................................................14 Characterization and Properties...........................................................................................................14 Theory and Simulations ........................................................................................................................15 Education ..................................................................................................................................15 Global competitiveness .........................................................................................................................16 Broadening Participation .....................................................................................................................16 Workshop Program ..................................................................................................................................17 Section 1: Technology and Societal Applications of Polymers.....................................................................19
Recommended publications
  • 1 Fundamentals of Polymer Chemistry
    1 Fundamentals of Polymer Chemistry H. Warson 1 THE CONCEPT OF A POLYMER 1.1 Historical introduction The differences between the properties of crystalline organic materials of low molecular weight and the more indefinable class of materials referred to by Graham in 1861 as ‘colloids’ has long engaged the attention of chemists. This class includes natural substances such as gum acacia, which in solution are unable to pass through a semi-permeable membrane. Rubber is also included among this class of material. The idea that the distinguishing feature of colloids was that they had a much higher molecular weight than crystalline substances came fairly slowly. Until the work of Raoult, who developed the cryoscopic method of estimating molecular weight, and Van’t Hoff, who enunciated the solution laws, it was difficult to estimate even approximately the polymeric state of materials. It also seems that in the nineteenth century there was little idea that a colloid could consist, not of a product of fixed molecular weight, but of molecules of a broad band of molecular weights with essentially the same repeat units in each. Vague ideas of partial valence unfortunately derived from inorganic chem- istry and a preoccupation with the idea of ring formation persisted until after 1920. In addition chemists did not realise that a process such as ozonisation virtually destroyed a polymer as such, and the molecular weight of the ozonide, for example of rubber, had no bearing on the original molecular weight. The theory that polymers are built up of chain formulae was vigorously advocated by Staudinger from 1920 onwards [1].
    [Show full text]
  • Polymer Processing and Manufacturing Engineer Nushores
    Polymer Processing and Manufacturing Engineer NuShores’ mission is to improve the quality of life for people globally while competing successfully by applying its licensed and internally developed advanced materials portfolio to the Biomaterials industry. NuShores has exclusive global license to patented bone and tissue regeneration technologies developed at University of Arkansas – Little Rock from over $12M in research. We are seeking a Polymer Processing and Manufacturing Engineer to Join our growing team to launch NuCress™ scaffold product family, our award-winning bone void filler line of medical device products. If working with a smart and creative team that designs and builds products that improve quality of life interests you, then consider a career with us. Job Type. Full-time professional employee. Reports To. The Polymer Process and Manufacturing Engineer will report to Chief Technical Officer, Chief Scientist or Product Manager. Salary. Competitive, with benefits. Job Overview. The Polymer Processing and Manufacturing Engineer will be the technical lead for new and existing processes that involve the integration of polymeric biomaterials to biological systems and products such as artificial bone and tissue medical devices. This role is responsible for concept development, equipment design and installation, vendor management, and process development and optimization for small to large-scale manufacturing readiness. A key focus for the Polymer Processing and Manufacturing Engineer is to lead process engineering to create and maintain a manufacturing line/facility. Additionally he/she will provide technical subject matter expertise in polymer structure-property relationships, catalyst, polymerization and to develop and maintain know-how and intellectual property within their relevant area of expertise to support regulatory and business objectives and sustain future growth.
    [Show full text]
  • Abstracts of Talks in Parallel Sessions
    CCP2014 XXVI IUPAP Conference on Computational Physics August 11-14; Boston, USA Abstracts / Parallel Sessions CONTENTS Monday, Parallel Sessions 1, 13:30-15:15 Materials Science and Nanoscience 1 ................................................................................................... 3 Soft Matter and Biological Physics 1 ..................................................................................................... 6 Fluid Dynamics 1 ................................................................................................................................. 10 Quantum Many-Body Physics 1 .......................................................................................................... 14 Monday, Parallel Sessions 2, 15:45-17:30 Soft Matter and Biological Physics 2 ................................................................................................... 16 Statistical Physics 1: Networks ............................................................................................................ 18 Fluid Dynamics 2 ................................................................................................................................. 20 Novel Computing Paradigms 1 ............................................................................................................ 24 Tuesday, Parallel Sessions 1, 13:30-15:15 Soft Matter and Biological Physics 3 ................................................................................................... 26 Statistical Physics 2: Jamming, Hard
    [Show full text]
  • Implementing NIR for Polymer Production Process Monitoring Dr
    Implementing NIR for Polymer Production Process Monitoring Dr. Hari Narayanan, Senior Product Manager – Spectroscopy, Metrohm USA Inc Introduction while at the bench or pilot plant level it can be used to Polymers are a very important class of organic materials, optimize reaction conditions. Finally, when used in a widely used in many fields due to their unique properties complete feedback-control-loop at the industrial reactor such as tensile strength and viscoelastic behavior under level, significant improvement in product quality can be deformation. With more stringent demands on the quality expected, as well as savings of non-renewable resources, of polymer products and pressure to reduce cost in energy, reactor and personnel time. Creating an effective production and processing, the need for fast, accurate and NIR implementation strategy depends on the type of reliable monitoring methods is greater than ever. polymerization process, the properties of interest, and measurement conditions. Analytical methods, which require time-consuming and intensive sample preparation, are difficult to implement Polymerization Processes effectively in a process or quality control environment, NIR spectroscopy can be used for bulk, solution, emulsion and waste precious time and materials. Efficient process and suspension polymerization monitoring, providing control demands a measurement technique which is information on copolymer composition and distribution, rapid, requires little or no sample preparation and minimal monomer conversion, molecular weight averages, average technical expertise. It should be reliable, rugged and easily particle sizes and more. automated. Bulk polymerization Near-infrared (NIR) spectroscopy meets those needs by In bulk polymerization, the reaction is carried out in the being both rapid and precise.
    [Show full text]
  • Origins of Life: Transition from Geochemistry to Biogeochemistry
    December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times.
    [Show full text]
  • The Chemistry of Professor Craig Jon Hawker Born on January 11, 1964 in Queensland, Australia
    The Chemistry of Professor Craig Jon Hawker Born on January 11, 1964 in Queensland, Australia Education University of Queensland, Australia. B.Sc. 1981-1984 Cambridge University, UK. Ph.D. 1985-1988 Professor Sir A.R. Battersby (Biosynthesis of Vitamin B12 – Model Studies) Cornell University, Postdoc 1988-1990 Professor J.M.J. Fréchet (dendrimer synthesis) Academic Appointments Queen Elizabeth II Research Fellow – University of Queensland. 1990-1993 Research Staff Member – IBM Almaden Research Center. 1993-2004 Professor of Materials, Chemistry, and Biochemistry – UCSB, 2004-2016 Clarke Professor – UCSB, 2013-Present Director, Dow Materials Institute – UCSB, 2013-Present Craig Jon Hawker Ph.D. Director, California Nanosystems Institute – UCSB, 2013-Present Research Interests: synthetic polymer chemistry, Mentored around 200 Graduate Students and Postdocs nanomaterials, dendrimer, Recipient of dozens of awards radical polymerization, Approximately 450 publications and 50 patents. biomaterials. Founder of Olaplex LLC and Tricida, Inc. The Chemistry of Professor Craig Jon Hawker - Outline I. Dendrimer Chemistry II. Nitroxide & Alkoxyamine Mediated “Living” Radical Polymerization III. “Living” Radical Polymerization by Light IV. Click Chemistry in Polymerizations and Bioapplications V. Industrial Success and Olaplex J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2719. Dendrimer Synthesis: Divergent Approach Reactive groups increases exponentially after each generation. Incomplete reaction at chain terminal lead to imperfections or failure sequences in the next generation. Large excess of reagents required in latter stages. Tomalia, D. A, et al. Polym. J. 1985, 17, 117. Mixture of inseparable multi-generation dendrimers. Tomalia, D. A, et al. Macromolecules 1986, 19, 2466. Dendrimer Synthesis: Convergent Approach Hawker, C. J.; Frechet, J. M. J. J.
    [Show full text]
  • Materials Science and Engineering 1
    Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program.
    [Show full text]
  • Cond-Mat.Soft
    Spatial correlations of mobility and immobility in a glassforming Lennard-Jones liquid Claudio Donati1, Sharon C. Glotzer1, Peter H. Poole2, Walter Kob3, and Steven J. Plimpton4 1 Polymers Division and Center for Theoretical and Computational Materials Science, NIST, Gaithersburg, Maryland, USA 20899 2Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada 3 Institut f¨ur Physik, Johannes Gutenberg Universit¨at, Staudinger Weg 7, D-55099 Mainz, Germany 4 Parallel Computational Sciences Department, Sandia National Laboratory, Albuquerque, NM 87185-1111 (February 1, 2008) Using extensive molecular dynamics simulations of an equilibrium, glass-forming Lennard-Jones mixture, we characterize in detail the local atomic motions. We show that spatial correlations exist among particles undergoing extremely large (“mobile”) or extremely small (“immobile”) displace- ments over a suitably chosen time interval. The immobile particles form the cores of relatively compact clusters, while the mobile particles move cooperatively and form quasi-one-dimensional, string-like clusters. The strength and length scale of the correlations between mobile particles are found to grow strongly with decreasing temperature, and the mean cluster size appears to diverge at the mode-coupling critical temperature. We show that these correlations in the particle displace- ments are related to equilibrium fluctuations in the local potential energy and local composition. PACS numbers: 02.70.Ns, 61.20.Lc, 61.43.Fs I. INTRODUCTION ment over some time) to subsets of extreme mobility or immobility, and (2) to establish connections between this The bulk dynamical properties of many cold, dense “dynamical heterogeneity” and local structure. liquids differ dramatically from what might be expected This paper is organized as follows.
    [Show full text]
  • Polymers: a Historical Perspective
    Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 242–250. ISSN 0035-9173/19/020242-09 Polymers: a historical perspective Robert Burford, FRSN Emeritus Professor, School of Chemical Engineering, UNSW Sydney Email: [email protected] Abstract This commissioned paper outlines the emergence of new forms of synthetics and plastics as our under- standing of polymer chemistry has advanced. Synopsis phenols and styrene are “polymerised” to olymers have been ubiquitous since form thermosets,1 including phenol for- simple gaseous molecules began to form maldehyde “Bakelite” thermosets, but are P 2 life-giving organic structures many millions also present in thermoplastics including of years ago. Today, we rely upon proteins polystyrene and related materials such as comprising twenty amino acids, as well as styrene acrylonitrile (SAN) and ABS.3 The DNA and RNA with many fewer nucleic manufacture of Bakelite is often viewed as acids. Similarly, many fibres and plants the birth of the synthetic polymer industry. comprise carbohydrate polymers: we and The enormous growth both in diversity and other animals use these and protein-based volume of thermoplastics is a feature of the polymers for our diet. Hence, organic earth’s 20th century, dismissively called the “plastics surface has an enormous diversity of natu- age.” Again, important but sometimes ser- rally occurring polymers, sometimes called endipitous discoveries are a feature of this macromolecules. period, but the associated large-scale produc- Today, these continue to feed and clothe tion introduced multinational corporations us, and much more, but the beginning of originating mainly in Europe, the US and man-made materials might be considered Japan.
    [Show full text]
  • Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter and Morphology Problems
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2012 Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter And Morphology Problems Nagarjuna Gavvalapalli University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Chemistry Commons Recommended Citation Gavvalapalli, Nagarjuna, "Breaking the Barriers of All-Polymer Solar Cells: Solving Electron Transporter And Morphology Problems" (2012). Open Access Dissertations. 608. https://doi.org/10.7275/xp7e-nb11 https://scholarworks.umass.edu/open_access_dissertations/608 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. BREAKING THE BARRIERS OF ALL-POLYMER SOLAR CELLS: SOLVING ELECTRON TRANSPORTER AND MORPHOLOGY PROBLEMS A Dissertation Presented by NAGARJUNA GAVVALAPALLI Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2012 Chemistry © Copyright by Nagarjuna Gavvalapalli 2012 All Rights Reserved BREAKING THE BARRIERS OF ALL-POLYMER SOLAR CELLS: SOLVING ELECTRON TRANSPORTER AND MORPHOLOGY PROBLEMS A Dissertation Presented by NAGARJUNA GAVVALAPALLI Approved as to style
    [Show full text]
  • Research Progress on Conducting Polymer-Based Biomedical Applications
    applied sciences Review Research Progress on Conducting Polymer-Based Biomedical Applications Yohan Park 1, Jaehan Jung 2,* and Mincheol Chang 3,4,5,* 1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; [email protected] 2 Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea 3 Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea 4 School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea 5 Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea * Correspondence: [email protected] (J.J.); [email protected] (M.C.); Tel.: +82-62-530-1771 (M.C.) Received: 23 February 2019; Accepted: 10 March 2019; Published: 14 March 2019 Abstract: Conducting polymers (CPs) have attracted significant attention in a variety of research fields, particularly in biomedical engineering, because of the ease in controlling their morphology, their high chemical and environmental stability, and their biocompatibility, as well as their unique optical and electrical properties. In particular, the electrical properties of CPs can be simply tuned over the full range from insulator to metal via a doping process, such as chemical, electrochemical, charge injection, and photo-doping. Over the past few decades, remarkable progress has been made in biomedical research including biosensors, tissue engineering, artificial muscles, and drug delivery, as CPs have been utilized as a key component in these fields. In this article, we review CPs from the perspective of biomedical engineering. Specifically, representative biomedical applications of CPs are briefly summarized: biosensors, tissue engineering, artificial muscles, and drug delivery.
    [Show full text]
  • POLYMER-PLASTICS TECHNOLOGY and ENGINEERING June 1999 Aims and Scope
    rJ 31 CY Ls dM F4 B cnY 0 cc z=8 OE 0 U POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING June 1999 Aims and Scope. The joumal Polymer-Plastics Technology and Engineering will provide a forum for the prompt publication of peer-reviewed, English lan- guage articles such as state-of-the-art reviews, full research papers, reports, notes/communications, and letters on all aspects of polymer and plastics tech- nology that are industrial, semi-commercial, and/or research oriented. Some ex- amples of the topics covered are specialty polymers (functional polymers, liq- uid crystalline polymers, conducting polymers, thermally stable polymers, and photoactive polymers), engineering polymers (polymer composites, polymer blends, fiber forming polymers, polymer membranes, pre-ceramics, and reac- tive processing), biomaterials (bio-polymers, biodegradable polymers, biomed- ical plastics), applications of polymers (construction plastics materials, elec- tronics and communications, leather and allied areas, surface coatings, packaging, and automobile), and other areas (non-solution based polymerization processes, biodegradable plastics, environmentally friendly polymers, recycling of plastics, advanced materials, polymer plastics degradation and stabilization, natural, synthetic and graft polymerskopolymers, macromolecular metal com- plexes, catalysts for producing ultra-narrow molecular weight distribution poly- mers, structure property relations, reactor design and catalyst technology for compositional control of polymers, advanced manufacturing techniques and equipment, plastics processing, testing and characterization, analytical tools for characterizing molecular properties and other timely subjects). Identification Statement. Polymer-Plastics Technology and Engineering is pub- lished five times a year in the months of February, April, June, September, and November by Marcel Dekker, Inc., P.O. Box 5005, 185 Cimarron Road, Monti- cello, NY 12701-5185.
    [Show full text]