Method for Linking Nucleic Acids in a Microsome from Endoplasmatic

Total Page:16

File Type:pdf, Size:1020Kb

Method for Linking Nucleic Acids in a Microsome from Endoplasmatic (19) TZZ ¥¥_T (11) EP 2 626 433 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) C12N 15/62 (2006.01) 12.04.2017 Bulletin 2017/15 C12N 15/13 (2006.01) C07K 16/00 (2006.01) (21) Application number: 12154726.9 (22) Date of filing: 09.02.2012 (54) Method for linking nucleic acids in a microsome from endoplasmatic reticuli Verfahren zum Koppeln von Nukleinsäuren in einem Mikrosom aus den endoplasmatischen Retikuli. Procédé pour lier les acides nucléiques dans un microsome provenant du réticulum endoplasmique (84) Designated Contracting States: • ANGENENDT P ET AL: "CELL-FREE PROTEIN AL AT BE BG CH CY CZ DE DK EE ES FI FR GB EXPRESSION AND FUNCTIONAL ASSAY IN GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO NANOWELL CHIP FORMAT", ANALYTICAL PL PT RO RS SE SI SK SM TR CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 76, no. 7, 1 April 2004 (2004-04-01), pages (43) Date of publication of application: 1844-1849, XP001196723, ISSN: 0003-2700, DOI: 14.08.2013 Bulletin 2013/33 10.1021/AC035114I • DATABASE MEDLINE [Online] US NATIONAL (73) Proprietors: LIBRARY OF MEDICINE (NLM), BETHESDA, MD, • Max-Planck-Gesellschaft zur Förderung US; December 2001 (2001-12), WANG M ET AL: der Wissenschaften e.V. "[Sequence analysis of the late region of human 80539 München (DE) papillomavirus type 6 genome].", XP002678283, • Alacris Theranostics GmbH Database accession no. NLM12901100 & 14195 Berlin (DE) ZHONGGUO YI XUE KE XUE YUAN XUE BAO. ACTA ACADEMIAE MEDICINAE SINICAE DEC (72) Inventors: 2001 LNKD- PUBMED:12901100, vol. 23, no. 6, • Warnatz, Hans-Jörg December 2001 (2001-12), pages 568-572, ISSN: 10245 Berlin (DE) 1000-503X • Glökler, Jörn • A. M. SMITH ET AL: "Highly-multiplexed barcode 10783 Berlin (DE) sequencing: an efficient method for parallel •Lehrach,Hans analysis of pooled samples", NUCLEIC ACIDS 14129 Berlin (DE) RESEARCH, vol. 38, no. 13, 11 May 2010 (2010-05-11), pages E142-E142, XP55017285, (74) Representative: CH Kilger Anwaltspartnerschaft ISSN: 0305-1048, DOI: 10.1093/nar/gkq368 mbB • BRAND KORBINIAN ET AL: "A novel A fwdarw G Fasanenstrasse 29 mutation in intron I of the hepatic lipase gene 10719 Berlin (DE) leads to alternative splicing resulting in enzyme deficiency",JOURNAL OF LIPIDRESEARCH, vol. (56) References cited: 37, no. 6, 1996, pages 1213-1223, XP002678284, EP-A2- 1 516 929 WO-A1-93/03151 ISSN: 0022-2275 WO-A1-2009/049889 WO-A2-2008/005675 • Palani Kumaresan ET AL: "High-Throughput WO-A2-2008/104184 WO-A2-2012/042374 Single Copy DNA Amplification and Cell Analysis in Engineered Nanoliter Droplets", Analytical Chemistry, vol. 80, no. 10, 1 May 2008 (2008-05-01), pages 3522-3529, XP055019414, ISSN: 0003-2700, DOI: 10.1021/ac800327d Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 626 433 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 626 433 B1 • SUMATHI RAMACHANDRAN ET AL: ’Evaluation of Intra-Host Variants of the Entire Hepatitis B Virus Genome’ PLOS ONE vol. 6, no. 9, E25232, 20 September 2011, pages 1 - 10, XP055099652 DOI: 10.1371/journal.pone.0025232 2 EP 2 626 433 B1 Description FIELD OF THE INVENTION 5 [0001] The present invention is in the field of molecular biology, diagnostics and more in particular also medicine. It is also in the field of biochemistry and molecular biology. BACKGROUND 10 [0002] It is difficult to determine the degree of variation on the level of single cells in a heterogeneous cell population for single-nucleotide polymorphisms (SNPs), variable sequence regions and splice variants. If bulk nucleic acids are isolated from cell populations, the information which nucleic acid variants were present in which combination in each individual cell is lost. [0003] This information can be important in cases where different nucleic acid variants act together in cells to determine 15 the specific biological behavior of the cells. For example, two mutations in two different signaling pathway molecules can result in malignancy of individual cancer cells, whereas other cells in the same tumor population that carry only one of these mutations are non-malignant. Other examples include the variable T cell receptor alpha and beta chain genes and transcripts, which act together in each T cell to produce T cell receptors that are variable among each T cell, and the immunoglobulin variable heavy chain (VH) and variable light chain (VL) genes and transcripts present in B cells, 20 which act together in each B cell to produce immunoglobulins that are variable among each B cell. [0004] Conventionally, combinations of nucleic acid variations can be analyzed after isolating single cells through simple titration, through cell picking or through fluorescence-activated cells sorting (FACS). Subsequently, the combi- nations of sequence variants can be analyzed after amplification of the nucleic acids of interest from each individual cell by polymerase chain reaction (PCR) or reverse transcription-PCR (RT-PCR). Analysis methods include nucleic acid 25 sequencing, hybridization on microarrays or quantitative real-time PCR (qPCR). In order to facilitate the analysis of the pairing of nucleic acid variations, different gene sequences or reverse-transcribed RNA sequences can be coupled by overlap PCR, which has been reported to be compatible with water-in-oil emulsions. A method for coupling variable regions of immunoglobulin genes by multiplex overlap-extension RT-PCR from isolated single cells has been described before (US7749697B2). Similar methods have been used by others to clone functional antibody variable domains in the 30 form of single-chain variable fragments (scFv) from natural repertoires such as hybridoma cells and spleen cells. [0005] Another method for coupling of two or more copies of non-contiguous DNA sequences from single cells of a heterogeneous population has been described before (Patent EP597960B1). Gene elements can be coupled inside single cells (in situ "in-cell PCR") within intact or substantially intact cells after cell fixing e.g. with formaldehyde and subsequent cell permeabilization to ensure access of PCR reagents to the gene elements (see WO2008/104184 & 35 Embleton MJ, Gorochov G, Jones PT, Winter G. In-cell PCR from mRNA: amplifying and linking the rearranged immu- noglobulin heavy and light chain V-genes within single cells. Nucleic Acids Res. 1992 Aug 11; 20(15):3831-7). Alterna- tively, cells and PCR reagents can be introduced into aqueous droplets and dispersed in an organic phase as an emulsion, wherein each droplet contains preferentially only one cell, such that gene elements from single cells are coupled together. [0006] The methods however are tedious. 40 [0007] The technical problem underlying the present invention is the provision of an enhanced method that facilitates the analysis of nucleic acid molecules in cases where these molecules act together in a cell. [0008] The technical problem is solved by the embodiments provided herein. The invention is defined by the claims. DEFINITIONS 45 [0009] Herein, a "sample" is a sample of bodily fluid, e.g. from a patient which is to be subjected to the herein disclosed method, for example to be diagnosed. Such samples may be from a human, a plant or an animal. Preferred samples include blood, serum, plasma, cerebrospinal fluid, urine, saliva, sputum, and pleural effusions. In addition, one of skill in the art would realize that some test samples would be more readily analyzed following a fractionation or purification 50 procedure, for example, separation of whole blood into serum or plasma components. [0010] Thus, the sample is selected from the group comprising a blood sample, a serum sample, a plasma sample, a cerebrospinal fluid sample, a saliva sample and a urine sample or an extract of any of the aforementioned samples. Preferably, the sample is a blood sample, most preferably a serum sample or a plasma sample. The sample may include tissue, a cell, a bacterium and/or a virus. 55 [0011] Herein "tissue" is a cellular organizational level intermediate between cells and a complete organism. A tissue is an ensemble of cells, not necessarily identical, but from the same origin, that together carry out a specific function (blood, liver etc.). [0012] Herein a "fraction thereof" or a "fraction from a sample" is any part of the sample such as a part of the tissue, 3 EP 2 626 433 B1 a part of the cell(s), a part of the bacteria and/or viruses that can be isolated in a reproducible manner and has been enriched for a specified subject manner with the tissue, cell(s), bacteria and/or viruses. Typical examples are exosomes, a cellular structure, a sub-cellular compartment, and/or organelle fractions. [0013] Herein "emulsions" are thermodynamically stable, isotropic liquid mixtures of oil, water and surfactant, frequently 5 in combination with a cosurfactant. The aqueous phase may contain salt(s) and/or other ingredients, and the "oil" may actually be a complex mixture of different hydrocarbons and olefins. In contrast to ordinary emulsions, microemulsions form upon simple mixing of the components and do not require the high shear conditions generally used in the formation of ordinary emulsions. The three basic types of microemulsions are direct (oil dispersed in water, o/w), reversed (water dispersed in oil, w/o) and bicontinuous. In ternary systems such as microemulsions, where two immiscible 10 phases (water and ’oil’) are present with a surfactant, the surfactant molecules may form a monolayer at the interface between the oil and water, with the hydrophobic tails of the surfactant molecules dissolved in the oil phase and the hydrophilic head groups in the aqueous phase.
Recommended publications
  • Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for in Vitro-In Vivo Extrapolation of Renal Metabolic Clearance S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/03/07/dmd.117.075242.DC1 1521-009X/45/5/556–568$25.00 https://doi.org/10.1124/dmd.117.075242 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:556–568, May 2017 Copyright ª 2017 by The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. Microsomal and Cytosolic Scaling Factors in Dog and Human Kidney Cortex and Application for In Vitro-In Vivo Extrapolation of Renal Metabolic Clearance s Daniel Scotcher, Sarah Billington, Jay Brown, Christopher R. Jones, Colin D. A. Brown, Amin Rostami-Hodjegan, and Aleksandra Galetin Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester (D.S., A.R.-H., A.G.); Newcastle University, Newcastle (S.B., C.D.A.B.); Biobank, Central Manchester University Hospitals NHS Foundation Trust, Manchester (J.B.); DMPK, Oncology iMed, AstraZeneca R&D, Alderley Park, Macclesfield (C.R.J.); and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom Received January 26, 2017; accepted February 27, 2017 Downloaded from ABSTRACT In vitro-in vivo extrapolation of drug metabolism data obtained in in dog liver (n = 17), using P450 content and G6Pase activity, enriched preparations of subcellular fractions rely on robust esti- respectively. No trends were noted between kidney, liver, and mates of physiologically relevant scaling factors for the prediction of intestinal scalars from the same animals. Species differences were clearance in vivo. The purpose of the current study was to measure evident, as human MPPGK and CPPGK were 26.2 and 53.3 mg/g in the microsomal and cytosolic protein per gram of kidney (MPPGK kidney cortex (n = 38), respectively.
    [Show full text]
  • Microsome Isolation Kit 3/15 (Catalog # K249-50; 50 Isolations; Store at -20°C) I
    FOR RESEARCH USE ONLY! Microsome Isolation Kit 3/15 (Catalog # K249-50; 50 isolations; Store at -20°C) I. Introduction: Microsomes are spherical vesicle-like structures formed from membrane fragments following homogenization and fractionation of eukaryotic cells. The microsomal subcellular fraction is prepared by differential centrifugation and consists primarily of membranes derived from the endoplasmic reticulum (ER) and Golgi apparatus. Microsomes isolated from liver tissue are used extensively in pharmaceutical development, toxicology and environmental science to study the metabolism of drugs, organic pollutants and other xenobiotic compounds by the cytochrome P450 monooxidase (CYP) enzyme superfamily. Microsomal preparations are an affordable and convenient in vitro system for assessing Phase I biotransformation reactions, as they contain all of the xenobiotic-metabolizing CYP isozymes and the membrane-bound flavoenzymes (such as NADPH P450-Reductase and cytochrome b5) required for function of the multicomponent P450 enzyme system. BioVision’s Microsome Isolation Kit enables preparation of active microsomes in about one hour, without the need for ultracentrifugation or sucrose gradient fractionation. The kit contains sufficient reagents for 50 isolation procedures, yielding microsomes from roughly 25 grams of tissue or cultured cells. II. Applications: Convenient and fast isolation of microsomal fraction from animal tissues Assessment of CYP-mediated drug metabolism and xenobiotic biotransformation Protein profiling of microsomal membrane proteins by SDS-PAGE and Western blot III. Sample Type: Mammalian glands and soft tissues such as liver, spleen, lungs etc. Cultured eukaryotic cell lines such as HepG2 human hepatic carcinoma cells IV. Kit Contents: Components K249-50 Cap Code Part Number Homogenization Buffer 80 ml NM K249-50-1 Storage Buffer 20 ml WM K249-50-2 Protease Inhibitor Cocktail 1 vial Red K249-50-3 V.
    [Show full text]
  • The Extraction of Intracisternal A-Particles from a Mouse Plasma-Cell Tumor1
    (CANCER RESEARCH 28, 2137-2148,October1968] The Extraction of Intracisternal A-Particles from a Mouse Plasma-Cell Tumor1 Edward 1.Kuff, Nelson A. Wivel, and Kira K. Lueders Laboratory of Biochemistry and Viral Leukemia and Lymphoma Branch, National Cancer lnstitute, NIH, Department of Health, Education, and Welfare, USPHS, Bethesda, Maryland ?A%114 SUMMARY 29, A. J. Dalton, M. Potter, and H. B. Andervont, personal communication). Plasma-cell tumors in BALB/c mice contain numerous in The other type, with which the present study deals, has been tracistemnal A-particles which remain localized within micro found in myeloma lines arising both in C3H mice (carrying somal vesicles when the tumor cells are disrupted by homoge the mammary tumor agent) and in mice of the agent-free nization. Liberation of the particles has been achieved by sub BALB/c strain. Measuring between 70 and 100 m@iin diameter, jecting microsome suspensions to mechanical shear in the pres these particles consist of two concentric shells surrounding a ence of an optimal concentration of Triton X-100. The particles relatively electron-lucent core and are characterized by an cx were concentrated by two cycles of sedimentation in sucrose clusive localization within the cistemnae of the endoplasmic potassium citrate solutions, pH 72, and finally banded iso reticulum of the tumor cells. They appear to form by budding pycnically in a sucrose density gradient containing dilute at the reticulum membranes and may be very numerous in th,@ potassium citrate. Most of the particles were recovered in a neoplastic plasma cells. Particles of similar morphology and density range of 1.20.-i .24 gm/cu cm.
    [Show full text]
  • Association of Newly Synthesized Islet Prohormones with Intracellular Membranes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Association of Newly Synthesized Islet Prohormones with Intracellular Membranes BRYAN D. NOE and MICHAEL N. MORAN Department ofAnatomy, Emory University of School of Medicine, Atlanta, Georgia 30322; The Marine Biological Laboratory, Woods Hole, Massachusetts 02543 ABSTRACT Results from recent studies have indicated that pancreatic islet prohormone converting enzymes are membrane-associated in islet microsomes and secretory granules. This observation, along with the demonstration that proglucagon is topologically segregated to the periphery within alpha cell secretory granules in several species, led us to investigate the possibility that newly synthesized islet prohormones might be associated with intracellular membranes. Anglerfish islets were incubated with [3 H]tryptophan and [ 14C]isoleucine for 3 h, then fractionated by differential and density gradient centrifugation. Microsome (M) and secretory granule (SG) fractions were halved, sedimented, and resuspended in the presence or absence of dissociative reagents. After membrane lysis by repeated freezing and thawing, the membranous and soluble components were separated by centrifugation . Extracts of supernatants and pellets were chromatographed by gel filtration ; fractions were collected and counted . A high proportion (77-79%) of the newly synthesized proinsulin and insulin was associated with both M and SG membranes. Most of the newly synthesized proglucagons and prosomatostatins (12,000-mol-wt precursors) were also membrane-associated (86-88%) in M and SG . In contrast, glucagon- and somatostatin-related peptides exhibited much less mem- brane-association in SG (24-31%) . Bacitracin, bovine serum albumin EDTA, RNAse, a-meth- ylmannoside, N-acetylglucosamine, and dithiodipyridine had no effect on prohormone asso- ciation with membranes.
    [Show full text]
  • Subproteomic Analysis of Soluble Proteins of the Microsomal Fraction from Two Leishmania Species
    Comparative Biochemistry and Physiology, Part D 1 (2006) 300–308 www.elsevier.com/locate/cbpd Subproteomic analysis of soluble proteins of the microsomal fraction from two Leishmania species Arthur H.C. de Oliveira a, Jerônimo C. Ruiz b, Angela K. Cruz b, ⁎ Lewis J. Greene b,c, José César Rosa b,c, Richard J. Ward a, a Departamento de Química, FFCLRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil b Departamento de Biologia Celular e Molecular e Celular e Bioagentes Patogênicos, FMRP-USP, Ribeirão Preto-SP, Brazil c Centro de Química de Proteínas, FMRP-USP, Ribeirão Preto-SP, Brazil Received 17 November 2005; received in revised form 26 May 2006; accepted 27 May 2006 Available online 3 June 2006 Abstract Parasites of the genus Leishmania are the causative agents of a range of clinical manifestations collectively known as Leishmaniasis, a disease that affects 12 million people worldwide. With the aim of identifying potential secreted protein targets for further characterization, we have applied two-dimensional gel electrophoresis and mass spectrometry methods to study the soluble protein content of the microsomal fraction from two Leishmania species, Leishmania L. major and L. L. amazonensis. MALDI-TOF peptide mass fingerprint analysis of 33 protein spots from L. L. amazonensis and 41 protein spots from L. L. major identified 14 proteins from each sample could be unambiguously assigned. These proteins include the nucleotide diphosphate kinase (NDKb), a calpain-like protease, a tryparedoxin peroxidase (TXNPx) and a small GTP-binding Rab1-protein, all of which have a potential functional involvement with secretion pathways and/or environmental responses of the parasite.
    [Show full text]
  • Development of a Selective and Stable Reactive Oxygen Species-Activated Anti-Acute Myeloid Leukemia Agent and Localizing DNA Aptamer
    Development of a selective and stable Reactive Oxygen Species-activated anti-Acute Myeloid Leukemia agent and localizing DNA Aptamer a dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY (Ph.D.) In the Department of Chemistry of McMicken College of Arts and Sciences by Kaylin Grace Earnest Bachelor of Science (B.S.), Chemical Science and Biochemistry, Xavier University, Cincinnati, OH Dissertation Advisor: Edward J. Merino, PhD Abstract Anticancer agents that modify DNA are a mainstay of chemotherapy regimens, but development of new classes of these agents has slowed because of the modifications of DNA in non-cancerous cells. This is what gives rise to serious side effects via poor selectivity. The Merino Lab has developed a pro-drug strategy to achieve specificity by translating the finding that levels of reactive oxygen species (ROS) are elevated in cancers, such as Acute Myeloid Leukemia (AML). This pro-drug approach allows cellular ROS to oxidize the pro-drug into its active form to achieve selective cytotoxicity. Our current lead agent (A100) is shown to have 10-fold selectivity between AML cells over normal CD34+ blood cells in vitro and showed some efficacy in the in vivo AML mouse model; however, it did not perform as highly as expected. It was hypothesized that the poor in vivo results were due to poor solubility and susceptibility to metabolic enzymes. This work started with computational analysis to determine what parts of the molecule were a target for metabolic enzymes. The first step taken to improve the molecule was to add polyethylene glycol (PEG) to the free phenol, increasing both its solubility and metabolic stability.
    [Show full text]
  • The Biology of Microsomes
    i7?1/olitiCuiiijmt~y's model of a human cell. 24 feet wide and l.(10(l,O(10.0O(ltimes larger than an actual cell logy of Mierosomes by James Bonner These are stirring times in the world of biologj. We It appears toddy that proteins are synthesized upon are beginning to find out a little bit about how pro- the surfaces of a particular kind of subcellular entity teins are synthesized by living creatures. -the microsoine. The microsome, in turn appears to In recent years we have come to know a great deal be made in the nucleus. The microsome is not only the about the structure of proteins-as, for example. that engine ut protein synthesis but also the device where- proteins consist of 'imino acids linked into long pep- by the coded information of the chromosome is car- tide chains. and that these chains are wound in heli- ried to and utilized by the protoplasm of the growing cal form. cell in the synthesis of its individual enzymes. Now we are beginning to understand why individ- Our new knowledge of protein synthesis has been ual proteins are different from one another, and why made possible by the development during the past 10 they have different enzymatic activities-even though years of methods for separating the cell into its coni- they are all composed of the same 20 amino acid ponent parts. These methods have, in part, been building blocks. We know that the indhidualit) of a Iexised at Caltech b) Samuel G. Wildman (now pro- protein resides in part in the sequence in which its fessor of botdny at UCLA ) ; George Laties, senior amino acid units are put together to form the protein researcli fellow at Caltecli; and others.
    [Show full text]
  • Electron Transport and Adenosine Triphosphatase Activities in Turnip
    rfr/rr TRANSPORT AÀID ÂDENOS,I.NE* TRIPHOSPHATASE ACTIVITIES IN TURNIP AND FRACTIONS A thesís submitted to the univetsitg of Adelaide as a teqtJitement for the degtee of DOCTOR OF PHILOSOPHY by ,toHN MTCHAEL RUNcrE, B.sc" (Hons) Botang Depattment universitg of Adelaìde November 7971 CONTENTS Page SUMMARY DECLARATION ACKNOVüLEDGEMENTS ABBREVTATIONS CHAPTER I . GENERALINTRODUCTION I-38 A" TNTRODUCTTON I B. DEFTNTTTON OF POST-MTTOCHONDRTAL FRACTTONS 2 C " ANTMAL MTCROSOT'IAT.' ANÐ SOLUBLE ACTTVÏTTES 4 7. AnimaT microsomal electlon transpott 4 (a) NADE-specific eJ-ectton transport 5 (b) NADPH-specific eJectron transport 8 (c) rnteraction between the t¡o chains 11 2" Animal soluble eJectron transport, L2 3" AnimaL micrgsomal and soTuble phosphatases L4 (a) Acid and aJ-kaline phosphatases L4 (b ) G Tucose-6- phosphatase I5 (c) Nucleoside phosphatases L6 4" Induced and deveTopmentaJ- ehanges ín ëhe anímaL L7 microsomâ.I and solubTe sgstems D" PLANT MTCROSOMAL AND SOLUBLE ACTTVTTTES 18 7" PLant mictosomaL electton ttans¡ott 18 (a) NADV-specific eTectron transport I9 (b) NADPV-specific eJ-ectron transport 20 2" Plant mictosomaT'and soLuble peroxidases 22 3. PJ-ant sofuble eþctton trans¡nrt 24 4" Plant microsomaL and soluble phosphatases 25 (a) ecid and aL:,kaline phosphatases 25 (b) Glucose-6- phosphatase 26 (c) Nucleoside phosphatases 26 5" Induced and deveTopmentaT changes in the plant 2A mictosomal and solubTe sgstems (a) lnduced phgsioTogical changes 29 (b) Induced RIVÀ and protein sgnthesis changes 32 (c) Induced changes in enzgme activities 34 (d) Induaed uLtrasttuctutal changes 36 EO THE PRESENT STUDY 37 7" General charactetization 37 2. Compatison with cawesponding animal f ractìons 38 3.
    [Show full text]
  • Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes
    Hindawi Publishing Corporation International Journal of Proteomics Volume 2012, Article ID 832569, 24 pages doi:10.1155/2012/832569 Research Article Proteomic and Bioinformatics Analyses of Mouse Liver Microsomes Fang Peng,1 Xianquan Zhan,1 Mao-Yu Li,1 Fan Fang,1 Guoqing Li,1, 2 Cui Li,1 Peng-Fei Zhang,1 and Zhuchu Chen1 1 Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China 2 Department of Biology, School of Pharmacy and Life Science, University of South China, Hengyang 421001, China Correspondence should be addressed to Xianquan Zhan, [email protected] and Zhuchu Chen, [email protected] Received 28 July 2011; Revised 9 November 2011; Accepted 20 November 2011 Academic Editor: Visith Thongboonkerd Copyright © 2012 Fang Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microsomes are derived mostly from endoplasmic reticulum and are an ideal target to investigate compound metabolism, membrane-bound enzyme functions, lipid-protein interactions, and drug-drug interactions. To better understand the molecular mechanisms of the liver and its diseases, mouse liver microsomes were isolated and enriched with differential centrifugation and sucrose gradient centrifugation, and microsome membrane proteins were further extracted from isolated microsomal fractions by the carbonate method. The enriched microsome proteins were arrayed with two-dimensional gel electrophoresis (2DE) and carbonate-extracted microsome membrane proteins with one-dimensional gel electrophoresis (1DE). A total of 183 2DE-arrayed proteins and 99 1DE-separated proteins were identified with tandem mass spectrometry.
    [Show full text]
  • The Role of Microsomes and Nuclear Envelope in the Metabolic Activation of Benzo(A)Pyrene Leading to Binding with Nuclear Macromolecules1
    [CANCER RESEARCH 37, 3427-3433, September 1977] The Role of Microsomes and Nuclear Envelope in the Metabolic Activation of Benzo(a)pyrene Leading to Binding with Nuclear Macromolecules1 John M. Pezzuto, Michael A. Lea, and Chung S. Yang2 Department of Biochemistry, College of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07013 SUMMARY spread atmospheric pollutant that has also been shown to be a component of cigarette smoke (7). Like many chemical In an attempt to resolve existing conflicting reports and carcinogens, unmetabolized BP does not covalently react further substantiate the roles of microsomes and the with macromolecules (10, 12). Metabolic activation results nuclear envelope in the metabolic activation of in binding with several cellular nucleophilic centers (13,14, benzo(a)pyrene (BP), factors affecting the binding of BP to 22, 33), and such binding will presumably lead to carcino- the DNA, RNA, histone, and nonhistone proteins of isolated genesis. Recent evidence suggests that metabolism by the nuclei were investigated. Examination of the spectra and cytochrome P-450-containing mixed-function oxidase catalytic properties of the mixed-function oxidase systems (AHH) in conjunction with epoxide hydrase results in the of nuclei and microsomes indicated that they are similar. formation of a diol-epoxide that is probably the ultimate Regard less of the BP concentration used, microsomes from carcinogen (4, 8, 34, 36, 38, 41). The relatively short lifetime control or 3-methylcholanthrene-treated rats increased the of this species (36, 38) and the existence of cytoplasmic binding of BP to the components of control nuclei.
    [Show full text]
  • Ab206995 Microsome Isolation Kit
    ab206995 Microsome isolation kit Instructions for use: For convenient and fast isolation of microsomal fractions from animal tissues. View kit datasheet: www.abcam.com/ab206995 (use www.abcam.cn/ab206995 for China, or www.abcam.co.jp/ab206995 for Japan) This product is for research use only and is not intended for diagnostic use. Version 4 Last Updated 31 January 2019 Table of Contents INTRODUCTION 1 1. BACKGROUND 1 2. ASSAY SUMMARY 2 GENERAL INFORMATION 3 3. PRECAUTIONS 3 4. STORAGE AND STABILITY 3 5. LIMITATIONS 3 6. MATERIALS SUPPLIED 4 7. MATERIALS REQUIRED, NOT SUPPLIED 4 8. TECHNICAL HINTS 4 ASSAY PREPARATION 6 9. REAGENT PREPARATION 6 10. SAMPLE PREPARATION 6 ASSAY PROCEDURE 8 11. ASSAY PROCEDURE 8 DATA ANALYSIS 9 12. TYPICAL DATA 9 RESOURCES 11 13. QUICK ASSAY PROCEDURE 11 14. NOTES 12 INTRODUCTION INTRODUCTION 1. BACKGROUND Abcam’s Microsome Isolation Kit (ab206995) provides a convenient and fast way to isolate microsomal fractions from animal tissues for downstream applications such as assessing CYP-mediated drug metabolism and xenobiotic biotransformation, and protein profiling of microsomal membrane proteins by SDS-PAGE and western blotting. Microsomes are spherical vesicle-like structures formed from membrane fragments following homogenization and fractionation of eukaryotic cells. The microsomal subcellular fraction is prepared by differential centrifugation and consists primarily of membranes derived from the endoplasmic reticulum (ER) and Golgi apparatus. Microsomes isolated from liver tissue are used extensively in pharmaceutical development, toxicology and environmental science to study the metabolism of drugs, organic pollutants and other xenobiotic compounds by the cytochrome P450 monooxidase (CYP) enzyme superfamily.
    [Show full text]
  • Studies on Proinsulin and Proglucagon Biosynthesis and Conversion at the Subcellular Level
    STUDIES ON PROINSULIN AND PROGLUCAGON BIOSYNTHESIS AND CONVERSION AT THE SUBCELLULAR LEVEL II. Distribution of Radioactive Peptide Hormones and Hormone Precursors in Subcellular Fractions after Pulse and Pulse-Chase Incubation of Islet Tissue Downloaded from http://rupress.org/jcb/article-pdf/74/2/589/1387667/589.pdf by guest on 02 October 2021 BRYAN D. NOE, CLAUDIA A. BASTE, and G. ERIC BAUER From the Departments of Anatomy, Emory University, Atlanta, Georgia, and University of Minnesota, Minneapolis, Minnesota, and The Marine Biological Laboratory, Woods Hole, Massachusetts ABSTRACT Anglerfish proinsulin and insulin were selectively labeled with [14C]isoleucine, while proglucagon, conversion intermediate(s), and glucagon were selectively labeled with [aH]tryptophan. After various periods of continuous or pulse-chase incubation, islet tissue was subjected to subcellular fractionation. Fraction extracts were analyzed by gel filtration for their content of precursor, conversion interme- diate(s), and product peptides. Of the seven subcellular fractions prepared after each incubation, only the microsome and secretory granule fractions yielded significant amounts of labeled insulin-related and glucagon-related peptides. After short-pulse incubations, levels of both [14C]proinsulin and [3H]proglucagon (mol wt -12,000) were highest in the microsome fraction. This fraction is therefore identified as the site of synthesis. With increasing duration of continuous incuba- tion or during chase incubation in the absence of isotopes, proinsulin, progluca- gon, and conversion intermediate(s) are transported to secretory granules. Con- version of proinsulin to insulin and proglucagon to a -4,900 mol wt conversion intermediate and 3,500 mol wt glucagon occurs in the secretory granules. Con- verting activity also was observed in the microsome fraction.
    [Show full text]