JWL 330: Principles of Biodiversity Conservation 1.1.1. Purpose of the Course This Course Unit Is Designed to Provide the Stude

Total Page:16

File Type:pdf, Size:1020Kb

JWL 330: Principles of Biodiversity Conservation 1.1.1. Purpose of the Course This Course Unit Is Designed to Provide the Stude JWL 330: Principles of Biodiversity Conservation 1.1.1. Purpose of the Course This course unit is designed to provide the student with knowledge of basic concepts of biodiversity conservation 1.1.2. Expected Learning Outcomes At the end of the course the learner should be able to: 1. Identify the variety of biological resources in relation to their various ecological settings including below and above ground. 2. Describe ecological functions and processes determining biodiversity. 3. Identify biodiversity challenges and design simple conservation solutions. 1.1.3. Course Content Concepts and definitions of biodiversity. Descriptions of biological diversity; genes, species, ecosystems. Distribution of biodiversity. Biodiversity and balance of Nature. Biological resources; water, soil, wildlife, forests, fisheries, and rangelands. Conservation versus preservation versus protection. Biodiversity assessment. Benefits of Biodiversity. Threats and impacts of biodiversity. Conservation and management of biodiversity. Biotechnology in biodiversity. The institutional framework on biodiversity conservation and management (Policy, legal & administration arrangements). Conventions on biodiversity conservation and management. 1.1.4. Mode of Delivery Lectures, practicals, open learning, distance learning, e-learning, class presentations, independent studies, and field training sites. 1.1.5. Instructional Materials and/or Equipment Study manuals, course books, reference books, journals, reports and case studies, computers, LCD projectors, white and chalk boards, board markers, video clips and internet resources. 1.1.6. Course Assessment Continuous assessment tests, assignments, reports, practical and written examinations. 2.26.7 Core Reading and Recommended Reference Materials John M. Fryxell, Anthony R.E. Sinclair, & Graeme Caughley. 2014. Wildlife Ecology, Conservation, and Management. Wiley Blackwell. 508pp Krishnamurthy, K. V. 2003. Textbook of Biodiversity. Science Publishers Page 1 of 58 Kumar, U., & Asija, M. J. 2007. Biodiversity: Principles and Conservation. Agrobios (India) Norris K, Pain DJ. 2002. Conserving bird biodiversity: General principles and their applications, 1st Edition. Cambridge University Press. Pp 352. Paul R. Krausman & James W. Cain. 2013. Wildlife Management and Conservation. Contemporary principles and practices. JHU Press 360 pp. Singh M. P. 2009. Biodiversity APH Publishing Corporation. New Delhi. Western, D. et al. 2015. Kenya’s Natural Capital: A biodiversity Atlas. Ministry of Environment, Natural Resources, and Regional Development, Authorities, Kenya. 124 pages. 1.1.7. Journals and E-Resources 1. Conservation Biology 2. Biodiversity Conservation 3. Biodiversity and Conservation 4. Biological Conservation Journal 5. International Journal of Biodiversity 6. Biodiversity Informatics. 7. Endangered Species Research. Page 2 of 58 COURSE OVERVIEW Biodiversity is the variety of different forms of life on earth, including the different plants, animals, micro-organisms, the genes they contain and the ecosystem they form. It refers to genetic variation, ecosystem variation, species variation (number of species) within an area, biome or planet. Relative to the range of habitats, biotic communities and ecological processes in the biosphere, biodiversity is vital in a number of ways including promoting the aesthetic value of the natural environment, contribution to our material well-being through utilitarian values by providing food, fodder, fuel, timber and medicine and . Biodiversity is the life support system. Organisms depend on it for the air to breathe, the food to eat, and the water to drink. Wetlands filter pollutants from water, trees and plants reduce global warming by absorbing carbon, and bacteria and fungi break down organic material and fertilize the soil. It has been empirically shown that native species richness is linked to the health of ecosystems, as is the quality of life for humans. The ecosystem services of biodiversity is maintained through formation and protection of soil, conservation and purification of water, maintaining hydrological cycles, regulation of biochemical cycles, absorption and breakdown of pollutants and waste materials through decomposition, determination and regulation of the natural world climate. Despite the benefits from biodiversity, today’s threats to species and ecosystems are increasing day by day with alarming rate and virtually all of them are caused by human mismanagement of biological resources often stimulated by imprudent economic policies, pollution and faulty institutions in-addition to climate change. To ensure intra and intergenerational equity, it is important to conserve biodiversity. Some of the existing measures of biodiversity conservation include; reforestation, zoological gardens, botanical gardens, national parks, biosphere reserves, germplasm banks and adoption of breeding techniques, tissue culture techniques, social forestry to minimize stress on the exploitation of forest resources. Page 3 of 58 DEFINITIONS OF BIODIVERSITY As defined by the Convention on Biological Diversity (CBD), Biodiversity also known as biological diversity is “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species, and of ecosystems” [Convention on Biological Diversity Article 2]. The totality of the inherited variation of all forms of life across all levels of variation, from ecosystem to species to gene. Edward O. Wilson Biodiversity Can Be Classified Under Three Levels (Types) 1. Species diversity 2. Genetic diversity 3. Ecosystem or ecological diversity. Species diversity Species diversity refers to biodiversity at the most basic level and is the ‘variety and abundance of different types of individuals of a species in a given area. Species is a basic unit of classification and is defined as a group of similar organisms that interbreed with one another and produce viable offspring. These may include bacteria, viruses, fungi, plants (algae, bryophytes, pteridophytes, gymnosperms, angiosperms) and animals (unicellular protozoans, arthropods, mollusks, fish, herps and mammals). The tropical areas support more diverse plant and animal communities than other areas. The regions that are rich in species diversity are called hotspots of biodiversity. A biodiversity hotspot is a region containing an exceptional concentration of endemic species. These hot spots support nearly 60% of the world’s plant, bird, mammal, reptile, and amphibian species. Biodiversity hotspots in East Africa Page 4 of 58 Genetic diversity Genetic diversity refers to the variation within and between populations range in the heritable genetic resources of the organisms. Every individual member of a plant or animal species differs from other individuals in its genetic constitution. Genetic variation enables both natural evolutionary change and artificial selective breeding to occur. The term ‘gene pool’ has been used to indicate the genetic diversity in the different species. The genetic variability is essential for healthy breeding population. The reduction in genetic variability among breeding individuals leads to inbreeding which in turns can lead to extinction of species. Ecosystem or ecological diversity An ecosystem is a collection of living components, flora, fauna and microorganisms and non- living components, like climate, matter and energy that are connected by energy flow. Ecosystem diversity can be described for a specific geographical region, or a political entity such as a country, county or region. Ecosystem diversity is often evaluated through measures of the diversity of the component species. This may involve assessment of the relative abundance of different species as well as consideration of the types of species. Page 5 of 58 A population is all of the individuals of the same species within an ecological community. African Elephant Hippopotamus Common Zebra Oryx Rothschild's Giraffe Nile crocodile Eastern Bullfrog Blue Napped mouse birds Great White Pelicans Cyperus Papyrus Page 6 of 58 Community: The assemblage of interacting populations (dynamics of species populations) that inhabit the same area (how these populations interact with the environment). Ecosystem: Comprised of one or more communities and the abiotic environment within an area. Different groups of populations may not be located in the same area but interact at certain times throughout the year. If this group of populations are the same species and can still interbreed, they are a meta-population. Individuals within a metapopulation may migrate from one population to the other, which can help stabilize the size of the overall population. Page 7 of 58 KENYA’S BIOTIC DIVERSITY About 50-100 million species of plants, animals and micro-organisms exists in the world. Out of these, about 1.4 million species have been described. Kenya is endowed with an enormous and immense animal biotic capital. Kenya is a mega bio- diverse country and has one of the richest fauna diversity in the world, with around 30,000 species of animal species and 7,000 species of plants have so far been recorded, along with at least 2000 fungi and bacteria presently listed. Kenya’s known fauna biodiversity assets include 25,000 invertebrates (21,575 of which are insects), 1,100 birds, 315 mammals (2/3 of these are small mammals), 191 reptiles, 206 freshwater fish, 692 marine
Recommended publications
  • Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula
    Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula By Daniel Portik A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Dr. Jimmy A. McGuire, Chair Dr. Rauri Bowie Dr. David Blackburn Dr. Rosemary Gillespie Fall 2015 Abstract Diversification of Afrobatrachian Frogs and the Herpetofauna of the Arabian Peninsula by Daniel Portik Doctor of Philosophy in Biology University of California, Berkeley Dr. Jimmy A. McGuire, Chair The identification of biotic and abiotic factors that promote the diversification of clades across Africa and the Arabian Peninsula remains a difficult challenge. A variety of ecological and evolutionary processes can be driving such patterns, and clade-specific traits may also play a role in the evolution of these groups. Comparative evolutionary studies of particular clades, relying on a phylogenetic framework, can be used to investigate many of these topics. Beyond these mechanisms there are abiotic factors, such as geological events, that can drive vicariance and dispersal events for large sets of taxa. The investigation of historical biogeography in a comparative phylogenetic framework can be used to detect such patterns. My dissertation explores these topics using reptiles and amphibians as study systems, and I rely on the generation of molecular sequence data, phylogenetics, and the use of comparative phylogenetic methods to address a variety of questions. I provide the abstract for each chapter below. Chapter 1: The reproductive modes of anurans (frogs and toads) are the most diverse among all the terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades.
    [Show full text]
  • A Molecular Phylogeny of Equatorial African Lacertidae, with the Description of a New Genus and Species from Eastern Democratic Republic of the Congo
    Zoological Journal of the Linnean Society, 2011, 163, 913–942. With 7 figures A molecular phylogeny of Equatorial African Lacertidae, with the description of a new genus and species from eastern Democratic Republic of the Congo ELI GREENBAUM1*, CESAR O. VILLANUEVA1, CHIFUNDERA KUSAMBA2, MWENEBATU M. ARISTOTE3 and WILLIAM R. BRANCH4,5 1Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA 2Laboratoire d’Herpétologie, Département de Biologie, Centre de Recherche en Sciences Naturelles, Lwiro, République Démocratique du Congo 3Institut Superieur d’Ecologie pour la Conservation de la Nature, Katana Campus, Sud Kivu, République Démocratique du Congo 4Bayworld, P.O. Box 13147, Humewood 6013, South Africa 5Research Associate, Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa Received 25 July 2010; revised 21 November 2010; accepted for publication 18 January 2011 Currently, four species of the lacertid lizard genus Adolfus are known from Central and East Africa. We sequenced up to 2825 bp of two mitochondrial [16S and cytochrome b (cyt b)] and two nuclear [(c-mos (oocyte maturation factor) and RAG1 (recombination activating gene 1)] genes from 41 samples of Adolfus (representing every species), two species each of Gastropholis and Holaspis, and in separate analyses combined these data with GenBank sequences of all other Eremiadini genera and four Lacertini outgroups. Data from DNA sequences were analysed with maximum parsimony (PAUP), maximum-likelihood (RAxML) and Bayesian inference (MrBayes) criteria. Results demonstrated that Adolfus is not monophyletic: Adolfus africanus (type species), Adolfus alleni, and Adolfus jacksoni are sister taxa, whereas Adolfus vauereselli and a new species from the Itombwe Plateau of Democratic Republic of the Congo are in a separate lineage.
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Kenya Soe Ch4 A
    PART 2 STATE OF THE ENVIRONMENT 61 CHAPTER BIODIVERSITY4 Introduction The Convention on Biological Diversity (CBD) defi nes biodiversity as Kenya’s rich biodiversity Lead Authors ‘the variability among living organisms from all sources including, can be attributed to a number Ali A. Ali and Monday S. Businge among others, terrestrial, marine and other aquatic ecosystems and of factors, including a long Contributing Authors S. M. Mutune, Jane Kibwage, Ivy Achieng, the ecological complexes of which they are part [and] includes diversity evolutionary history, variable Godfrey Mwangi, David Ongare, Fred Baraza, within species, between species and of ecosystems.’ Biodiversity climatic conditions, and diverse Teresa Muthui, Lawrence M. Ndiga, Nick Mugi therefore comprises genetic and species diversity of animals and plants habitat types and ecosystems. Reviewer as well as ecosystem diversity. Kenya is endowed with an enormous The major biodiversity Nathan Gichuki diversity of ecosystems and wildlife species which live in the terrestrial, concentration sites fall within aquatic and aerial environment. These biological resources are the existing protected areas fundamental to national prosperity as a source of food, medicines, network (national parks, reserves and sanctuaries) which are mostly energy, shelter, employment and foreign exchange. For instance, managed by the Kenya Wildlife Service (KWS). However, over 70 percent agricultural productivity and development are dependent on the of the national biodiversity occurs outside the protected areas. availability of a wide variety of plant and animal genetic resources and In spite of its immense biotic capital, Kenya experiences severe on the existence of functional ecological systems, especially those that ecological and socio-economic problems.
    [Show full text]
  • Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
    Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago.
    [Show full text]
  • Environmental and Social Impact Assessment Seismic Reflection Survey and Well Drilling, Umkhanyakude District Municipality, Northern Kzn
    SFG1897 v2 Public Disclosure Authorized ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT SEISMIC REFLECTION SURVEY AND WELL DRILLING, UMKHANYAKUDE DISTRICT MUNICIPALITY, NORTHERN KZN Public Disclosure Authorized Client: SANEDI–SACCCS Consultant: G.A. Botha (PhD, Pr.Sci.Nat) in association with specialist consultants; Brousse-James and Associates, WetRest, Jeffares & Green, S. Allan Council for Geoscience, P.O. Box 900, Pietermaritzburg, 3200 Council for Geoscience report: 2016-0009 June, 2016 Copyright © Council for Geoscience, 2016 Public Disclosure Authorized Public Disclosure Authorized Table of Contents Executive Summary ..................................................................................................................................... vii 1 Introduction ........................................................................................................................................... 1 2 Project description ................................................................................................................................ 4 2.1 Location and regional context ....................................................................................................... 5 2.2 2D seismic reflection survey and well drilling; project description and technical aspects ............ 7 2.2.1 Seismic survey (vibroseis) process ....................................................................................... 7 2.2.2 Well drilling ...........................................................................................................................
    [Show full text]
  • Amphibian Diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa
    Amphibian diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa FM Phaka orcid.org/0000-0003-1833-3156 Previous qualification (not compuLsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Science at the North-West University Supervisor: Prof LH du Preez Co-supervisor: Dr DJD Kruger Assistant Supervisor: Mr EC Netherlands Graduation May 2018 25985469 Declaration I, Fortunate Mafeta Phaka, declare that this work is my own, that all sources used or quoted have been indicated and acknowledged by means of complete references, and that this thesis was not previously submitted by me or any other person for degree purposes at this or any other university. Signature Date 18/11/2017 i i AcknowLedgements A great debt of gratitude is owed to my study supervisor L.H. Du Preez, co-supervisor D.J.D. Kruger, and assistant supervisor E.N. Netherlands for guidance and encouragement to focus on my strengths. To my mentors, D. Kotze and L. De Jager, and the Phaka clan, your faith in me has kept me going through all these years. Thank you to African Amphibian Conservation Research Group and Youth 4 African Wildlife for accepting me as part of your family. Members of the Zululand community are thanked for their enthusiasm and assistance towards this study. Fieldwork and running expenses for this research were funded by the South African National Biodiversity Institute’s (SANBI) Foundational Biodiversity Information Programme (Grant UID 98144). Financial assistance for studying towards this degree was provided by SANBI’s Foundational Biodiversity Information Programme (National Research Foundation Grant- Holder Linked Bursary for Grant UID 98144), and the North-West University (NWU Masters Progress Bursary, and NWU Masters Bursary).
    [Show full text]
  • Taxonomy of the Super-Cryptic Hyperolius Nasutus Group of Long Reed Frogs of Africa (Anura: Hyperoliidae), with Descriptions of Six New Species
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3620 (3): 301–350 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3620.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:03B8D237-7C7D-4E79-A020-4305ACF119B7 Taxonomy of the super-cryptic Hyperolius nasutus group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species A. CHANNING1,11, A. HILLERS2,3, S. LÖTTERS4, M.-O. RÖDEL2, S. SCHICK4, W. CONRADIE5, D. RÖDDER6, V. M ERC URIO 2, P. WAGNER7, J.M. DEHLING8, L.H. DU PREEZ9, J. KIELGAST10 & M. BURGER1 1Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa 2Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Herpetology, Invalidenstr. 43, 10115 Berlin, Germany 3Across the River – a Transboundary Peace Park for Sierra Leone and Liberia, The Royal Society for the Protection of Birds, 164 Dama Road, Kenema, Sierra Leone 4Trier University, Biogeography Department, Universitätsring 15, 54295 Trier, Germany 5Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood, Port Elizabeth 6013, South Africa 6Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany 7Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA 8Institut für Integrierte Naturwissenschaften, Abteilung Biologie, Universität Koblenz-Landau, Universitätsstraße 1, 56070 Koblenz, Germany 9School of Environmental; Sciences and Development, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa 10Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark 11Corresponding author.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Kenya SAFARI OVERVIEW
    CHEESEMANS’ ECOLOGY SAFARIS 555 North Santa Cruz Avenue Los Gatos, CA 95030-4336 USA (800) 527-5330 (408) 741-5330 [email protected] cheesemans.com Kenya Migration and Predation August 1 to 17, 2021 Wildebeest Herd © Cheesemans’ Ecology Safaris SAFARI OVERVIEW Timed at the peak of the Great Migration into Kenya’s Masai Mara National Reserve, you’ll search for huge wildebeest and zebra herds making river crossings while optimistic predators wait to attack. Experience being in the midst of and photographing the incredible predator/prey action. Observe the abundance ofarid- adapted wildlife in the Great Rift Valley’s Nakuru National Park, Ol Pejeta Conservancy, and Samburu and Buffalo Springs National Reserves with more opportunities to see Africa’s Big Five: lion, leopard, elephant, buffalo, and rhinoceros. Explore habitats from woodlands to arid plains, rivers, and lakes, and take in sweeping views of highland and lowland landscapes. Experience top-quality lodging, knowledgeable guides, and a safari adventure that Cheesemans’ has perfected over 30 years visiting Kenya. HIGHLIGHTS • Engross yourself in huge herds of wildebeest and zebras during a full week in Kenya’s Masai Mara. • Explore the Rift Valley landscapes of Nakuru National Park with flamingos and Rothchild’s giraffes. • Travel to northern Kenya to arid lands in the rain shadow of Mount Kenya. • Encounter species not found elsewhere, including endangered Grevy’s zebras, gerenuk, beisa oryx and beautiful birds specialized for arid lands along the Uaso Nyiro River. LEADERS: Grephus Ingati, Titus Imboma, Tom Wairegi, and Zach Waithaka. DAYS: 17, including estimated travel time. Cheesemans’ Ecology Safaris Page 1 of 9 Updated: October 2020 GROUP SIZE: 15.
    [Show full text]
  • The IUCN Red List of Threatened Speciestm
    Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership.
    [Show full text]
  • Ecology and Calling Behaviour of the Anurans of Northern Zululand, South Africa
    Ecology and calling behaviour of the anurans of northern Zululand, South Africa WW Pretorius orcid.org 0000-0003-3769-3579 Dissertation submitted in fulfilment of the requirements for the degree Masters of Science in Environmental Sciences at the North-West University Supervisor: Prof LH du Preez Co-supervisor: Dr DJD Kruger Co-supervisor: Mr EC Netherlands Grauduation May 2019 23508159 DECLARATION I, Willem Wentzel Pretorius, declare that this dissertation is my own unaided work, except when otherwise acknowledged in the text. This dissertation is submitted for the degree of Masters of Science in Environmental Sciences to the North-West University, Potchefstroom Campus. It has not been submitted for any degree or examination at any other university. Willem Wentzel Pretorius 20 November 2018 i PREFACE This project would not have been completed without the guidance, support and help of a number of people. I would like to dedicate this project to all the participants who stood by me in the process of completing this dissertation: Firstly, Professor Louis du Preez, who made the project possible. Without his passion, dedication and kindness, the project would not have come off the ground. Much appreciation also goes to my two co- Supervisors, Drs Donnavan Kruger and Ed Netherlands. Donnavan, a silent and wise counterpart, instructed me comprehensively about the worlds of acoustics and statistics. Ed, the energetic and enthusiastic one, kept me smiling and set high standards, motivating me to be more than meets the eye. Without these three people, this dissertation would not havecome about, and I want to thank these persons again for their guidance, support, laughter and dedication.
    [Show full text]