Theory of Groups of Finite Order and the Burnside Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Abelian Subgroups of Finitely Generated Metabelian
J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/. -
Discrete and Profinite Groups Acting on Regular Rooted Trees
Discrete and Profinite Groups Acting on Regular Rooted Trees Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades “Doctor rerum naturalium” der Georg-August-Universit¨at G¨ottingen vorgelegt von Olivier Siegenthaler aus Lausanne G¨ottingen, den 31. August 2009 Referent: Prof. Dr. Laurent Bartholdi Korreferent: Prof. Dr. Thomas Schick Tag der m¨undlichen Pr¨ufung: den 28. September 2009 Contents Introduction 1 1 Foundations 5 1.1 Definition of Aut X∗ and ...................... 5 A∗ 1.2 ZariskiTopology ............................ 7 1.3 Actions of X∗ .............................. 8 1.4 Self-SimilarityandBranching . 9 1.5 Decompositions and Generators of Aut X∗ and ......... 11 A∗ 1.6 The Permutation Modules k X and k X ............ 13 { } {{ }} 1.7 Subgroups of Aut X∗ .......................... 14 1.8 RegularBranchGroups . 16 1.9 Self-Similarity and Branching Simultaneously . 18 1.10Questions ................................ 19 ∗ 2 The Special Case Autp X 23 2.1 Definition ................................ 23 ∗ 2.2 Subgroups of Autp X ......................... 24 2.3 NiceGeneratingSets. 26 2.4 Uniseriality ............................... 28 2.5 Signature and Maximal Subgroups . 30 2.6 Torsion-FreeGroups . 31 2.7 Some Specific Classes of Automorphisms . 32 2.8 TorsionGroups ............................. 34 3 Wreath Product of Affine Group Schemes 37 3.1 AffineSchemes ............................. 38 3.2 ExponentialObjects . 40 3.3 Some Hopf Algebra Constructions . 43 3.4 Group Schemes Corresponding to Aut X∗ .............. 45 3.5 Iterated Wreath Product of the Frobenius Kernel . 46 i Contents 4 Central Series and Automorphism Towers 49 4.1 Notation................................. 49 4.2 CentralSeries.............................. 51 4.3 Automorphism and Normalizer Towers . 54 5 Hausdorff Dimension 57 5.1 Definition ................................ 57 5.2 Layers .................................. 58 5.3 ComputingDimensions . -
Abstract Quotients of Profinite Groups, After Nikolov and Segal
ABSTRACT QUOTIENTS OF PROFINITE GROUPS, AFTER NIKOLOV AND SEGAL BENJAMIN KLOPSCH Abstract. In this expanded account of a talk given at the Oberwolfach Ar- beitsgemeinschaft “Totally Disconnected Groups”, October 2014, we discuss results of Nikolay Nikolov and Dan Segal on abstract quotients of compact Hausdorff topological groups, paying special attention to the class of finitely generated profinite groups. Our primary source is [17]. Sidestepping all difficult and technical proofs, we present a selection of accessible arguments to illuminate key ideas in the subject. 1. Introduction §1.1. Many concepts and techniques in the theory of finite groups depend in- trinsically on the assumption that the groups considered are a priori finite. The theoretical framework based on such methods has led to marvellous achievements, including – as a particular highlight – the classification of all finite simple groups. Notwithstanding, the same methods are only of limited use in the study of infinite groups: it remains mysterious how one could possibly pin down the structure of a general infinite group in a systematic way. Significantly more can be said if such a group comes equipped with additional information, such as a structure-preserving action on a notable geometric object. A coherent approach to studying restricted classes of infinite groups is found by imposing suitable ‘finiteness conditions’, i.e., conditions that generalise the notion of being finite but are significantly more flexible, such as the group being finitely generated or compact with respect to a natural topology. One rather fruitful theme, fusing methods from finite and infinite group theory, consists in studying the interplay between an infinite group Γ and the collection of all its finite quotients. -
Infinite Groups with Large Balls of Torsion Elements and Small Entropy
INFINITE GROUPS WITH LARGE BALLS OF TORSION ELEMENTS AND SMALL ENTROPY LAURENT BARTHOLDI, YVES DE CORNULIER Abstract. We exhibit infinite, solvable, abelian-by-finite groups, with a fixed number of generators, with arbitrarily large balls consisting of torsion elements. We also provide a sequence of 3-generator non-nilpotent-by-finite polycyclic groups of algebraic entropy tending to zero. All these examples are obtained by taking ap- propriate quotients of finitely presented groups mapping onto the first Grigorchuk group. The Burnside Problem asks whether a finitely generated group all of whose ele- ments have finite order must be finite. We are interested in the following related question: fix n sufficiently large; given a group Γ, with a finite symmetric generating subset S such that every element in the n-ball is torsion, is Γ finite? Since the Burn- side problem has a negative answer, a fortiori the answer to our question is negative in general. However, it is natural to ask for it in some classes of finitely generated groups for which the Burnside Problem has a positive answer, such as linear groups or solvable groups. This motivates the following proposition, which in particularly answers a question of Breuillard to the authors. Proposition 1. For every n, there exists a group G, generated by a 3-element subset S consisting of elements of order 2, in which the n-ball consists of torsion elements, and satisfying one of the additional assumptions: (1) G is solvable, virtually abelian, and infinite (more precisely, it has a free abelian normal subgroup of finite 2-power index); in particular it is linear. -
Permutation Groups Containing a Regular Abelian Subgroup: The
PERMUTATION GROUPS CONTAINING A REGULAR ABELIAN SUBGROUP: THE TANGLED HISTORY OF TWO MISTAKES OF BURNSIDE MARK WILDON Abstract. A group K is said to be a B-group if every permutation group containing K as a regular subgroup is either imprimitive or 2- transitive. In the second edition of his influential textbook on finite groups, Burnside published a proof that cyclic groups of composite prime-power degree are B-groups. Ten years later in 1921 he published a proof that every abelian group of composite degree is a B-group. Both proofs are character-theoretic and both have serious flaws. Indeed, the second result is false. In this note we explain these flaws and prove that every cyclic group of composite order is a B-group, using only Burnside’s character-theoretic methods. We also survey the related literature, prove some new results on B-groups of prime-power order, state two related open problems and present some new computational data. 1. Introduction In 1911, writing in §252 of the second edition of his influential textbook [6], Burnside claimed a proof of the following theorem. Theorem 1.1. Let G be a transitive permutation group of composite prime- power degree containing a regular cyclic subgroup. Either G is imprimitive or G is 2-transitive. An error in the penultimate sentence of Burnside’s proof was noted in [7, page 24], where Neumann remarks ‘Nevertheless, the theorem is certainly true and can be proved by similar character-theoretic methods to those that Burnside employed’. In §3 we present the correct part of Burnside’s arXiv:1705.07502v2 [math.GR] 11 Jun 2017 proof in today’s language. -
Burnside, March 2016
A Straightforward Solution to Burnside’s Problem S. Bachmuth 1. Introduction The Burnside Problem for groups asks whether a finitely generated group, all of whose elements have bounded order, is finite. We present a straightforward proof showing that the 2-generator Burnside groups of prime power exponent are solvable and therefore finite. This proof is straightforward in that it does not rely on induced maps as in [2], but it is strongly dependent on Theorem B in the joint paper with H. A. Heilbronn and H. Y. Mochizuki [9]. Theorem B is reformulated here as Lemma 3(i) in Section 2. Our use of Lemma 3(i) is indispensable. Throughout this paper we fix a prime power q = pe and unless specifically mentioned otherwise, all groups are 2-generator. At appropriate places, we may require e = 1 so that q = p is prime; otherwise q may be any fixed prime power. The only (published) positive results of finiteness of Burnside groups of prime power exponents are for exponents q = 2, 3 and 4 ([10],[12]). Some authors, beginning with P. S. Novikoff and S. I. Adian {15], (see also [1}), have claimed that groups of exponent k are infinite for k sufficiently large. Our result here, as in [2], is at odds with this claim. Since this proof avoids the use of induced maps, Section 4 of [2] has been rewritten. Sections 2, 3 and 6 have been left unaltered apart from minor, mostly expository, changes and renumbering of items. The introduction and Section 5 have been rewritten. Sections 5 & 6 are not involved in the proof although Section 5 is strongly recommended. -
Letters from William Burnside to Robert Fricke: Automorphic Functions, and the Emergence of the Burnside Problem
LETTERS FROM WILLIAM BURNSIDE TO ROBERT FRICKE: AUTOMORPHIC FUNCTIONS, AND THE EMERGENCE OF THE BURNSIDE PROBLEM CLEMENS ADELMANN AND EBERHARD H.-A. GERBRACHT Abstract. Two letters from William Burnside have recently been found in the Nachlass of Robert Fricke that contain instances of Burnside's Problem prior to its first publication. We present these letters as a whole to the public for the first time. We draw a picture of these two mathematicians and describe their activities leading to their correspondence. We thus gain an insight into their respective motivations, reactions, and attitudes, which may sharpen the current understanding of professional and social interactions of the mathemat- ical community at the turn of the 20th century. 1. The simple group of order 504 { a first meeting of minds Until 1902, when the publication list of the then fifty-year-old William Burnside already encompassed 90 papers, only one of these had appeared in a non-British journal: a three-page article [5] entitled \Note on the simple group of order 504" in volume 52 of Mathematische Annalen in 1898. In this paper Burnside deduced a presentation of that group in terms of generators and relations,1 which is based on the fact that it is isomorphic to the group of linear fractional transformations with coefficients in the finite field with 8 elements. The proof presented is very concise and terse, consisting only of a succession of algebraic identities, while calculations in the concrete group of transformations are omitted. In the very same volume of Mathematische Annalen, only one issue later, there can be found a paper [18] by Robert Fricke entitled \Ueber eine einfache Gruppe von 504 Operationen" (On a simple group of 504 operations), which is on exactly the same subject. -
Congruence Subgroup Problem for Algebraic Groups: Old and New Astérisque, Tome 209 (1992), P
Astérisque A. S. RAPINCHUK Congruence subgroup problem for algebraic groups: old and new Astérisque, tome 209 (1992), p. 73-84 <http://www.numdam.org/item?id=AST_1992__209__73_0> © Société mathématique de France, 1992, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONGRUENCE SUBGROUP PROBLEM FOR ALGEBRAIC GROUPS: OLD AND NEW A. S. RAPINCHUK* Let G C GLn be an algebraic group defined over an algebraic number field K. Let 5 be a finite subset of the set VK of all valuations of K, containing the set V*£ of archimedean valuations. Denote by O(S) the ring of 5-integers in K and by GQ(S) the group of 5-units in G. To any nonzero ideal a C O(S) there corresponds the congruence subgroup Go(s)(*) = {96 G0(s) \ 9 = En (mod a)} , which is a normal subgroup of finite index in GQ(S)- The initial statement of the Congruence Subgroup Problem was : (1) Does any normal subgroup of finite index in GQ(S) contain a suitable congruence subgroup Go(s)(a) ? In fact, it was found by F. Klein as far back as 1880 that for the group SL2(Z) the answer to question (1) is "no". -
Introduction to Representation Theory
STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA. -
17 Torsion Subgroup Tg
17 Torsion subgroup tG All groups in this chapter will be additive. Thus extensions of A by C can be written as short exact sequences: f g 0 ! A ¡! B ¡! C ! 0 which are sequences of homomorphisms between additive groups so that im f = ker g, ker f = 0 (f is a monomorphism) and coker g = 0 (g is an epimorphism). Definition 17.1. The torsion subgroup tG of an additive group G is defined to be the group of all elements of G of finite order. [Note that if x; y 2 G have order n; m then nm(x + y) = nmx + nmy = 0 so tG · G.] G is called a torsion group if tG = G. It is called torsion-free if tG = 0. Lemma 17.2. G=tG is torsion-free for any additive group G. Proof. This is obvious. If this were not true there would be an element of G=tG of finite order, say x + tG with order n. Then nx + tG = tG implies that nx 2 tG so there is an m > 0 so that m(nx) = 0. But then x has finite order and x + tG is zero in G=tG. Lemma 17.3. Any homomorphism f : G ! H sends tG into tH, i.e., t is a functor. Proof. If x 2 tG then nx = 0 for some n > 0 so nf(x) = f(nx) = 0 which implies that f(x) 2 tH. Lemma 17.4. The functor t commutes with direct sum, i.e., M M t G® = tG®: This is obvious. -
Master's Thesis
MASTER'S THESIS Title of the Master's Thesis Engel Lie algebras submitted by Thimo Maria Kasper, BSc in partial fulfilment of the requirements for the degree of Master of Science (MSc) Vienna, 2018 Degree programme code: A 066 821 Degree programme: Master Mathematics Supervisor: Prof. Dr. Dietrich Burde Summary The purpose of this thesis is to present an investigation of Engel-n Lie algebras. In addition to the defining relations of Lie algebras these satisfy the so-called Engel-n identity ad(x)n = 0 for all x. Engel Lie algebras arise in the study of the Restricted Burnside Problem, which was solved by Efim Zelmanov in 1991. Beside a general introduction to the topic, special interest is taken in the exploration of the nilpotency classes of Engel-n Lie algebras for small values of n. At this, the primary objective is to elaborate the case of n = 3 explicitly. Chapter 1 concerns the general theory of Lie algebras. In the course of this, the essential properties of solvability and nilpotency are explained as they will be central in the subsequent discussion. Further, the definition of free Lie algebras which contributes to the establishment of the concept of free-nilpotent Lie algebras. In the last section several notions of group theory are surveyed. These will be useful in Chapter 2. The second chapter explains the origin and solution of the Burnside Problems. In that process, a historical survey on William Burnside and the first results on his fundamental questions are given. Next, the so-called Restricted Burnside Problem is considered and an overview of the most important steps to the solution is dis- played. -
Current Trends and Open Problems in Arithmetic Dynamics
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 56, Number 4, October 2019, Pages 611–685 https://doi.org/10.1090/bull/1665 Article electronically published on March 1, 2019 CURRENT TRENDS AND OPEN PROBLEMS IN ARITHMETIC DYNAMICS ROBERT BENEDETTO, PATRICK INGRAM, RAFE JONES, MICHELLE MANES, JOSEPH H. SILVERMAN, AND THOMAS J. TUCKER Abstract. Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geom- etry and partly from p-adic analogues of theorems and conjectures in classical complex dynamics. In this article we survey some of the motivating problems and some of the recent progress in the field of arithmetic dynamics. Contents 1. Introduction 612 2. Abstract dynamical systems 613 3. Background: Number theory and algebraic geometry 615 4. Uniform boundedness of (pre)periodic points 617 5. Arboreal representations 619 6. Dynatomic representations 622 7. Intersections of orbits and subvarieties 624 8. (Pre)periodic points on subvarieties 626 9. Dynamical (dynatomic) modular curves 627 10. Dynamical moduli spaces 630 11. Unlikely intersections in dynamics 634 12. Good reduction of maps and orbits 636 13. Dynamical degrees of rational maps 642 14. Arithmetic degrees of orbits 645 15. Canonical heights 649 16. Variation of the canonical height 653 17. p-adic and non-archimedean dynamics 656 18. Dynamics over finite fields 661 19. Irreducibilty and stability of iterates 665 20. Primes, prime divisors, and primitive divisors in orbits 668 21. Integral points in orbits 671 Received by the editors June 30, 2018.